validmind 2.7.12__py3-none-any.whl → 2.8.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (163) hide show
  1. validmind/__init__.py +58 -10
  2. validmind/__version__.py +1 -1
  3. validmind/ai/test_descriptions.py +17 -73
  4. validmind/api_client.py +18 -1
  5. validmind/models/r_model.py +5 -1
  6. validmind/tests/comparison.py +28 -2
  7. validmind/tests/data_validation/ACFandPACFPlot.py +4 -1
  8. validmind/tests/data_validation/AutoMA.py +1 -1
  9. validmind/tests/data_validation/BivariateScatterPlots.py +5 -1
  10. validmind/tests/data_validation/BoxPierce.py +3 -1
  11. validmind/tests/data_validation/ClassImbalance.py +1 -1
  12. validmind/tests/data_validation/DatasetDescription.py +1 -1
  13. validmind/tests/data_validation/DickeyFullerGLS.py +1 -1
  14. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +5 -10
  15. validmind/tests/data_validation/HighCardinality.py +5 -1
  16. validmind/tests/data_validation/HighPearsonCorrelation.py +1 -1
  17. validmind/tests/data_validation/IQROutliersBarPlot.py +5 -3
  18. validmind/tests/data_validation/IQROutliersTable.py +5 -2
  19. validmind/tests/data_validation/IsolationForestOutliers.py +5 -4
  20. validmind/tests/data_validation/JarqueBera.py +2 -2
  21. validmind/tests/data_validation/LJungBox.py +2 -2
  22. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +1 -1
  23. validmind/tests/data_validation/MissingValues.py +14 -10
  24. validmind/tests/data_validation/MissingValuesBarPlot.py +3 -1
  25. validmind/tests/data_validation/MutualInformation.py +2 -1
  26. validmind/tests/data_validation/PearsonCorrelationMatrix.py +1 -1
  27. validmind/tests/data_validation/ProtectedClassesCombination.py +2 -0
  28. validmind/tests/data_validation/ProtectedClassesDescription.py +2 -2
  29. validmind/tests/data_validation/ProtectedClassesDisparity.py +9 -5
  30. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +10 -2
  31. validmind/tests/data_validation/RollingStatsPlot.py +2 -1
  32. validmind/tests/data_validation/ScoreBandDefaultRates.py +4 -2
  33. validmind/tests/data_validation/SeasonalDecompose.py +1 -1
  34. validmind/tests/data_validation/ShapiroWilk.py +2 -2
  35. validmind/tests/data_validation/SpreadPlot.py +1 -1
  36. validmind/tests/data_validation/TabularCategoricalBarPlots.py +1 -1
  37. validmind/tests/data_validation/TabularDateTimeHistograms.py +1 -1
  38. validmind/tests/data_validation/TargetRateBarPlots.py +4 -1
  39. validmind/tests/data_validation/TimeSeriesFrequency.py +1 -1
  40. validmind/tests/data_validation/TimeSeriesOutliers.py +7 -2
  41. validmind/tests/data_validation/WOEBinPlots.py +1 -1
  42. validmind/tests/data_validation/WOEBinTable.py +1 -1
  43. validmind/tests/data_validation/ZivotAndrewsArch.py +5 -2
  44. validmind/tests/data_validation/nlp/CommonWords.py +1 -1
  45. validmind/tests/data_validation/nlp/Hashtags.py +1 -1
  46. validmind/tests/data_validation/nlp/LanguageDetection.py +1 -1
  47. validmind/tests/data_validation/nlp/Mentions.py +1 -1
  48. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +5 -1
  49. validmind/tests/data_validation/nlp/Punctuations.py +1 -1
  50. validmind/tests/data_validation/nlp/Sentiment.py +3 -1
  51. validmind/tests/data_validation/nlp/TextDescription.py +1 -1
  52. validmind/tests/data_validation/nlp/Toxicity.py +1 -1
  53. validmind/tests/model_validation/BertScore.py +7 -1
  54. validmind/tests/model_validation/BleuScore.py +7 -1
  55. validmind/tests/model_validation/ClusterSizeDistribution.py +3 -1
  56. validmind/tests/model_validation/ContextualRecall.py +9 -1
  57. validmind/tests/model_validation/FeaturesAUC.py +1 -1
  58. validmind/tests/model_validation/MeteorScore.py +7 -1
