validmind 2.8.28__py3-none-any.whl → 2.9.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/utils.py +4 -24
  3. validmind/api_client.py +6 -17
  4. validmind/logging.py +48 -0
  5. validmind/models/function.py +11 -3
  6. validmind/tests/__init__.py +2 -0
  7. validmind/tests/__types__.py +18 -0
  8. validmind/tests/data_validation/ACFandPACFPlot.py +3 -1
  9. validmind/tests/data_validation/ADF.py +3 -1
  10. validmind/tests/data_validation/AutoAR.py +3 -1
  11. validmind/tests/data_validation/AutoMA.py +5 -1
  12. validmind/tests/data_validation/AutoStationarity.py +5 -1
  13. validmind/tests/data_validation/BivariateScatterPlots.py +3 -1
  14. validmind/tests/data_validation/BoxPierce.py +4 -1
  15. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +1 -1
  16. validmind/tests/data_validation/ClassImbalance.py +1 -1
  17. validmind/tests/data_validation/DatasetDescription.py +4 -1
  18. validmind/tests/data_validation/DatasetSplit.py +3 -2
  19. validmind/tests/data_validation/DescriptiveStatistics.py +3 -1
  20. validmind/tests/data_validation/DickeyFullerGLS.py +3 -1
  21. validmind/tests/data_validation/Duplicates.py +3 -1
  22. validmind/tests/data_validation/EngleGrangerCoint.py +6 -1
  23. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +3 -1
  24. validmind/tests/data_validation/HighCardinality.py +3 -1
  25. validmind/tests/data_validation/HighPearsonCorrelation.py +4 -1
  26. validmind/tests/data_validation/IQROutliersBarPlot.py +4 -1
  27. validmind/tests/data_validation/IQROutliersTable.py +6 -1
  28. validmind/tests/data_validation/IsolationForestOutliers.py +3 -1
  29. validmind/tests/data_validation/JarqueBera.py +3 -1
  30. validmind/tests/data_validation/KPSS.py +3 -1
  31. validmind/tests/data_validation/LJungBox.py +3 -1
  32. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +6 -1
  33. validmind/tests/data_validation/MissingValues.py +5 -1
  34. validmind/tests/data_validation/MissingValuesBarPlot.py +3 -1
  35. validmind/tests/data_validation/MutualInformation.py +4 -1
  36. validmind/tests/data_validation/PearsonCorrelationMatrix.py +3 -1
  37. validmind/tests/data_validation/PhillipsPerronArch.py +3 -1
  38. validmind/tests/data_validation/ProtectedClassesCombination.py +5 -1
  39. validmind/tests/data_validation/ProtectedClassesDescription.py +5 -1
  40. validmind/tests/data_validation/ProtectedClassesDisparity.py +5 -3
  41. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +9 -2
  42. validmind/tests/data_validation/RollingStatsPlot.py +5 -1
  43. validmind/tests/data_validation/RunsTest.py +1 -1
  44. validmind/tests/data_validation/ScatterPlot.py +2 -1
  45. validmind/tests/data_validation/ScoreBandDefaultRates.py +3 -1
  46. validmind/tests/data_validation/SeasonalDecompose.py +6 -1
  47. validmind/tests/data_validation/ShapiroWilk.py +4 -1
  48. validmind/tests/data_validation/Skewness.py +3 -1
  49. validmind/tests/data_validation/SpreadPlot.py +3 -1
  50. validmind/tests/data_validation/TabularCategoricalBarPlots.py +4 -1
  51. validmind/tests/data_validation/TabularDateTimeHistograms.py +3 -1
  52. validmind/tests/data_validation/TabularDescriptionTables.py +4 -1
  53. validmind/tests/data_validation/TabularNumericalHistograms.py +3 -1
  54. validmind/tests/data_validation/TargetRateBarPlots.py +4 -1
  55. validmind/tests/data_validation/TimeSeriesDescription.py +1 -1
  56. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +1 -1
  57. validmind/tests/data_validation/TimeSeriesFrequency.py +5 -1
  58. validmind/tests/data_validation/TimeSeriesHistogram.py +4 -1
  59. validmind/tests/data_validation/TimeSeriesLinePlot.py +3 -1
  60. validmind/tests/data_validation/TimeSeriesMissingValues.py +6 -1
  61. validmind/tests/data_validation/TimeSeriesOutliers.py +5 -1
  62. validmind/tests/data_validation/TooManyZeroValues.py +6 -1
  63. validmind/tests/data_validation/UniqueRows.py +5 -1
  64. validmind/tests/data_validation/WOEBinPlots.py +4 -1
  65. validmind/tests/data_validation/WOEBinTable.py +5 -1
  66. validmind/tests/data_validation/ZivotAndrewsArch.py +3 -1
  67. validmind/tests/data_validation/nlp/CommonWords.py +2 -1
  68. validmind/tests/data_validation/nlp/Hashtags.py +2 -1
  69. validmind/tests/data_validation/nlp/LanguageDetection.py +4 -1
  70. validmind/tests/data_validation/nlp/Mentions.py +3 -1
  71. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +6 -1
  72. validmind/tests/data_validation/nlp/Punctuations.py +2 -1
  73. validmind/tests/data_validation/nlp/Sentiment.py +3 -1
  74. validmind/tests/data_validation/nlp/StopWords.py +2 -1
  75. validmind/tests/data_validation/nlp/TextDescription.py +3 -1
  76. validmind/tests/data_validation/nlp/Toxicity.py +3 -1
  77. validmind/tests/load.py +91 -17
  78. validmind/tests/model_validation/BertScore.py +6 -3
  79. validmind/tests/model_validation/BleuScore.py +6 -1
  80. validmind/tests/model_validation/ClusterSizeDistribution.py +5 -1
  81. validmind/tests/model_validation/ContextualRecall.py +6 -1
  82. validmind/tests/model_validation/FeaturesAUC.py +5 -1
  83. validmind/tests/model_validation/MeteorScore.py +6 -1
  84. validmind/tests/model_validation/ModelMetadata.py +2 -1
  85. validmind/tests/model_validation/ModelPredictionResiduals.py +10 -2
