validmind 2.5.23__py3-none-any.whl → 2.5.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
validmind/__version__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "2.5.23"
1
+ __version__ = "2.5.25"
@@ -162,10 +162,10 @@ def _plot_overfit_regions(
162
162
 
163
163
  barplot.legend(
164
164
  handles=handles[:-1],
165
- labels=labels,
165
+ labels=labels[:-1],
166
166
  loc="upper center",
167
167
  bbox_to_anchor=(0.5, 0.1),
168
- ncol=len(handles),
168
+ ncol=len(handles) - 1,
169
169
  )
170
170
 
171
171
  plt.close("all")
@@ -271,5 +271,6 @@ def _select_shap_values(shap_values, class_of_interest=None):
271
271
  )
272
272
  else:
273
273
  # For regression, return the SHAP values as they are
274
- logger.info("Regression model detected: returning SHAP values as-is.")
274
+ # TODO: shap_values is always an array of all predictions, how is the if above supposed to work?
275
+ # logger.info("Regression model detected: returning SHAP values as-is.")
275
276
  return shap_values
@@ -341,10 +341,10 @@ class WeakspotsDiagnosis(ThresholdTest):
341
341
  # barplot.legend(handles=handles[:-1], labels=labels, loc="upper right")
342
342
  barplot.legend(
343
343
  handles=handles[:-1],
344
- labels=labels,
344
+ labels=labels[:-1],
345
345
  loc="upper center",
346
346
  bbox_to_anchor=(0.5, 0.1),
347
- ncol=len(handles),
347
+ ncol=len(handles) - 1,
348
348
  )
349
349
 