  59. validmind/tests/model_validation/ModelPredictionResiduals.py +5 -1
  60. validmind/tests/model_validation/RegardScore.py +6 -1
  61. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -1
  62. validmind/tests/model_validation/RougeScore.py +3 -1
  63. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +2 -0
  64. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +10 -2
  65. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +6 -2
  66. validmind/tests/model_validation/TokenDisparity.py +5 -1
  67. validmind/tests/model_validation/ToxicityScore.py +3 -1
  68. validmind/tests/model_validation/embeddings/ClusterDistribution.py +1 -1
  69. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +5 -1
  70. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +5 -1
  71. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +5 -1
  72. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +2 -0
  73. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +5 -1
  74. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +6 -2
  75. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +3 -1
  76. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +4 -1
  77. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +5 -1
  78. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +5 -1
  79. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +5 -1
  80. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +5 -1
  81. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +6 -1
  82. validmind/tests/model_validation/embeddings/utils.py +6 -9
  83. validmind/tests/model_validation/ragas/AnswerCorrectness.py +1 -1
  84. validmind/tests/model_validation/ragas/AspectCritic.py +4 -1
  85. validmind/tests/model_validation/ragas/ContextEntityRecall.py +1 -1
  86. validmind/tests/model_validation/ragas/ContextPrecision.py +1 -1
  87. validmind/tests/model_validation/ragas/ContextPrecisionWithoutReference.py +1 -1
  88. validmind/tests/model_validation/ragas/ContextRecall.py +1 -1
  89. validmind/tests/model_validation/ragas/Faithfulness.py +1 -1
  90. validmind/tests/model_validation/ragas/NoiseSensitivity.py +1 -1
  91. validmind/tests/model_validation/ragas/ResponseRelevancy.py +1 -1
  92. validmind/tests/model_validation/ragas/SemanticSimilarity.py +1 -1
  93. validmind/tests/model_validation/ragas/utils.py +8 -7
  94. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +9 -9
  95. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +9 -9
  96. validmind/tests/model_validation/sklearn/CalibrationCurve.py +5 -2
  97. validmind/tests/model_validation/sklearn/ClassifierThresholdOptimization.py +15 -2
  98. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +5 -1
  99. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +24 -14
  100. validmind/tests/model_validation/sklearn/CompletenessScore.py +8 -9
  101. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -3
  102. validmind/tests/model_validation/sklearn/FeatureImportance.py +6 -2
  103. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +12 -9
  104. validmind/tests/model_validation/sklearn/HomogeneityScore.py +14 -9
  105. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +4 -2
  106. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +6 -1
  107. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +12 -7
  108. validmind/tests/model_validation/sklearn/MinimumF1Score.py +12 -7
  109. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +18 -7
  110. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +8 -2
  111. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +5 -1
  112. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +5 -1