  86. validmind/tests/model_validation/RegardScore.py +7 -1
  87. validmind/tests/model_validation/RegressionResidualsPlot.py +5 -1
  88. validmind/tests/model_validation/RougeScore.py +8 -1
  89. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +8 -1
  90. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +7 -1
  91. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +6 -1
  92. validmind/tests/model_validation/TokenDisparity.py +6 -1
  93. validmind/tests/model_validation/ToxicityScore.py +6 -1
  94. validmind/tests/model_validation/embeddings/ClusterDistribution.py +6 -1
  95. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +6 -1
  96. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +6 -1
  97. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +7 -3
  98. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +6 -1
  99. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +4 -3
  100. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +6 -1
  101. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +7 -3
  102. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +6 -1
  103. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +5 -2
  104. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +5 -1
  105. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +4 -1
  106. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +5 -1
  107. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +9 -6
  108. validmind/tests/model_validation/ragas/AnswerCorrectness.py +8 -5
  109. validmind/tests/model_validation/ragas/AspectCritic.py +11 -8
  110. validmind/tests/model_validation/ragas/ContextEntityRecall.py +5 -2
  111. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -2
  112. validmind/tests/model_validation/ragas/ContextPrecisionWithoutReference.py +5 -2
  113. validmind/tests/model_validation/ragas/ContextRecall.py +6 -2
  114. validmind/tests/model_validation/ragas/Faithfulness.py +9 -5
  115. validmind/tests/model_validation/ragas/NoiseSensitivity.py +10 -7
  116. validmind/tests/model_validation/ragas/ResponseRelevancy.py +9 -6
  117. validmind/tests/model_validation/ragas/SemanticSimilarity.py +7 -4
  118. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +5 -1
  119. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +5 -1
  120. validmind/tests/model_validation/sklearn/CalibrationCurve.py +5 -1
  121. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +5 -1
  122. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +5 -1
  123. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +5 -1
  124. validmind/tests/model_validation/sklearn/CompletenessScore.py +5 -1
  125. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +4 -1
  126. validmind/tests/model_validation/sklearn/FeatureImportance.py +5 -1
  127. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +5 -1
  128. validmind/tests/model_validation/sklearn/HomogeneityScore.py +5 -1
  129. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +2 -4
  130. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +3 -3
  131. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +5 -1
  132. validmind/tests/model_validation/sklearn/MinimumF1Score.py +5 -1
  133. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +5 -1
  134. validmind/tests/model_validation/sklearn/ModelParameters.py +6 -1
  135. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +5 -1
  136. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +3 -2
  137. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +4 -4
  138. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +2 -2
  139. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +5 -1
  140. validmind/tests/model_validation/sklearn/ROCCurve.py +3 -1
  141. validmind/tests/model_validation/sklearn/RegressionErrors.py +6 -1
  142. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +6 -1
  143. validmind/tests/model_validation/sklearn/RegressionPerformance.py +5 -1
  144. validmind/tests/model_validation/sklearn/RegressionR2Square.py +6 -1
  145. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +6 -1
  146. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +2 -2
  147. validmind/tests/model_validation/sklearn/ScoreProbabilityAlignment.py +3 -1
  148. validmind/tests/model_validation/sklearn/SilhouettePlot.py +6 -1
  149. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +2 -2
  150. validmind/tests/model_validation/sklearn/VMeasure.py +5 -1
  151. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +6 -5
  152. validmind/tests/model_validation/statsmodels/AutoARIMA.py +3 -1
  153. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +6 -1
  154. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +6 -1
  155. validmind/tests/model_validation/statsmodels/GINITable.py +4 -1
  156. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +5 -1
  157. validmind/tests/model_validation/statsmodels/Lilliefors.py +3 -1
  158. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +6 -2
  159. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +4 -1
  160. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +7 -2
  161. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +5 -4
  162. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +4 -1
