validmind 2.8.10__py3-none-any.whl → 2.8.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (189) hide show
  1. validmind/__init__.py +6 -5
  2. validmind/__version__.py +1 -1
  3. validmind/ai/test_descriptions.py +17 -11
  4. validmind/ai/utils.py +2 -2
  5. validmind/api_client.py +75 -32
  6. validmind/client.py +108 -100
  7. validmind/client_config.py +3 -3
  8. validmind/datasets/classification/__init__.py +7 -3
  9. validmind/datasets/credit_risk/lending_club.py +28 -16
  10. validmind/datasets/nlp/cnn_dailymail.py +10 -4
  11. validmind/datasets/regression/__init__.py +22 -5
  12. validmind/errors.py +17 -7
  13. validmind/input_registry.py +1 -1
  14. validmind/logging.py +44 -35
  15. validmind/models/foundation.py +2 -2
  16. validmind/models/function.py +10 -3
  17. validmind/template.py +30 -22
  18. validmind/test_suites/__init__.py +2 -2
  19. validmind/tests/_store.py +13 -4
  20. validmind/tests/comparison.py +65 -33
  21. validmind/tests/data_validation/ACFandPACFPlot.py +4 -1
  22. validmind/tests/data_validation/AutoMA.py +1 -1
  23. validmind/tests/data_validation/BivariateScatterPlots.py +5 -1
  24. validmind/tests/data_validation/BoxPierce.py +3 -1
  25. validmind/tests/data_validation/ClassImbalance.py +4 -2
  26. validmind/tests/data_validation/DatasetDescription.py +3 -24
  27. validmind/tests/data_validation/DescriptiveStatistics.py +1 -1
  28. validmind/tests/data_validation/DickeyFullerGLS.py +1 -1
  29. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +1 -1
  30. validmind/tests/data_validation/HighCardinality.py +5 -1
  31. validmind/tests/data_validation/HighPearsonCorrelation.py +1 -1
  32. validmind/tests/data_validation/IQROutliersBarPlot.py +5 -3
  33. validmind/tests/data_validation/IQROutliersTable.py +5 -2
  34. validmind/tests/data_validation/IsolationForestOutliers.py +5 -4
  35. validmind/tests/data_validation/JarqueBera.py +2 -2
  36. validmind/tests/data_validation/LJungBox.py +2 -2
  37. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +1 -1
  38. validmind/tests/data_validation/MissingValues.py +14 -10
  39. validmind/tests/data_validation/MissingValuesBarPlot.py +3 -1
  40. validmind/tests/data_validation/MutualInformation.py +2 -1
  41. validmind/tests/data_validation/PearsonCorrelationMatrix.py +1 -1
  42. validmind/tests/data_validation/ProtectedClassesCombination.py +2 -0
  43. validmind/tests/data_validation/ProtectedClassesDescription.py +2 -2
  44. validmind/tests/data_validation/ProtectedClassesDisparity.py +9 -5
  45. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +10 -2
  46. validmind/tests/data_validation/RollingStatsPlot.py +2 -1
  47. validmind/tests/data_validation/ScoreBandDefaultRates.py +4 -2
  48. validmind/tests/data_validation/SeasonalDecompose.py +1 -1
  49. validmind/tests/data_validation/ShapiroWilk.py +2 -2
  50. validmind/tests/data_validation/Skewness.py +7 -6
  51. validmind/tests/data_validation/SpreadPlot.py +1 -1
  52. validmind/tests/data_validation/TabularCategoricalBarPlots.py +1 -1
  53. validmind/tests/data_validation/TabularDateTimeHistograms.py +1 -1
  54. validmind/tests/data_validation/TargetRateBarPlots.py +4 -1
  55. validmind/tests/data_validation/TimeSeriesFrequency.py +1 -1
  56. validmind/tests/data_validation/TimeSeriesOutliers.py +7 -2
  57. validmind/tests/data_validation/WOEBinPlots.py +1 -1
  58. validmind/tests/data_validation/WOEBinTable.py +1 -1
  59. validmind/tests/data_validation/ZivotAndrewsArch.py +5 -2
  60. validmind/tests/data_validation/nlp/CommonWords.py +1 -1
  61. validmind/tests/data_validation/nlp/Hashtags.py +1 -1
  62. validmind/tests/data_validation/nlp/LanguageDetection.py +1 -1
  63. validmind/tests/data_validation/nlp/Mentions.py +1 -1
  64. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +5 -1
  65. validmind/tests/data_validation/nlp/Punctuations.py +1 -1
  66. validmind/tests/data_validation/nlp/Sentiment.py +3 -1
  67. validmind/tests/data_validation/nlp/TextDescription.py +1 -1