  113. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +6 -1
  114. validmind/tests/model_validation/sklearn/ROCCurve.py +3 -1
  115. validmind/tests/model_validation/sklearn/RegressionErrors.py +6 -2
  116. validmind/tests/model_validation/sklearn/RegressionPerformance.py +13 -8
  117. validmind/tests/model_validation/sklearn/RegressionR2Square.py +8 -5
  118. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +5 -1
  119. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +6 -1
  120. validmind/tests/model_validation/sklearn/ScoreProbabilityAlignment.py +10 -2
  121. validmind/tests/model_validation/sklearn/SilhouettePlot.py +5 -1
  122. validmind/tests/model_validation/sklearn/VMeasure.py +12 -9
  123. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +5 -1
  124. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +6 -1
  125. validmind/tests/model_validation/statsmodels/GINITable.py +8 -1
  126. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +2 -2
  127. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +6 -2
  128. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +8 -2
  129. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +3 -1
  130. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +7 -2
  131. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +2 -0
  132. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +2 -0
  133. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +11 -9
  134. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +3 -1
  135. validmind/tests/ongoing_monitoring/CalibrationCurveDrift.py +11 -1
  136. validmind/tests/ongoing_monitoring/ClassificationAccuracyDrift.py +10 -2
  137. validmind/tests/ongoing_monitoring/ConfusionMatrixDrift.py +8 -1
  138. validmind/tests/ongoing_monitoring/CumulativePredictionProbabilitiesDrift.py +18 -2
  139. validmind/tests/ongoing_monitoring/FeatureDrift.py +9 -2
  140. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +8 -2
  141. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +13 -2
  142. validmind/tests/ongoing_monitoring/PredictionProbabilitiesHistogramDrift.py +13 -2
  143. validmind/tests/ongoing_monitoring/ROCCurveDrift.py +16 -2
  144. validmind/tests/ongoing_monitoring/ScoreBandsDrift.py +11 -2
  145. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +13 -2
  146. validmind/tests/prompt_validation/Clarity.py +1 -1
  147. validmind/tests/prompt_validation/NegativeInstruction.py +1 -1
  148. validmind/tests/prompt_validation/Robustness.py +6 -1
  149. validmind/tests/prompt_validation/Specificity.py +1 -1
  150. validmind/tests/prompt_validation/ai_powered_test.py +5 -4
  151. validmind/tests/run.py +5 -1
  152. validmind/utils.py +13 -0
  153. validmind/vm_models/result/result.py +43 -2
  154. {validmind-2.7.12.dist-info → validmind-2.8.12.dist-info}/METADATA +3 -2
  155. {validmind-2.7.12.dist-info → validmind-2.8.12.dist-info}/RECORD +158 -163
  156. validmind/ai/test_result_description/config.yaml +0 -29
  157. validmind/ai/test_result_description/context.py +0 -73
  158. validmind/ai/test_result_description/image_processing.py +0 -124
  159. validmind/ai/test_result_description/system.jinja +0 -39
  160. validmind/ai/test_result_description/user.jinja +0 -30
  161. {validmind-2.7.12.dist-info → validmind-2.8.12.dist-info}/LICENSE +0 -0
  162. {validmind-2.7.12.dist-info → validmind-2.8.12.dist-info}/WHEEL +0 -0
  163. {validmind-2.7.12.dist-info → validmind-2.8.12.dist-info}/entry_points.txt +0 -0
@@ -3,7 +3,6 @@
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
5
  import numpy as np
6
- import pandas as pd
7
6
  import plotly.express as px
8
7
  from sklearn.metrics.pairwise import cosine_similarity
9
8
 