  163. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +3 -2
  164. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +5 -1
  165. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +3 -1
  166. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +6 -1
  167. validmind/tests/ongoing_monitoring/CalibrationCurveDrift.py +2 -2
  168. validmind/tests/ongoing_monitoring/ClassDiscriminationDrift.py +2 -2
  169. validmind/tests/ongoing_monitoring/ClassImbalanceDrift.py +2 -2
  170. validmind/tests/ongoing_monitoring/ClassificationAccuracyDrift.py +2 -2
  171. validmind/tests/ongoing_monitoring/ConfusionMatrixDrift.py +2 -2
  172. validmind/tests/ongoing_monitoring/CumulativePredictionProbabilitiesDrift.py +2 -2
  173. validmind/tests/ongoing_monitoring/FeatureDrift.py +5 -2
  174. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +6 -1
  175. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +8 -1
  176. validmind/tests/ongoing_monitoring/PredictionProbabilitiesHistogramDrift.py +2 -2
  177. validmind/tests/ongoing_monitoring/PredictionQuantilesAcrossFeatures.py +6 -1
  178. validmind/tests/ongoing_monitoring/ROCCurveDrift.py +4 -2
  179. validmind/tests/ongoing_monitoring/ScoreBandsDrift.py +2 -2
  180. validmind/tests/ongoing_monitoring/ScorecardHistogramDrift.py +2 -2
  181. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +8 -1
  182. validmind/tests/output.py +9 -2
  183. validmind/tests/plots/BoxPlot.py +260 -0
  184. validmind/tests/plots/CorrelationHeatmap.py +235 -0
  185. validmind/tests/plots/HistogramPlot.py +233 -0
  186. validmind/tests/plots/ViolinPlot.py +125 -0
  187. validmind/tests/plots/__init__.py +0 -0
  188. validmind/tests/prompt_validation/Bias.py +5 -1
  189. validmind/tests/prompt_validation/Clarity.py +5 -1
  190. validmind/tests/prompt_validation/Conciseness.py +5 -1
  191. validmind/tests/prompt_validation/Delimitation.py +5 -1
  192. validmind/tests/prompt_validation/NegativeInstruction.py +5 -1
  193. validmind/tests/prompt_validation/Robustness.py +5 -1
  194. validmind/tests/prompt_validation/Specificity.py +5 -1
  195. validmind/tests/stats/CorrelationAnalysis.py +251 -0
  196. validmind/tests/stats/DescriptiveStats.py +197 -0
  197. validmind/tests/stats/NormalityTests.py +147 -0
  198. validmind/tests/stats/OutlierDetection.py +173 -0
  199. validmind/tests/stats/__init__.py +0 -0
  200. validmind/unit_metrics/classification/Accuracy.py +2 -1
  201. validmind/unit_metrics/classification/F1.py +2 -1
  202. validmind/unit_metrics/classification/Precision.py +2 -1
  203. validmind/unit_metrics/classification/ROC_AUC.py +2 -1
  204. validmind/unit_metrics/classification/Recall.py +2 -1
  205. validmind/unit_metrics/classification/individual/AbsoluteError.py +42 -0
  206. validmind/unit_metrics/classification/individual/BrierScore.py +56 -0
  207. validmind/unit_metrics/classification/individual/CalibrationError.py +77 -0
  208. validmind/unit_metrics/classification/individual/ClassBalance.py +65 -0
  209. validmind/unit_metrics/classification/individual/Confidence.py +52 -0
  210. validmind/unit_metrics/classification/individual/Correctness.py +41 -0
  211. validmind/unit_metrics/classification/individual/LogLoss.py +61 -0
  212. validmind/unit_metrics/classification/individual/OutlierScore.py +86 -0
  213. validmind/unit_metrics/classification/individual/ProbabilityError.py +54 -0
  214. validmind/unit_metrics/classification/individual/Uncertainty.py +60 -0
  215. validmind/unit_metrics/classification/individual/__init__.py +0 -0
  216. validmind/unit_metrics/regression/AdjustedRSquaredScore.py +2 -1
  217. validmind/unit_metrics/regression/GiniCoefficient.py +2 -1
  218. validmind/unit_metrics/regression/HuberLoss.py +2 -1
  219. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +2 -1
  220. validmind/unit_metrics/regression/MeanAbsoluteError.py +2 -1
  221. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +2 -1
  222. validmind/unit_metrics/regression/MeanBiasDeviation.py +2 -1
  223. validmind/unit_metrics/regression/MeanSquaredError.py +2 -1
  224. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  225. validmind/unit_metrics/regression/RSquaredScore.py +2 -1
  226. validmind/unit_metrics/regression/RootMeanSquaredError.py +2 -1
  227. validmind/vm_models/dataset/dataset.py +291 -38
  228. validmind/vm_models/result/result.py +26 -4
  229. {validmind-2.8.28.dist-info → validmind-2.9.1.dist-info}/METADATA +2 -2
  230. {validmind-2.8.28.dist-info → validmind-2.9.1.dist-info}/RECORD +233 -212
  231. {validmind-2.8.28.dist-info → validmind-2.9.1.dist-info}/LICENSE +0 -0
  232. {validmind-2.8.28.dist-info → validmind-2.9.1.dist-info}/WHEEL +0 -0
  233. {validmind-2.8.28.dist-info → validmind-2.9.1.dist-info}/entry_points.txt +0 -0
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import pandas as pd
8
8
  import plotly.graph_objs as go
@@ -18,7 +18,7 @@ def ClassImbalanceDrift(
18
18
  datasets: List[VMDataset],
19
19
  drift_pct_threshold: float = 5.0,
20
20
  title: str = "Class Distribution Drift",
21
- ):
21
+ ) -> Tuple[go.Figure, Dict[str, pd.DataFrame], bool]:
22
22
  """
23
23
  Evaluates drift in class distribution between reference and monitoring datasets.
24
24
 