  68. validmind/tests/data_validation/nlp/Toxicity.py +1 -1
  69. validmind/tests/decorator.py +14 -11
  70. validmind/tests/load.py +38 -24
  71. validmind/tests/model_validation/BertScore.py +7 -1
  72. validmind/tests/model_validation/BleuScore.py +7 -1
  73. validmind/tests/model_validation/ClusterSizeDistribution.py +3 -1
  74. validmind/tests/model_validation/ContextualRecall.py +9 -1
  75. validmind/tests/model_validation/FeaturesAUC.py +1 -1
  76. validmind/tests/model_validation/MeteorScore.py +7 -1
  77. validmind/tests/model_validation/ModelPredictionResiduals.py +5 -1
  78. validmind/tests/model_validation/RegardScore.py +6 -1
  79. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -1
  80. validmind/tests/model_validation/RougeScore.py +3 -1
  81. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +2 -0
  82. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +10 -2
  83. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +6 -2
  84. validmind/tests/model_validation/TokenDisparity.py +5 -1
  85. validmind/tests/model_validation/ToxicityScore.py +2 -0
  86. validmind/tests/model_validation/embeddings/ClusterDistribution.py +1 -1
  87. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +5 -1
  88. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +5 -1
  89. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +5 -1
  90. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +2 -0
  91. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +5 -1
  92. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +6 -2
  93. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +3 -1
  94. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +4 -1
  95. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +5 -1
  96. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +5 -1
  97. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +5 -1
  98. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +5 -1
  99. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +6 -1
  100. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -3
  101. validmind/tests/model_validation/ragas/AspectCritic.py +4 -1
  102. validmind/tests/model_validation/ragas/ContextEntityRecall.py +5 -3
  103. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -3
  104. validmind/tests/model_validation/ragas/ContextPrecisionWithoutReference.py +5 -3
  105. validmind/tests/model_validation/ragas/ContextRecall.py +5 -3
  106. validmind/tests/model_validation/ragas/Faithfulness.py +5 -3
  107. validmind/tests/model_validation/ragas/NoiseSensitivity.py +1 -1
  108. validmind/tests/model_validation/ragas/ResponseRelevancy.py +5 -3
  109. validmind/tests/model_validation/ragas/SemanticSimilarity.py +5 -3
  110. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +9 -9
  111. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +9 -9
  112. validmind/tests/model_validation/sklearn/CalibrationCurve.py +5 -2
  113. validmind/tests/model_validation/sklearn/ClassifierThresholdOptimization.py +28 -5
  114. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +5 -1
  115. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +24 -14
  116. validmind/tests/model_validation/sklearn/CompletenessScore.py +8 -9
  117. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -3
  118. validmind/tests/model_validation/sklearn/FeatureImportance.py +6 -2
  119. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +12 -9
  120. validmind/tests/model_validation/sklearn/HomogeneityScore.py +14 -9
  121. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +4 -2
  122. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +6 -1
  123. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +12 -7
  124. validmind/tests/model_validation/sklearn/MinimumF1Score.py +12 -7
  125. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +21 -6
  126. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +11 -3
  127. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +5 -1