@@ -18,14 +17,12 @@ def create_stability_analysis_result(
18
17
  original_embeddings, perturbed_embeddings
19
18
  ).diagonal()
20
19
 
21
- # create a raw dataframe of the original, perturbed and similarity
22
- raw_data = pd.DataFrame(
23
- {
24
- "original": original_embeddings,
25
- "perturbed": perturbed_embeddings,
26
- "similarity": similarities,
27
- }
28
- )
20
+ # Store raw data in a dictionary
21
+ raw_data = {
22
+ "original_embeddings": original_embeddings,
23
+ "perturbed_embeddings": perturbed_embeddings,
24
+ "similarities": similarities,
25
+ }
29
26
 
30
27
  mean = np.mean(similarities)
31
28
  passed = mean > mean_similarity_threshold
@@ -144,5 +144,5 @@ def AnswerCorrectness(
144
144
  },
145
145
  fig_histogram,
146
146
  fig_box,
147
- RawData(evaluation_results=result_df),
147
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
148
148
  )
@@ -195,5 +195,8 @@ def AspectCritic(
195
195
  ]
196
196
  },
197
197
  fig,
198
- RawData(evaluation_results=result_df),
198
+ RawData(
199
+ evaluation_results=result_df,
200
+ dataset=dataset.input_id,
201
+ ),
199
202
  )
@@ -143,5 +143,5 @@ def ContextEntityRecall(
143
143
  },
144
144
  fig_histogram,
145
145
  fig_box,
146
- RawData(evaluation_results=result_df),
146
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
147
147
  )
@@ -135,5 +135,5 @@ def ContextPrecision(
135
135
  },
136
136
  fig_histogram,
137
137
  fig_box,
138
- RawData(evaluation_results=result_df),
138
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
139
139
  )
@@ -130,5 +130,5 @@ def ContextPrecisionWithoutReference(
130
130
  },
131
131
  fig_histogram,
132
132
  fig_box,
133
- RawData(evaluation_results=result_df),
133
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
134
134
  )
@@ -135,5 +135,5 @@ def ContextRecall(
135
135
  },
136
136
  fig_histogram,
137
137
  fig_box,
138
- RawData(evaluation_results=result_df),
138
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
139
139
  )
@@ -140,5 +140,5 @@ def Faithfulness(
140
140
  },
141
141
  fig_histogram,
142
142
  fig_box,
143
- RawData(evaluation_results=result_df),
143
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
144
144
  )
@@ -179,5 +179,5 @@ def NoiseSensitivity(
179
179
  },
180
180
  fig_histogram,
181
181
  fig_box,
182
- RawData(evaluation_results=result_df),
182
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
183
183
  )
@@ -154,5 +154,5 @@ def ResponseRelevancy(
154
154
  },
155
155
  fig_histogram,
156
156
  fig_box,
157
- RawData(evaluation_results=result_df),
157
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
158
158
  )
@@ -133,5 +133,5 @@ def SemanticSimilarity(
133
133
  },
134
134
  fig_histogram,
135
135
  fig_box,
136
- RawData(evaluation_results=result_df),
136
+ RawData(evaluation_results=result_df, dataset=dataset.input_id),
137
137
  )
@@ -4,24 +4,25 @@
4
4
 
5
5
  import os
6
6
 
7
- from validmind.ai.utils import get_client_and_model
8
- from validmind.client_config import client_config
7
+ from validmind.ai.utils import get_client_and_model, is_configured
9
8
 
10
9
  EMBEDDINGS_MODEL = "text-embedding-3-small"
11
10
 
12
11
 
13
12
  def get_ragas_config():
14
- if not client_config.can_generate_llm_test_descriptions():
15
- raise ValueError(
16
- "LLM based descriptions are not enabled in the current configuration."
17
- )
18
-
19
13
  # import here since its an optional dependency
20
14
  try:
21
15
  from langchain_openai import ChatOpenAI, OpenAIEmbeddings
22
16
  except ImportError:
23
17
  raise ImportError("Please run `pip install validmind[llm]` to use LLM tests")
24
18
 
19
+ if not is_configured():
20
+ raise ValueError(
21
+ "LLM is not configured. Please set an `OPENAI_API_KEY` environment variable "
22
+ "or ensure that you are connected to the ValidMind API and ValidMind AI is "
23
+ "enabled for your account."
24
+ )
25
+
25
26
  client, model = get_client_and_model()
26
27
  os.environ["OPENAI_API_BASE"] = str(client.base_url)
27
28
 
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import adjusted_mutual_info_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -52,11 +52,11 @@ def AdjustedMutualInformation(model: VMModel, dataset: VMDataset):
52
52
  - The interpretability of the score can be complex as it depends on the understanding of information theory
53
53
  concepts.
54
54
  """
55
- return [
56
- {
57
- "Adjusted Mutual Information": adjusted_mutual_info_score(
58
- labels_true=dataset.y,
59
- labels_pred=dataset.y_pred(model),
60
- )
61
- }
62
- ]
55
+ ami_score = adjusted_mutual_info_score(
56
+ labels_true=dataset.y,
57
+ labels_pred=dataset.y_pred(model),
58
+ )
59
+
60
+ return [{"Adjusted Mutual Information": ami_score}], RawData(
61
+ ami_score=ami_score, model=model.input_id, dataset=dataset.input_id
62
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import adjusted_rand_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -49,11 +49,11 @@ def AdjustedRandIndex(model: VMModel, dataset: VMDataset):
49
49
  - It may be difficult to interpret the implications of an ARI score without context or a benchmark, as it is
50
50
  heavily dependent on the characteristics of the dataset used.
51
51
  """
52
- return [
53
- {
54
- "Adjusted Rand Index": adjusted_rand_score(
55
- labels_true=dataset.y,
56
- labels_pred=dataset.y_pred(model),
57
- )
58
- }
59
- ]
52
+ ari = adjusted_rand_score(
53
+ labels_true=dataset.y,
54
+ labels_pred=dataset.y_pred(model),
55
+ )
56
+
57
+ return [{"Adjusted Rand Index": ari}], RawData(
58
+ ari_score=ari, model=model.input_id, dataset=dataset.input_id
59
+ )
@@ -72,7 +72,10 @@ def CalibrationCurve(model: VMModel, dataset: VMDataset, n_bins: int = 10):
72
72
 