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -18,7 +18,7 @@ from validmind.vm_models import VMDataset, VMModel
18
18
  @tasks("classification", "text_classification")
19
19
  def ClassificationAccuracyDrift(
20
20
  datasets: List[VMDataset], model: VMModel, drift_pct_threshold=20
21
- ):
21
+ ) -> Tuple[Dict[str, pd.DataFrame], bool, RawData]:
22
22
  """
23
23
  Compares classification accuracy metrics between reference and monitoring datasets.
24
24
 
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -18,7 +18,7 @@ from validmind.vm_models import VMDataset, VMModel
18
18
  @tasks("classification", "text_classification")
19
19
  def ConfusionMatrixDrift(
20
20
  datasets: List[VMDataset], model: VMModel, drift_pct_threshold=20
21
- ):
21
+ ) -> Tuple[Dict[str, pd.DataFrame], bool, RawData]:
22
22
  """
23
23
  Compares confusion matrix metrics between reference and monitoring datasets.
24
24
 
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import plotly.graph_objects as go
@@ -17,7 +17,7 @@ from validmind.vm_models import VMDataset, VMModel
17
17
  def CumulativePredictionProbabilitiesDrift(
18
18
  datasets: List[VMDataset],
19
19
  model: VMModel,
20
- ):
20
+ ) -> Tuple[go.Figure, RawData]:
21
21
  """
22
22
  Compares cumulative prediction probability distributions between reference and monitoring datasets.
23
23
 