  128. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +5 -1
  129. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +6 -1
  130. validmind/tests/model_validation/sklearn/ROCCurve.py +3 -1
  131. validmind/tests/model_validation/sklearn/RegressionErrors.py +6 -2
  132. validmind/tests/model_validation/sklearn/RegressionPerformance.py +13 -8
  133. validmind/tests/model_validation/sklearn/RegressionR2Square.py +8 -5
  134. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +5 -1
  135. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +34 -26
  136. validmind/tests/model_validation/sklearn/ScoreProbabilityAlignment.py +10 -2
  137. validmind/tests/model_validation/sklearn/SilhouettePlot.py +5 -1
  138. validmind/tests/model_validation/sklearn/VMeasure.py +12 -9
  139. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +15 -10
  140. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +5 -1
  141. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +6 -1
  142. validmind/tests/model_validation/statsmodels/GINITable.py +8 -1
  143. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +2 -2
  144. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +6 -2
  145. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +8 -2
  146. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +3 -1
  147. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +7 -2
  148. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +2 -0
  149. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +2 -0
  150. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +4 -2
  151. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +3 -1
  152. validmind/tests/ongoing_monitoring/CalibrationCurveDrift.py +11 -1
  153. validmind/tests/ongoing_monitoring/ClassificationAccuracyDrift.py +10 -2
  154. validmind/tests/ongoing_monitoring/ConfusionMatrixDrift.py +8 -1
  155. validmind/tests/ongoing_monitoring/CumulativePredictionProbabilitiesDrift.py +18 -2
  156. validmind/tests/ongoing_monitoring/FeatureDrift.py +9 -2
  157. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +8 -2
  158. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +13 -2
  159. validmind/tests/ongoing_monitoring/PredictionProbabilitiesHistogramDrift.py +13 -2
  160. validmind/tests/ongoing_monitoring/ROCCurveDrift.py +16 -2
  161. validmind/tests/ongoing_monitoring/ScoreBandsDrift.py +11 -2
  162. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +13 -2
  163. validmind/tests/output.py +66 -11
  164. validmind/tests/prompt_validation/Clarity.py +1 -1
  165. validmind/tests/prompt_validation/NegativeInstruction.py +1 -1
  166. validmind/tests/prompt_validation/Robustness.py +6 -1
  167. validmind/tests/prompt_validation/Specificity.py +1 -1
  168. validmind/tests/run.py +28 -14
  169. validmind/tests/test_providers.py +28 -35
  170. validmind/tests/utils.py +17 -4
  171. validmind/unit_metrics/__init__.py +1 -1
  172. validmind/utils.py +295 -31
  173. validmind/vm_models/dataset/dataset.py +19 -16
  174. validmind/vm_models/dataset/utils.py +5 -3
  175. validmind/vm_models/figure.py +6 -6
  176. validmind/vm_models/input.py +6 -5
  177. validmind/vm_models/model.py +5 -5
  178. validmind/vm_models/result/result.py +122 -43
  179. validmind/vm_models/result/utils.py +9 -28
  180. validmind/vm_models/test_suite/__init__.py +5 -0
  181. validmind/vm_models/test_suite/runner.py +5 -5
  182. validmind/vm_models/test_suite/summary.py +20 -2
  183. validmind/vm_models/test_suite/test.py +6 -6
  184. validmind/vm_models/test_suite/test_suite.py +10 -10
  185. {validmind-2.8.10.dist-info → validmind-2.8.20.dist-info}/METADATA +4 -5
  186. {validmind-2.8.10.dist-info → validmind-2.8.20.dist-info}/RECORD +189 -188
  187. {validmind-2.8.10.dist-info → validmind-2.8.20.dist-info}/WHEEL +1 -1
  188. {validmind-2.8.10.dist-info → validmind-2.8.20.dist-info}/LICENSE +0 -0
  189. {validmind-2.8.10.dist-info → validmind-2.8.20.dist-info}/entry_points.txt +0 -0
@@ -118,8 +118,10 @@ def ContextEntityRecall(
118
118
 