73
73
  # Create DataFrame for raw data
74
74
  raw_data = RawData(
75
- mean_predicted_probability=prob_pred, observed_frequency=prob_true
75
+ mean_predicted_probability=prob_pred,
76
+ observed_frequency=prob_true,
77
+ model=model.input_id,
78
+ dataset=dataset.input_id,
76
79
  )
77
80
 
78
81
  # Create Plotly figure
@@ -114,4 +117,4 @@ def CalibrationCurve(model: VMModel, dataset: VMDataset, n_bins: int = 10):
114
117
  template="plotly_white",
115
118
  )
116
119
 
117
- return raw_data, fig
120
+ return fig, raw_data
@@ -8,7 +8,7 @@ import plotly.graph_objects as go
8
8
  from plotly.subplots import make_subplots
9
9
  from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve
10
10
 
11
- from validmind import tags, tasks
11
+ from validmind import RawData, tags, tasks
12
12
  from validmind.vm_models import VMDataset, VMModel
13
13
 
14
14
 
@@ -255,4 +255,17 @@ def ClassifierThresholdOptimization(
255
255
  # Create results table and sort by threshold descending
256
256
  table = pd.DataFrame(results).sort_values("threshold", ascending=False)
257
257
 
258
- return fig, table
258
+ return (
259
+ fig,
260
+ table,
261
+ RawData(
262
+ fpr=fpr,
263
+ tpr=tpr,
264
+ precision=precision,
265
+ recall=recall,
266
+ thresholds_roc=thresholds_roc,
267
+ thresholds_pr=thresholds_pr,
268
+ model=model.input_id,
269
+ dataset=dataset.input_id,
270
+ ),
271
+ )
@@ -84,4 +84,8 @@ def ClusterCosineSimilarity(model: VMModel, dataset: VMDataset):
84
84
  if not table:
85
85
  raise SkipTestError("No clusters found")
86
86
 
87
- return table, RawData(cluster_centroids=cluster_centroids)
87
+ return table, RawData(
88
+ cluster_centroids=cluster_centroids,
89
+ model=model.input_id,
90
+ dataset=dataset.input_id,
91
+ )
@@ -11,7 +11,7 @@ from sklearn.metrics import (
11
11
  v_measure_score,
12
12
  )
13
13
 
14
- from validmind import tags, tasks
14
+ from validmind import RawData, tags, tasks
15
15
  from validmind.vm_models import VMDataset, VMModel
16
16
 