350
350
  # Do this if you want to prevent the figure from being displayed
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: validmind
3
- Version: 2.5.23
3
+ Version: 2.5.25
4
4
  Summary: ValidMind Library
5
5
  License: Commercial License
6
6
  Author: Andres Rodriguez
@@ -41,7 +41,7 @@ Requires-Dist: plotly-express
41
41
  Requires-Dist: polars
42
42
  Requires-Dist: pycocoevalcap (>=1.2,<2.0) ; extra == "all" or extra == "llm"
43
43
  Requires-Dist: python-dotenv
44
- Requires-Dist: ragas (>=0.1.19) ; extra == "all" or extra == "llm"
44
+ Requires-Dist: ragas (>=0.1.19,<0.1.22) ; extra == "all" or extra == "llm"
45
45
  Requires-Dist: rouge (>=1)
46
46
  Requires-Dist: rpy2 (>=3.5.10,<4.0.0) ; extra == "all" or extra == "r-support"
47
47
  Requires-Dist: scikit-learn
@@ -1,5 +1,5 @@
1
1
  validmind/__init__.py,sha256=YMct5pPQOl_-Ni6J-NuB3vhYkv9mLiS_xAn1etXbRs8,2735
2
- validmind/__version__.py,sha256=YAlXQlgZN48A1-RblN0466_XMJcCJpnUwmRel-S_kk0,23
2
+ validmind/__version__.py,sha256=FLSWcbVQ5IPUz7C5xIW35MDAchavAk2-BwSZ3WlUy90,23
3
3
  validmind/ai/test_descriptions.py,sha256=BUJz-aZ3eu_i4LI16P8MD1ek_GfeB263CWks9T6W3Iw,7419
4
4
  validmind/ai/test_result_description/config.yaml,sha256=E1gPd-uv-MzdrWZA_rP6LSk8pVmkYijx6v78hZ8ceL0,787
5
5
  validmind/ai/test_result_description/context.py,sha256=1Off5UK5fFh07tc6-HIg2EJeimXQ3xGD7KED5dX54ZY,2319
@@ -228,7 +228,7 @@ validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=Kj0_Hqn8h7TfP
228
228
  validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=4UKyrT-Bwn6aS-c7p-pZM9LHuoBfyRNZCEZyChrQjYA,4444
229
229
  validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=WNr5Pfc61st9mE1089sPmtfnXmJjXBEldocyzwIu4Lw,5071
230
230
  validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=WziKMHh-HrOuo7ARb-tVGy94fkXmjIJpAGq5wT60Mn0,6142
231
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=xU6tO8cdJKf9Rg-_kvtbZpBeV6z7ZEM9jY2TX338MTk,13542
231
+ validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=UE4JOwrGJPj2wPYUh9pU9wDfypfnvuoJrvXiAQBI3x8,13551
232
232
  validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=l5R8UVaR04NktuY2rwAwGs9Fbqe73U8BEq75pPnU8hw,4839
233
233
  validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=v_7PT72-TplO1IeUZ84tfapzVdfvLMbopATUOm1RxQI,10068
234
234
  validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=o568TQtOzyxT0-B25tMhLnnxCekwXrzIGnAzch9igyI,4373
@@ -239,11 +239,11 @@ validmind/tests/model_validation/sklearn/RegressionPerformance.py,sha256=BoK3PTQ
239
239
  validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=jttavnKU1LqmTeTBbmGFH5qxP5Ag_TERYHoAb7ggeBQ,3100
240
240
  validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py,sha256=TfBL_Mnk4hWWkXXB8OHzboWYuGk0e_gHmIDscKzLx9M,3377
241
241
  validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=nS_vDWqcJfb0wrr5lhIAUHOiJUNLtJE8bmZ-T8aRjuo,14326
242
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=1ea14RM8pUgNiRv_N1AjOYglvqZi-sGnNkvhH1Nhcns,11322
242
+ validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=kicBsmLtodEivHXbQ1GGTyR9uJsxCBVfxcHz4yUPoUk,11429
243
243
  validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=-5tm21WpvjryeEli1TnWzAhM_eG5tfpsTPAm-J8Af-Q,6191
244
244
  validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=t8o6KRytwX_e8nlsZYXgX0xBAi8BO5wbuNystcNwDrE,7166
245
245
  validmind/tests/model_validation/sklearn/VMeasure.py,sha256=MH7sN5UZ4VqK3YCL_xTK_VcXRg6_ae5Srm_1lFmgxiE,2729
246
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=rR8uyOrjCtwevvSHM5mASfOKkwpYkOPKIbythv4UOdg,14127
246
+ validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=Pi1cmlABwIBTD0M9UKbxU4EjKY0wBlkaLaDe18aGWts,14136
247
247
  validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
248
248
  validmind/tests/model_validation/statsmodels/AutoARIMA.py,sha256=G13cl2WHLJH4d_3DY4mKTkY5UHtyE3gKg9zHwFTFooE,5136
249
249
  validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py,sha256=hXn0vBL-tvMR28sao1wnrnMEPl8gbl7eBYO6uW1WA-s,4625
@@ -317,8 +317,8 @@ validmind/vm_models/test_suite/runner.py,sha256=aewxadRfoOPH48jes2Gtb3Ju_FWFfVM_
317
317
  validmind/vm_models/test_suite/summary.py,sha256=GQRNe2ZvvqjQN0yKmaN7ohAUjRFQIN4YYUYxfOuWN6M,4682
318
318
  validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
319
319
  validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
320
- validmind-2.5.23.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
321
- validmind-2.5.23.dist-info/METADATA,sha256=FdLrcEflHZ1vlrF_pwCcXt3_H5qFpu8c1G-7H9ODxKs,4163
322
- validmind-2.5.23.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
323
- validmind-2.5.23.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
324
- validmind-2.5.23.dist-info/RECORD,,
320
+ validmind-2.5.25.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
321
+ validmind-2.5.25.dist-info/METADATA,sha256=LrMDvz3UBht2echuLxbqafLLm9CCQuCrjFo37jLV9pk,4171
322
+ validmind-2.5.25.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
323
+ validmind-2.5.25.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
324
+ validmind-2.5.25.dist-info/RECORD,,