119
119
  score_column = "context_entity_recall"
120
120
 
121
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
122
- fig_box = px.box(x=result_df[score_column].to_list())
121
+ fig_histogram = px.histogram(
122
+ x=result_df[score_column].to_list(), nbins=10, title="Context Entity Recall"
123
+ )
124
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Context Entity Recall")
123
125
 
124
126
  return (
125
127
  {
@@ -143,5 +145,5 @@ def ContextEntityRecall(
143
145
  },
144
146
  fig_histogram,
145
147
  fig_box,
146
- RawData(evaluation_results=result_df),
148
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
147
149
  )
@@ -114,8 +114,10 @@ def ContextPrecision(
114
114
 
115
115
  score_column = "llm_context_precision_with_reference"
116
116
 
117
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
118
- fig_box = px.box(x=result_df[score_column].to_list())
117
+ fig_histogram = px.histogram(
118
+ x=result_df[score_column].to_list(), nbins=10, title="Context Precision"
119
+ )
120
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Context Precision")
119
121
 
120
122
  return (
121
123
  {
@@ -135,5 +137,5 @@ def ContextPrecision(
135
137
  },
136
138
  fig_histogram,
137
139
  fig_box,
138
- RawData(evaluation_results=result_df),
140
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
139
141
  )
@@ -109,8 +109,10 @@ def ContextPrecisionWithoutReference(
109
109
 
110
110
  score_column = "llm_context_precision_without_reference"
111
111
 
112
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
113
- fig_box = px.box(x=result_df[score_column].to_list())
112
+ fig_histogram = px.histogram(
113
+ x=result_df[score_column].to_list(), nbins=10, title="Context Precision"
114
+ )
115
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Context Precision")
114
116
 
115
117
  return (
116
118
  {
@@ -130,5 +132,5 @@ def ContextPrecisionWithoutReference(
130
132
  },
131
133
  fig_histogram,
132
134
  fig_box,
133
- RawData(evaluation_results=result_df),
135
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
134
136
  )
@@ -114,8 +114,10 @@ def ContextRecall(
114
114
 
115
115
  score_column = "context_recall"
116
116
 
117
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
118
- fig_box = px.box(x=result_df[score_column].to_list())
117
+ fig_histogram = px.histogram(
118
+ x=result_df[score_column].to_list(), nbins=10, title="Context Recall"
119
+ )
120
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Context Recall")
119
121
 
120
122
  return (
121
123
  {
@@ -135,5 +137,5 @@ def ContextRecall(
135
137
  },
136
138
  fig_histogram,
137
139
  fig_box,
138
- RawData(evaluation_results=result_df),
140
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
139
141
  )
@@ -119,8 +119,10 @@ def Faithfulness(
119
119
 
120
120
  score_column = "faithfulness"
121
121
 
122
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
123
- fig_box = px.box(x=result_df[score_column].to_list())
122
+ fig_histogram = px.histogram(
123
+ x=result_df[score_column].to_list(), nbins=10, title="Faithfulness"
124
+ )
125
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Faithfulness")
124
126
 
125
127
  return (
126
128
  {
@@ -140,5 +142,5 @@ def Faithfulness(
140
142
  },
141
143
  fig_histogram,
142
144
  fig_box,
143
- RawData(evaluation_results=result_df),
145
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
144
146
  )
@@ -179,5 +179,5 @@ def NoiseSensitivity(
179
179
  },
180
180
  fig_histogram,
181
181
  fig_box,
182
- RawData(evaluation_results=result_df),
182
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
183
183
  )
@@ -133,8 +133,10 @@ def ResponseRelevancy(
133
133
 
134
134
  score_column = "answer_relevancy"
135
135
 
136
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
137
- fig_box = px.box(x=result_df[score_column].to_list())
136
+ fig_histogram = px.histogram(
137
+ x=result_df[score_column].to_list(), nbins=10, title="Response Relevancy"
138
+ )
139
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Response Relevancy")
138
140
 
139
141
  return (
140
142
  {
@@ -154,5 +156,5 @@ def ResponseRelevancy(
154
156
  },
155
157
  fig_histogram,
156
158
  fig_box,
157
- RawData(evaluation_results=result_df),
159
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
158
160
  )
@@ -112,8 +112,10 @@ def SemanticSimilarity(
112
112
 
113
113
  score_column = "semantic_similarity"
114
114
 
115
- fig_histogram = px.histogram(x=result_df[score_column].to_list(), nbins=10)
116
- fig_box = px.box(x=result_df[score_column].to_list())
115
+ fig_histogram = px.histogram(
116
+ x=result_df[score_column].to_list(), nbins=10, title="Semantic Similarity"
117
+ )
118
+ fig_box = px.box(x=result_df[score_column].to_list(), title="Semantic Similarity")
117
119
 