17
17
  HOMOGENEITY = """
@@ -115,53 +115,63 @@ def ClusterPerformanceMetrics(model: VMModel, dataset: VMDataset):
115
115
  - Does not consider aspects like computational efficiency of the model or its capability to handle high dimensional
116
116
  data.
117
117
  """
118
- return [
118
+ y_true = dataset.y
119
+ y_pred = dataset.y_pred(model)
120
+
121
+ metrics = [
119
122
  {
120
123
  "Metric": "Homogeneity Score",
121
124
  "Description": HOMOGENEITY,
122
125
  "Value": homogeneity_score(
123
- labels_true=dataset.y,
124
- labels_pred=dataset.y_pred(model),
126
+ labels_true=y_true,
127
+ labels_pred=y_pred,
125
128
  ),
126
129
  },
127
130
  {
128
131
  "Metric": "Completeness Score",
129
132
  "Description": COMPLETENESS,
130
133
  "Value": completeness_score(
131
- labels_true=dataset.y,
132
- labels_pred=dataset.y_pred(model),
134
+ labels_true=y_true,
135
+ labels_pred=y_pred,
133
136
  ),
134
137
  },
135
138
  {
136
139
  "Metric": "V Measure",
137
140
  "Description": V_MEASURE,
138
141
  "Value": v_measure_score(
139
- labels_true=dataset.y,
140
- labels_pred=dataset.y_pred(model),
142
+ labels_true=y_true,
143
+ labels_pred=y_pred,
141
144
  ),
142
145
  },
143
146
  {
144
147
  "Metric": "Adjusted Rand Index",
145
148
  "Description": ADJUSTED_RAND_INDEX,
146
149
  "Value": adjusted_rand_score(
147
- labels_true=dataset.y,
148
- labels_pred=dataset.y_pred(model),
150
+ labels_true=y_true,
151
+ labels_pred=y_pred,
149
152
  ),
150
153
  },
151
154
  {
152
155
  "Metric": "Adjusted Mutual Information",
153
156
  "Description": ADJUSTED_MUTUAL_INFORMATION,
154
157
  "Value": adjusted_mutual_info_score(
155
- labels_true=dataset.y,
156
- labels_pred=dataset.y_pred(model),
158
+ labels_true=y_true,
159
+ labels_pred=y_pred,
157
160
  ),
158
161
  },
159
162
  {
160
163
  "Metric": "Fowlkes-Mallows score",
161
164
  "Description": FOULKES_MALLOWS_SCORE,
162
165
  "Value": fowlkes_mallows_score(
163
- labels_true=dataset.y,
164
- labels_pred=dataset.y_pred(model),
166
+ labels_true=y_true,
167
+ labels_pred=y_pred,
165
168
  ),
166
169
  },
167
170
  ]
171
+
172
+ return metrics, RawData(
173
+ true_labels=y_true,
174
+ predicted_labels=y_pred,
175
+ model=model.input_id,
176
+ dataset=dataset.input_id,
177
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn.metrics import completeness_score
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -47,11 +47,10 @@ def CompletenessScore(model: VMModel, dataset: VMDataset):
47
47
  - The Completeness Score only applies to clustering models; it cannot be used for other types of machine learning
48
48
  models.
49
49
  """
50
- return [
51
- {
52
- "Completeness Score": completeness_score(
53
- labels_true=dataset.y,
54
- labels_pred=dataset.y_pred(model),
55
- )
56
- }
57
- ]
50
+ score = completeness_score(
51
+ labels_true=dataset.y,
52
+ labels_pred=dataset.y_pred(model),
53
+ )
54
+ return [{"Completeness Score": score}], RawData(
55
+ score=score, model=model.input_id, dataset=dataset.input_id
56
+ )
@@ -19,7 +19,11 @@ from validmind.vm_models import VMDataset, VMModel
19
19
  "visualization",
20
20
  )
21
21
  @tasks("classification", "text_classification")
22
- def ConfusionMatrix(dataset: VMDataset, model: VMModel):
22
+ def ConfusionMatrix(
23
+ dataset: VMDataset,
24
+ model: VMModel,
25
+ threshold: float = 0.5,
26
+ ):
23
27
  """
24
28
  Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix
25
29
  heatmap.
@@ -66,7 +70,17 @@ def ConfusionMatrix(dataset: VMDataset, model: VMModel):
66
70
  - Risks of misinterpretation exist because the matrix doesn't directly provide precision, recall, or F1-score data.
67
71
  These metrics have to be computed separately.
68
72
  """
69
- y_pred = dataset.y_pred(model)
73
+ # Get predictions using threshold for binary classification if possible
74
+ if hasattr(model.model, "predict_proba"):
75
+ y_prob = dataset.y_prob(model)
76
+ # Handle both 1D and 2D probability arrays
77
+ if y_prob.ndim == 2:
78
+ y_pred = (y_prob[:, 1] > threshold).astype(int)
79
+ else:
80
+ y_pred = (y_prob > threshold).astype(int)
81
+ else:
82
+ y_pred = dataset.y_pred(model)
83
+
70
84
  y_true = dataset.y.astype(y_pred.dtype)
71
85
 
72
86
  labels = np.unique(y_true)
@@ -119,4 +133,9 @@ def ConfusionMatrix(dataset: VMDataset, model: VMModel):
119
133
  font=dict(size=14),
120
134
  )
121
135
 
122
- return fig, RawData(confusion_matrix=cm)
136
+ return fig, RawData(
137
+ confusion_matrix=cm,
138
+ threshold=threshold,
139
+ dataset=dataset.input_id,
140
+ model=model.input_id,
141
+ )
@@ -5,7 +5,7 @@
5
5
  import pandas as pd
6
6
  from sklearn.inspection import permutation_importance
7
7
 