@@ -2,11 +2,14 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ from typing import Dict, List, Tuple
6
+
5
7
  import numpy as np
6
8
  import pandas as pd
7
9
  import plotly.graph_objects as go
8
10
 
9
11
  from validmind import RawData, tags, tasks
12
+ from validmind.vm_models import VMDataset
10
13
 
11
14
 
12
15
  def calculate_psi_score(actual, expected):
@@ -92,11 +95,11 @@ def create_distribution_plot(feature_name, reference_dist, monitoring_dist, bins
92
95
  @tags("visualization")
93
96
  @tasks("monitoring")
94
97
  def FeatureDrift(
95
- datasets,
98
+ datasets: List[VMDataset],
96
99
  bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
97
100
  feature_columns=None,
98
101
  psi_threshold=0.2,
99
- ):
102
+ ) -> Tuple[Dict[str, pd.DataFrame], go.Figure, bool, RawData]:
100
103
  """
101
104
  Evaluates changes in feature distribution over time to identify potential model drift.
102
105
 
@@ -3,14 +3,19 @@
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
5
 
6
+ from typing import List, Tuple
7
+
6
8
  import matplotlib.pyplot as plt
7
9
 
8
10
  from validmind import RawData, tags, tasks
11
+ from validmind.vm_models import VMDataset, VMModel
9
12
 
10
13
 
11
14
  @tags("visualization")
12
15
  @tasks("monitoring")
13
- def PredictionAcrossEachFeature(datasets, model):
16
+ def PredictionAcrossEachFeature(
17
+ datasets: List[VMDataset], model: VMModel
18
+ ) -> Tuple[plt.Figure, RawData]:
14
19
  """
15
20
  Assesses differences in model predictions across individual features between reference and monitoring datasets
16
21
  through visual analysis.
@@ -2,15 +2,22 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ from typing import Dict, List, Tuple
6
+
5
7
  import pandas as pd
6
8
  import plotly.graph_objects as go
7
9
 
8
10
  from validmind import RawData, tags, tasks
11
+ from validmind.vm_models import VMDataset, VMModel
9
12
 
10
13
 
11
14
  @tags("visualization")
12
15
  @tasks("monitoring")
13
- def PredictionCorrelation(datasets, model, drift_pct_threshold=20):
16
+ def PredictionCorrelation(
17
+ datasets: List[VMDataset],
18
+ model: VMModel,
19
+ drift_pct_threshold: float = 20,
20
+ ) -> Tuple[Dict[str, pd.DataFrame], go.Figure, bool, RawData]:
14
21
  """
15
22
  Assesses correlation changes between model predictions from reference and monitoring datasets to detect potential
16
23
  target drift.
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -21,7 +21,7 @@ def PredictionProbabilitiesHistogramDrift(
21
21
  model: VMModel,
22
22
  title="Prediction Probabilities Histogram Drift",
23
23
  drift_pct_threshold: float = 20.0,
24
- ):
24
+ ) -> Tuple[go.Figure, Dict[str, pd.DataFrame], bool, RawData]:
25
25
  """
26
26
  Compares prediction probability distributions between reference and monitoring datasets.
27
27
 
@@ -2,15 +2,20 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ from typing import List, Tuple
6
+
5
7
  import plotly.graph_objects as go
6
8
  from plotly.subplots import make_subplots
7
9
 
8
10
  from validmind import tags, tasks
11
+ from validmind.vm_models import VMDataset, VMModel
9
12
 