118
120
  return (
119
121
  {
@@ -133,5 +135,5 @@ def SemanticSimilarity(
133
135
  },
134
136
  fig_histogram,
135
137
  fig_box,
136
- RawData(evaluation_results=result_df),
138
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
137
139
  )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import adjusted_mutual_info_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -52,11 +52,11 @@ def AdjustedMutualInformation(model: VMModel, dataset: VMDataset):
52
52
  - The interpretability of the score can be complex as it depends on the understanding of information theory
53
53
  concepts.
54
54
  """
55
- return [
56
- {
57
- "Adjusted Mutual Information": adjusted_mutual_info_score(
58
- labels_true=dataset.y,
59
- labels_pred=dataset.y_pred(model),
60
- )
61
- }
62
- ]
55
+ ami_score = adjusted_mutual_info_score(
56
+ labels_true=dataset.y,
57
+ labels_pred=dataset.y_pred(model),
58
+ )
59
+
60
+ return [{"Adjusted Mutual Information": ami_score}], RawData(
61
+ ami_score=ami_score, model=model.input_id, dataset=dataset.input_id
62
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import adjusted_rand_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -49,11 +49,11 @@ def AdjustedRandIndex(model: VMModel, dataset: VMDataset):
49
49
  - It may be difficult to interpret the implications of an ARI score without context or a benchmark, as it is
50
50
  heavily dependent on the characteristics of the dataset used.
51
51
  """
52
- return [
53
- {
54
- "Adjusted Rand Index": adjusted_rand_score(
55
- labels_true=dataset.y,
56
- labels_pred=dataset.y_pred(model),
57
- )
58
- }
59
- ]
52
+ ari = adjusted_rand_score(
53
+ labels_true=dataset.y,
54
+ labels_pred=dataset.y_pred(model),
55
+ )
56
+
57
+ return [{"Adjusted Rand Index": ari}], RawData(
58
+ ari_score=ari, model=model.input_id, dataset=dataset.input_id
59
+ )
@@ -72,7 +72,10 @@ def CalibrationCurve(model: VMModel, dataset: VMDataset, n_bins: int = 10):
72
72
 
73
73
  # Create DataFrame for raw data
74
74
  raw_data = RawData(
75
- mean_predicted_probability=prob_pred, observed_frequency=prob_true
75
+ mean_predicted_probability=prob_pred,
76
+ observed_frequency=prob_true,
77
+ model=model.input_id,
78
+ dataset=dataset.input_id,
76
79
  )
77
80
 
78
81
  # Create Plotly figure
@@ -114,4 +117,4 @@ def CalibrationCurve(model: VMModel, dataset: VMDataset, n_bins: int = 10):
114
117
  template="plotly_white",
115
118
  )
116
119
 
117
- return raw_data, fig
120
+ return fig, raw_data
@@ -2,17 +2,24 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ from typing import Dict, List, Optional, Union
6
+
5
7
  import numpy as np
6
8
  import pandas as pd
7
9
  import plotly.graph_objects as go
8
10
  from plotly.subplots import make_subplots
9
11
  from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve
10
12
 
11
- from validmind import tags, tasks
13
+ from validmind import RawData, tags, tasks
12
14
  from validmind.vm_models import VMDataset, VMModel
13
15
 
14
16
 
15
- def find_optimal_threshold(y_true, y_prob, method="youden", target_recall=None):
17
+ def find_optimal_threshold(
18
+ y_true: np.ndarray,
19
+ y_prob: np.ndarray,
20
+ method: str = "youden",
21
+ target_recall: Optional[float] = None,
22
+ ) -> Dict[str, Union[str, float]]:
16
23
  """
17
24
  Find the optimal classification threshold using various methods.
18
25
 
@@ -80,8 +87,11 @@ def find_optimal_threshold(y_true, y_prob, method="youden", target_recall=None):
80
87
  @tags("model_validation", "threshold_optimization", "classification_metrics")
81
88
  @tasks("classification")
82
89
  def ClassifierThresholdOptimization(
83
- dataset: VMDataset, model: VMModel, methods=None, target_recall=None
84
- ):
90
+ dataset: VMDataset,
91
+ model: VMModel,
92
+ methods: Optional[List[str]] = None,
93
+ target_recall: Optional[float] = None,
94
+ ) -> Dict[str, Union[pd.DataFrame, go.Figure]]:
85
95
  """
86
96
  Analyzes and visualizes different threshold optimization methods for binary classification models.
87
97
 
@@ -255,4 +265,17 @@ def ClassifierThresholdOptimization(
255
265
  # Create results table and sort by threshold descending
256
266
  table = pd.DataFrame(results).sort_values("threshold", ascending=False)
257
267
 