8
- from validmind import tags, tasks
8
+ from validmind import RawData, tags, tasks
9
9
  from validmind.vm_models import VMDataset, VMModel
10
10
 
11
11
 
@@ -78,4 +78,8 @@ def FeatureImportance(dataset: VMDataset, model: VMModel, num_features: int = 3)
78
78
  else:
79
79
  result[f"Feature {i + 1}"] = None
80
80
 
81
- return pd.DataFrame([result])
81
+ return pd.DataFrame([result]), RawData(
82
+ permutation_importance=pfi_values,
83
+ model=model.input_id,
84
+ dataset=dataset.input_id,
85
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn import metrics
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -52,11 +52,14 @@ def FowlkesMallowsScore(dataset: VMDataset, model: VMModel):
52
52
  - It does not handle mismatching numbers of clusters between the true and predicted labels. As such, it may return
53
53
  misleading results if the predicted labels suggest a different number of clusters than what is in the true labels.
54
54
  """
55
- return [
56
- {
57
- "Fowlkes-Mallows score": metrics.fowlkes_mallows_score(
58
- labels_true=dataset.y,
59
- labels_pred=dataset.y_pred(model),
60
- )
61
- }
62
- ]
55
+ fowlkes_mallows_score = metrics.fowlkes_mallows_score(
56
+ labels_true=dataset.y,
57
+ labels_pred=dataset.y_pred(model),
58
+ )
59
+
60
+ return [{"Fowlkes-Mallows score": fowlkes_mallows_score}], RawData(
61
+ labels_true=dataset.y,
62
+ labels_pred=dataset.y_pred(model),
63
+ model=model.input_id,
64
+ dataset=dataset.input_id,
65
+ )
@@ -4,7 +4,7 @@
4
4
 
5
5
  from sklearn import metrics
6
6
 
7
- from validmind import tags, tasks
7
+ from validmind import RawData, tags, tasks
8
8
  from validmind.vm_models import VMDataset, VMModel
9
9
 
10
10
 
@@ -50,11 +50,16 @@ def HomogeneityScore(dataset: VMDataset, model: VMModel):
50
50
  - The score does not address the actual number of clusters formed, or the evenness of cluster sizes. It only checks
51
51
  the homogeneity within the given clusters created by the model.
52
52
  """
53
- return [
54
- {
55
- "Homogeneity Score": metrics.homogeneity_score(
56
- labels_true=dataset.y,
57
- labels_pred=dataset.y_pred(model),
58
- )
59
- }
60
- ]
53
+ homogeneity_score = metrics.homogeneity_score(
54
+ labels_true=dataset.y,
55
+ labels_pred=dataset.y_pred(model),
56
+ )
57
+
58
+ raw_data = RawData(
59
+ y_true=dataset.y,
60
+ y_pred=dataset.y_pred(model),
61
+ model=model.input_id,
62
+ dataset=dataset.input_id,
63
+ )
64
+
65
+ return ([{"Homogeneity Score": homogeneity_score}], raw_data)
@@ -7,7 +7,7 @@ from typing import Dict, List, Union
7
7
  from sklearn.metrics import make_scorer, recall_score
8
8
  from sklearn.model_selection import GridSearchCV
9
9
 
10
- from validmind import tags, tasks
10
+ from validmind import RawData, tags, tasks
11
11
  from validmind.vm_models import VMDataset, VMModel
12
12
 
13
13
 
@@ -162,4 +162,6 @@ def HyperParametersTuning(
162
162
 
163
163
  results.append(row_result)
164
164
 
165
- return results
165
+ return results, RawData(
166
+ model=model.input_id, dataset=dataset.input_id, param_grid=param_grid
167
+ )
@@ -124,4 +124,9 @@ def KMeansClustersOptimization(
124
124
 
125
125
  fig.update_layout(showlegend=False)
126
126
 
127
- return fig, RawData(distortions=distortions, silhouette_avg=silhouette_avg)
127
+ return fig, RawData(
128
+ distortions=distortions,
129
+ silhouette_avg=silhouette_avg,
130
+ model=model.input_id,
131
+ dataset=dataset.input_id,
132
+ )
@@ -3,6 +3,7 @@
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
  from sklearn.metrics import accuracy_score
5
5
 