10
13
 
11
14
  @tags("visualization")
12
15
  @tasks("monitoring")
13
- def PredictionQuantilesAcrossFeatures(datasets, model):
16
+ def PredictionQuantilesAcrossFeatures(
17
+ datasets: List[VMDataset], model: VMModel
18
+ ) -> Tuple[go.Figure, ...]:
14
19
  """
15
20
  Assesses differences in model prediction distributions across individual features between reference
16
21
  and monitoring datasets through quantile analysis.
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import plotly.graph_objects as go
@@ -20,7 +20,9 @@ from validmind.vm_models import VMDataset, VMModel
20
20
  "visualization",
21
21
  )
22
22
  @tasks("classification", "text_classification")
23
- def ROCCurveDrift(datasets: List[VMDataset], model: VMModel):
23
+ def ROCCurveDrift(
24
+ datasets: List[VMDataset], model: VMModel
25
+ ) -> Tuple[go.Figure, go.Figure, RawData]:
24
26
  """
25
27
  Compares ROC curves between reference and monitoring datasets.
26
28
 
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -19,7 +19,7 @@ def ScoreBandsDrift(
19
19
  score_column: str = "score",
20
20
  score_bands: list = None,
21
21
  drift_threshold: float = 20.0,
22
- ):
22
+ ) -> Tuple[Dict[str, pd.DataFrame], bool, RawData]:
23
23
  """
24
24
  Analyzes drift in population distribution and default rates across score bands.
25
25
 
@@ -2,7 +2,7 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from typing import List
5
+ from typing import Dict, List, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -21,7 +21,7 @@ def ScorecardHistogramDrift(
21
21
  score_column: str = "score",
22
22
  title: str = "Scorecard Histogram Drift",
23
23
  drift_pct_threshold: float = 20.0,
24
- ):
24
+ ) -> Tuple[go.Figure, Dict[str, pd.DataFrame], bool]:
25
25
  """
26
26
  Compares score distributions between reference and monitoring datasets for each class.
27
27
 
@@ -2,17 +2,24 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ from typing import Dict, List, Tuple
6
+
5
7
  import pandas as pd
6
8
  import plotly.figure_factory as ff
7
9
  import plotly.graph_objects as go
8
10
  from scipy.stats import kurtosis, skew
9
11
 
10
12
  from validmind import RawData, tags, tasks
13
+ from validmind.vm_models import VMDataset, VMModel
11
14
 
12
15
 
13
16
  @tags("visualization")
14
17
  @tasks("monitoring")
15
- def TargetPredictionDistributionPlot(datasets, model, drift_pct_threshold=20):
18
+ def TargetPredictionDistributionPlot(
19
+ datasets: List[VMDataset],
20
+ model: VMModel,
21
+ drift_pct_threshold: float = 20,
22
+ ) -> Tuple[Dict[str, pd.DataFrame], go.Figure, bool, RawData]:
16
23
  """
17
24
  Assesses differences in prediction distributions between a reference dataset and a monitoring dataset to identify
18
25
  potential data drift.
validmind/tests/output.py CHANGED
@@ -45,7 +45,13 @@ class BooleanOutputHandler(OutputHandler):
45
45
 
46
46
  class MetricOutputHandler(OutputHandler):
47
47
  def can_handle(self, item: Any) -> bool:
48
- return isinstance(item, (int, float))
48
+ # Accept individual numbers
49
+ if isinstance(item, (int, float)):
50
+ return True
51
+ # Accept lists/arrays of numbers for per-row metrics
52
+ if isinstance(item, (list, tuple, np.ndarray)):
53
+ return all(isinstance(x, (int, float, np.number)) for x in item)
54
+ return False
49
55
 
50
56
  def process(self, item: Any, result: TestResult) -> None:
51
57
  if result.metric is not None:
@@ -169,11 +175,12 @@ def process_output(item: Any, result: TestResult) -> None:
169
175
  """Process a single test output item and update the TestResult."""
170
176
  handlers = [
171
177
  BooleanOutputHandler(),
172
- MetricOutputHandler(),
173
178
  FigureOutputHandler(),
174
179
  TableOutputHandler(),
175
180
  RawDataOutputHandler(),
176
181
  StringOutputHandler(),
182
+ # Unit metrics should be processed last
183
+ MetricOutputHandler(),
177
184
  ]
178
185
 