258
- return fig, table
268
+ return (
269
+ fig,
270
+ table,
271
+ RawData(
272
+ fpr=fpr,
273
+ tpr=tpr,
274
+ precision=precision,
275
+ recall=recall,
276
+ thresholds_roc=thresholds_roc,
277
+ thresholds_pr=thresholds_pr,
278
+ model=model.input_id,
279
+ dataset=dataset.input_id,
280
+ ),
281
+ )
@@ -84,4 +84,8 @@ def ClusterCosineSimilarity(model: VMModel, dataset: VMDataset):
84
84
  if not table:
85
85
  raise SkipTestError("No clusters found")
86
86
 
87
- return table, RawData(cluster_centroids=cluster_centroids)
87
+ return table, RawData(
88
+ cluster_centroids=cluster_centroids,
89
+ model=model.input_id,
90
+ dataset=dataset.input_id,
91
+ )
@@ -11,7 +11,7 @@ from sklearn.metrics import (
11
11
  v_measure_score,
12
12
  )
13
13
 
14
- from validmind import tags, tasks
14
+ from validmind import RawData, tags, tasks
15
15
  from validmind.vm_models import VMDataset, VMModel
16
16
 
17
17
  HOMOGENEITY = """
@@ -115,53 +115,63 @@ def ClusterPerformanceMetrics(model: VMModel, dataset: VMDataset):
115
115
  - Does not consider aspects like computational efficiency of the model or its capability to handle high dimensional
116
116
  data.
117
117
  """
118
- return [
118
+ y_true = dataset.y
119
+ y_pred = dataset.y_pred(model)
120
+
121
+ metrics = [
119
122
  {
120
123
  "Metric": "Homogeneity Score",
121
124
  "Description": HOMOGENEITY,
122
125
  "Value": homogeneity_score(
123
- labels_true=dataset.y,
124
- labels_pred=dataset.y_pred(model),
126
+ labels_true=y_true,
127
+ labels_pred=y_pred,
125
128
  ),
126
129
  },
127
130
  {
128
131
  "Metric": "Completeness Score",
129
132
  "Description": COMPLETENESS,
130
133
  "Value": completeness_score(
131
- labels_true=dataset.y,
132
- labels_pred=dataset.y_pred(model),
134
+ labels_true=y_true,
135
+ labels_pred=y_pred,
133
136
  ),
134
137
  },
135
138
  {
136
139
  "Metric": "V Measure",
137
140
  "Description": V_MEASURE,
138
141
  "Value": v_measure_score(
139
- labels_true=dataset.y,
140
- labels_pred=dataset.y_pred(model),
142
+ labels_true=y_true,
143
+ labels_pred=y_pred,
141
144
  ),
142
145
  },
143
146
  {
144
147
  "Metric": "Adjusted Rand Index",
145
148
  "Description": ADJUSTED_RAND_INDEX,
146
149
  "Value": adjusted_rand_score(
147
- labels_true=dataset.y,
148
- labels_pred=dataset.y_pred(model),
150
+ labels_true=y_true,
151
+ labels_pred=y_pred,
149
152
  ),
150
153
  },
151
154
  {
152
155
  "Metric": "Adjusted Mutual Information",
153
156
  "Description": ADJUSTED_MUTUAL_INFORMATION,
154
157
  "Value": adjusted_mutual_info_score(
155
- labels_true=dataset.y,
156
- labels_pred=dataset.y_pred(model),
158
+ labels_true=y_true,
159
+ labels_pred=y_pred,
157
160
  ),
158
161
  },
159
162
  {
160
163
  "Metric": "Fowlkes-Mallows score",
161
164
  "Description": FOULKES_MALLOWS_SCORE,
162
165
  "Value": fowlkes_mallows_score(
163
- labels_true=dataset.y,
164
- labels_pred=dataset.y_pred(model),
166
+ labels_true=y_true,
167
+ labels_pred=y_pred,
165
168
  ),
166
169
  },
167
170
  ]
171
+
172
+ return metrics, RawData(
173
+ true_labels=y_true,
174
+ predicted_labels=y_pred,
175
+ model=model.input_id,
176
+ dataset=dataset.input_id,
177
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import completeness_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -47,11 +47,10 @@ def CompletenessScore(model: VMModel, dataset: VMDataset):
47
47
  - The Completeness Score only applies to clustering models; it cannot be used for other types of machine learning
48
48
  models.
49
49
  """
50
- return [
51
- {
52
- "Completeness Score": completeness_score(
53
- labels_true=dataset.y,
54
- labels_pred=dataset.y_pred(model),
55
- )
56
- }
57
- ]
50
+ score = completeness_score(
51
+ labels_true=dataset.y,
52
+ labels_pred=dataset.y_pred(model),
53
+ )
54
+ return [{"Completeness Score": score}], RawData(
55
+ score=score, model=model.input_id, dataset=dataset.input_id
56
+ )
@@ -19,7 +19,11 @@ from validmind.vm_models import VMDataset, VMModel
19
19
  "visualization",
20
20
  )
21
21
  @tasks("classification", "text_classification")
22
- def ConfusionMatrix(dataset: VMDataset, model: VMModel):
22
+ def ConfusionMatrix(
23
+ dataset: VMDataset,
24
+ model: VMModel,
25
+ threshold: float = 0.5,
26
+ ):
23
27
  """
24
28
  Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix
25
29
  heatmap.
@@ -66,7 +70,17 @@ def ConfusionMatrix(dataset: VMDataset, model: VMModel):
66
70
  - Risks of misinterpretation exist because the matrix doesn't directly provide precision, recall, or F1-score data.
67
71
  These metrics have to be computed separately.
68
72
  """
69
- y_pred = dataset.y_pred(model)
73
+ # Get predictions using threshold for binary classification if possible
74
+ if hasattr(model.model, "predict_proba"):
75
+ y_prob = dataset.y_prob(model)
76
+ # Handle both 1D and 2D probability arrays
77
+ if y_prob.ndim == 2:
78
+ y_pred = (y_prob[:, 1] > threshold).astype(int)
79
+ else:
80
+ y_pred = (y_prob > threshold).astype(int)
81
+ else:
82
+ y_pred = dataset.y_pred(model)
83
+
70
84
  y_true = dataset.y.astype(y_pred.dtype)
71
85
 