6
+ from validmind import RawData
6
7
  from validmind.tests import tags, tasks
7
8
  from validmind.vm_models import VMDataset, VMModel
8
9
 
@@ -50,10 +51,14 @@ def MinimumAccuracy(dataset: VMDataset, model: VMModel, min_threshold: float = 0
50
51
  """
51
52
  accuracy = accuracy_score(dataset.y, dataset.y_pred(model))
52
53
 
53
- return [
54
- {
55
- "Score": accuracy,
56
- "Threshold": min_threshold,
57
- "Pass/Fail": "Pass" if accuracy > min_threshold else "Fail",
58
- }
59
- ], accuracy > min_threshold
54
+ return (
55
+ [
56
+ {
57
+ "Score": accuracy,
58
+ "Threshold": min_threshold,
59
+ "Pass/Fail": "Pass" if accuracy > min_threshold else "Fail",
60
+ }
61
+ ],
62
+ accuracy > min_threshold,
63
+ RawData(model=model.input_id, dataset=dataset.input_id),
64
+ )
@@ -5,6 +5,7 @@
5
5
  import numpy as np
6
6
  from sklearn.metrics import f1_score
7
7
 
8
+ from validmind import RawData
8
9
  from validmind.tests import tags, tasks
9
10
  from validmind.vm_models import VMDataset, VMModel
10
11
 
@@ -58,10 +59,14 @@ def MinimumF1Score(dataset: VMDataset, model: VMModel, min_threshold: float = 0.
58
59
  else:
59
60
  score = f1_score(dataset.y, dataset.y_pred(model))
60
61
 
61
- return [
62
- {
63
- "Score": score,
64
- "Threshold": min_threshold,
65
- "Pass/Fail": "Pass" if score > min_threshold else "Fail",
66
- }
67
- ], score > min_threshold
62
+ return (
63
+ [
64
+ {
65
+ "Score": score,
66
+ "Threshold": min_threshold,
67
+ "Pass/Fail": "Pass" if score > min_threshold else "Fail",
68
+ }
69
+ ],
70
+ score > min_threshold,
71
+ RawData(score=score, model=model.input_id, dataset=dataset.input_id),
72
+ )
@@ -6,7 +6,7 @@ import numpy as np
6
6
  from sklearn.metrics import roc_auc_score
7
7
  from sklearn.preprocessing import LabelBinarizer
8
8
 
9
- from validmind import tags, tasks
9
+ from validmind import RawData, tags, tasks
10
10
  from validmind.vm_models import VMDataset, VMModel
11
11
 
12
12
 
@@ -62,12 +62,12 @@ def MinimumROCAUCScore(dataset: VMDataset, model: VMModel, min_threshold: float
62
62
  lb = LabelBinarizer()
63
63
  lb.fit(y_true)
64
64
 
65
- y_true_binarized = lb.transform(y_true)
66
- y_score_binarized = lb.transform(dataset.y_pred(model))
65
+ y_true_binary = lb.transform(y_true)
66
+ y_score_binary = lb.transform(dataset.y_pred(model))
67
67
 
68
68
  roc_auc = roc_auc_score(
69
- y_true=y_true_binarized,
70
- y_score=y_score_binarized,
69
+ y_true=y_true_binary,
70
+ y_score=y_score_binary,
71
71
  average="macro",
72
72
  )
73
73
 
@@ -75,10 +75,21 @@ def MinimumROCAUCScore(dataset: VMDataset, model: VMModel, min_threshold: float
75
75
  y_score_prob = dataset.y_prob(model)
76
76
  roc_auc = roc_auc_score(y_true=y_true, y_score=y_score_prob)
77
77
 
78
- return [
78
+ results = [
79
79
  {
80
80
  "Score": roc_auc,
81
81
  "Threshold": min_threshold,
82
82
  "Pass/Fail": "Pass" if roc_auc > min_threshold else "Fail",
83
83
  }
84
- ], roc_auc > min_threshold
84
+ ]
85
+
86
+ return (
87
+ results,
88
+ roc_auc > min_threshold,
89
+ RawData(
90
+ y_true=y_true,
91
+ roc_auc=roc_auc,
92
+ model=model.input_id,
93
+ dataset=dataset.input_id,
94
+ ),
95
+ )