179
186
  for handler in handlers:
@@ -0,0 +1,260 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+ from typing import List, Optional
6
+
7
+ import plotly.graph_objects as go
8
+ from plotly.subplots import make_subplots
9
+
10
+ from validmind import tags, tasks
11
+ from validmind.errors import SkipTestError
12
+ from validmind.vm_models import VMDataset
13
+
14
+
15
+ def _validate_inputs(
16
+ dataset: VMDataset, columns: Optional[List[str]], group_by: Optional[str]
17
+ ):
18
+ """Validate inputs and return validated columns."""
19
+ if columns is None:
20
+ columns = dataset.feature_columns_numeric
21
+ else:
22
+ available_columns = set(dataset.feature_columns_numeric)
23
+ columns = [col for col in columns if col in available_columns]
24
+
25
+ if not columns:
26
+ raise SkipTestError("No numerical columns found for box plotting")
27
+
28
+ if group_by is not None:
29
+ if group_by not in dataset.df.columns:
30
+ raise SkipTestError(f"Group column '{group_by}' not found in dataset")
31
+ if group_by in columns:
32
+ columns.remove(group_by)
33
+
34
+ return columns
35
+
36
+
37
+ def _create_grouped_boxplot(
38
+ dataset, columns, group_by, colors, show_outliers, title_prefix, width, height
39
+ ):
40
+ """Create grouped box plots."""
41
+ fig = go.Figure()
42
+ groups = dataset.df[group_by].dropna().unique()
43
+
44
+ for col_idx, column in enumerate(columns):
45
+ for group_idx, group_value in enumerate(groups):
46
+ data_subset = dataset.df[dataset.df[group_by] == group_value][
47
+ column
48
+ ].dropna()
49
+
50
+ if len(data_subset) > 0:
51
+ color = colors[group_idx % len(colors)]
52
+ fig.add_trace(
53
+ go.Box(
54
+ y=data_subset,
55
+ name=f"{group_value}",
56
+ marker_color=color,
57
+ boxpoints="outliers" if show_outliers else False,
58
+ jitter=0.3,
59
+ pointpos=-1.8,
60
+ legendgroup=f"{group_value}",
61
+ showlegend=(col_idx == 0),
62
+ offsetgroup=group_idx,
63
+ x=[column] * len(data_subset),
64
+ )
65
+ )
66
+
67
+ fig.update_layout(
68
+ title=f"{title_prefix} Features by {group_by}",
69
+ xaxis_title="Features",
70
+ yaxis_title="Values",
71
+ boxmode="group",
72
+ width=width,
73
+ height=height,
74
+ template="plotly_white",
75
+ )
76
+ return fig
77
+
78
+
79
+ def _create_single_boxplot(
80
+ dataset, column, colors, show_outliers, title_prefix, width, height
81
+ ):
82
+ """Create single column box plot."""
83
+ data = dataset.df[column].dropna()
84
+ if len(data) == 0:
85
+ raise SkipTestError(f"No data available for column {column}")
86
+
87
+ fig = go.Figure()
88
+ fig.add_trace(
89
+ go.Box(
90
+ y=data,
91
+ name=column,
92
+ marker_color=colors[0],
93
+ boxpoints="outliers" if show_outliers else False,
94
+ jitter=0.3,
95
+ pointpos=-1.8,
96
+ )
97
+ )
98
+
99
+ fig.update_layout(
100
+ title=f"{title_prefix} {column}",
101
+ yaxis_title=column,
102
+ width=width,
103
+ height=height,
104
+ template="plotly_white",
105
+ showlegend=False,
106
+ )
107
+ return fig
108
+
109
+
110
+ def _create_multiple_boxplots(
111
+ dataset, columns, colors, show_outliers, title_prefix, width, height
112
+ ):
113
+ """Create multiple column box plots in subplot layout."""
114
+ n_cols = min(3, len(columns))
115
+ n_rows = (len(columns) + n_cols - 1) // n_cols
116
+
117
+ subplot_titles = [f"{title_prefix} {col}" for col in columns]
118
+ fig = make_subplots(
119
+ rows=n_rows,
120
+ cols=n_cols,
121
+ subplot_titles=subplot_titles,
122
+ vertical_spacing=0.1,
123
+ horizontal_spacing=0.1,
124
+ )
125
+
126
+ for idx, column in enumerate(columns):
127
+ row = (idx // n_cols) + 1
128
+ col = (idx % n_cols) + 1
129
+ data = dataset.df[column].dropna()
130
+
131
+ if len(data) > 0:
132
+ color = colors[idx % len(colors)]
133
+ fig.add_trace(
134
+ go.Box(
135
+ y=data,
136
+ name=column,