72
86
  labels = np.unique(y_true)
@@ -119,4 +133,9 @@ def ConfusionMatrix(dataset: VMDataset, model: VMModel):
119
133
  font=dict(size=14),
120
134
  )
121
135
 
122
- return fig, RawData(confusion_matrix=cm)
136
+ return fig, RawData(
137
+ confusion_matrix=cm,
138
+ threshold=threshold,
139
+ dataset=dataset.input_id,
140
+ model=model.input_id,
141
+ )
@@ -5,7 +5,7 @@
5
5
  import pandas as pd
6
6
  from sklearn.inspection import permutation_importance
7
7
 
8
- from validmind import tags, tasks
8
+ from validmind import RawData, tags, tasks
9
9
  from validmind.vm_models import VMDataset, VMModel
10
10
 
11
11
 
@@ -78,4 +78,8 @@ def FeatureImportance(dataset: VMDataset, model: VMModel, num_features: int = 3)
78
78
  else:
79
79
  result[f"Feature {i + 1}"] = None
80
80
 
81
- return pd.DataFrame([result])
81
+ return pd.DataFrame([result]), RawData(
82
+ permutation_importance=pfi_values,
83
+ model=model.input_id,
84
+ dataset=dataset.input_id,
85
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn import metrics
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -52,11 +52,14 @@ def FowlkesMallowsScore(dataset: VMDataset, model: VMModel):
52
52
  - It does not handle mismatching numbers of clusters between the true and predicted labels. As such, it may return
53
53
  misleading results if the predicted labels suggest a different number of clusters than what is in the true labels.
54
54
  """
55
- return [
56
- {
57
- "Fowlkes-Mallows score": metrics.fowlkes_mallows_score(
58
- labels_true=dataset.y,
59
- labels_pred=dataset.y_pred(model),
60
- )
61
- }
62
- ]
55
+ fowlkes_mallows_score = metrics.fowlkes_mallows_score(
56
+ labels_true=dataset.y,
57
+ labels_pred=dataset.y_pred(model),
58
+ )
59
+
60
+ return [{"Fowlkes-Mallows score": fowlkes_mallows_score}], RawData(
61
+ labels_true=dataset.y,
62
+ labels_pred=dataset.y_pred(model),
63
+ model=model.input_id,
64
+ dataset=dataset.input_id,
65
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn import metrics
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -50,11 +50,16 @@ def HomogeneityScore(dataset: VMDataset, model: VMModel):
50
50
  - The score does not address the actual number of clusters formed, or the evenness of cluster sizes. It only checks
51
51
  the homogeneity within the given clusters created by the model.
52
52
  """
53
- return [
54
- {
55
- "Homogeneity Score": metrics.homogeneity_score(
56
- labels_true=dataset.y,
57
- labels_pred=dataset.y_pred(model),
58
- )
59
- }
60
- ]
53
+ homogeneity_score = metrics.homogeneity_score(
54
+ labels_true=dataset.y,
55
+ labels_pred=dataset.y_pred(model),
56
+ )
57
+
58
+ raw_data = RawData(
59
+ y_true=dataset.y,
60
+ y_pred=dataset.y_pred(model),
61
+ model=model.input_id,
62
+ dataset=dataset.input_id,
63
+ )
64
+
65
+ return ([{"Homogeneity Score": homogeneity_score}], raw_data)
@@ -7,7 +7,7 @@ from typing import Dict, List, Union
7
7
  from sklearn.metrics import make_scorer, recall_score
8
8
  from sklearn.model_selection import GridSearchCV
9
9
 
10
- from validmind import tags, tasks
10
+ from validmind import RawData, tags, tasks
11
11
  from validmind.vm_models import VMDataset, VMModel
12
12
 
13
13
 
@@ -162,4 +162,6 @@ def HyperParametersTuning(
162
162
 
163
163
  results.append(row_result)
164
164
 
165
- return results
165
+ return results, RawData(
166
+ model=model.input_id, dataset=dataset.input_id, param_grid=param_grid
167
+ )
@@ -124,4 +124,9 @@ def KMeansClustersOptimization(
124
124
 
125
125
  fig.update_layout(showlegend=False)
126
126
 
127
- return fig, RawData(distortions=distortions, silhouette_avg=silhouette_avg)
127
+ return fig, RawData(
128
+ distortions=distortions,
129
+ silhouette_avg=silhouette_avg,
130
+ model=model.input_id,
131
+ dataset=dataset.input_id,
132
+ )
@@ -3,6 +3,7 @@
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
  from sklearn.metrics import accuracy_score
5
5
 
6
+ from validmind import RawData
6
7
  from validmind.tests import tags, tasks
7
8
  from validmind.vm_models import VMDataset, VMModel
8
9
 
@@ -50,10 +51,14 @@ def MinimumAccuracy(dataset: VMDataset, model: VMModel, min_threshold: float = 0
50
51
  """
51
52
  accuracy = accuracy_score(dataset.y, dataset.y_pred(model))
52
53
 
53
- return [
54
- {
55
- "Score": accuracy,
56
- "Threshold": min_threshold,
57
- "Pass/Fail": "Pass" if accuracy > min_threshold else "Fail",
58
- }
59
- ], accuracy > min_threshold
54
+ return (
55
+ [
56
+ {
57
+ "Score": accuracy,
58
+ "Threshold": min_threshold,
59
+ "Pass/Fail": "Pass" if accuracy > min_threshold else "Fail",
60
+ }
61
+ ],
62
+ accuracy > min_threshold,
63
+ RawData(model=model.input_id, dataset=dataset.input_id),
64
+ )
@@ -5,6 +5,7 @@
5
5
  import numpy as np
6
6
  from sklearn.metrics import f1_score
7
7
 
8
+ from validmind import RawData
8
9
  from validmind.tests import tags, tasks
9
10
  from validmind.vm_models import VMDataset, VMModel
10
11
 
@@ -58,10 +59,14 @@ def MinimumF1Score(dataset: VMDataset, model: VMModel, min_threshold: float = 0.
58
59
  else:
59
60
  score = f1_score(dataset.y, dataset.y_pred(model))
60
61
 
61
- return [
62
- {
63
- "Score": score,
64
- "Threshold": min_threshold,
65
- "Pass/Fail": "Pass" if score > min_threshold else "Fail",
66
- }
67
- ], score > min_threshold
62
+ return (
63
+ [
64
+ {
65
+ "Score": score,
66
+ "Threshold": min_threshold,
67
+ "Pass/Fail": "Pass" if score > min_threshold else "Fail",
68
+ }
69
+ ],
70
+ score > min_threshold,
71
+ RawData(score=score, model=model.input_id, dataset=dataset.input_id),
72
+ )