137
+ marker_color=color,
138
+ boxpoints="outliers" if show_outliers else False,
139
+ jitter=0.3,
140
+ pointpos=-1.8,
141
+ showlegend=False,
142
+ ),
143
+ row=row,
144
+ col=col,
145
+ )
146
+ fig.update_yaxes(title_text=column, row=row, col=col)
147
+ else:
148
+ fig.add_annotation(
149
+ text=f"No data available<br>for {column}",
150
+ x=0.5,
151
+ y=0.5,
152
+ xref=f"x{idx+1} domain" if idx > 0 else "x domain",
153
+ yref=f"y{idx+1} domain" if idx > 0 else "y domain",
154
+ showarrow=False,
155
+ row=row,
156
+ col=col,
157
+ )
158
+
159
+ fig.update_layout(
160
+ title="Dataset Feature Distributions",
161
+ width=width,
162
+ height=height,
163
+ template="plotly_white",
164
+ showlegend=False,
165
+ )
166
+ return fig
167
+
168
+
169
+ @tags("tabular_data", "visualization", "data_quality")
170
+ @tasks("classification", "regression", "clustering")
171
+ def BoxPlot(
172
+ dataset: VMDataset,
173
+ columns: Optional[List[str]] = None,
174
+ group_by: Optional[str] = None,
175
+ width: int = 1200,
176
+ height: int = 600,
177
+ colors: Optional[List[str]] = None,
178
+ show_outliers: bool = True,
179
+ title_prefix: str = "Box Plot of",
180
+ ) -> go.Figure:
181
+ """
182
+ Generates customizable box plots for numerical features in a dataset with optional grouping using Plotly.
183
+
184
+ ### Purpose
185
+
186
+ This test provides a flexible way to visualize the distribution of numerical features
187
+ through interactive box plots, with optional grouping by categorical variables. Box plots are
188
+ effective for identifying outliers, comparing distributions across groups, and
189
+ understanding the spread and central tendency of the data.
190
+
191
+ ### Test Mechanism
192
+
193
+ The test creates interactive box plots for specified numerical columns (or all numerical columns
194
+ if none specified). It supports various customization options including:
195
+ - Grouping by categorical variables
196
+ - Customizable colors and styling
197
+ - Outlier display options
198
+ - Interactive hover information
199
+ - Zoom and pan capabilities
200
+
201
+ ### Signs of High Risk
202
+
203
+ - Presence of many outliers indicating data quality issues
204
+ - Highly skewed distributions
205
+ - Large differences in variance across groups
206
+ - Unexpected patterns in grouped data
207
+
208
+ ### Strengths
209
+
210
+ - Clear visualization of distribution statistics (median, quartiles, outliers)
211
+ - Interactive Plotly plots with hover information and zoom capabilities
212
+ - Effective for comparing distributions across groups
213
+ - Handles missing values appropriately
214
+ - Highly customizable appearance
215
+
216
+ ### Limitations
217
+
218
+ - Limited to numerical features only
219
+ - May not be suitable for continuous variables with many unique values
220
+ - Visual interpretation may be subjective
221
+ - Less effective with very large datasets
222
+ """
223
+ # Validate inputs
224
+ columns = _validate_inputs(dataset, columns, group_by)
225
+
226
+ # Set default colors
227
+ if colors is None:
228
+ colors = [
229
+ "steelblue",
230
+ "orange",
231
+ "green",
232
+ "red",
233
+ "purple",
234
+ "brown",
235
+ "pink",
236
+ "gray",
237
+ "olive",
238
+ "cyan",
239
+ ]
240
+
241
+ # Create appropriate plot type
242
+ if group_by is not None:
243
+ return _create_grouped_boxplot(
244
+ dataset,
245
+ columns,
246
+ group_by,
247
+ colors,
248
+ show_outliers,
249
+ title_prefix,
250
+ width,
251
+ height,
252
+ )
253
+ elif len(columns) == 1:
254
+ return _create_single_boxplot(
255
+ dataset, columns[0], colors, show_outliers, title_prefix, width, height
256
+ )
257
+ else:
258
+ return _create_multiple_boxplots(
259
+ dataset, columns, colors, show_outliers, title_prefix, width, height
260
+ )