validmind 2.5.15__py3-none-any.whl → 2.5.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (52) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +54 -112
  3. validmind/ai/test_result_description/config.yaml +29 -0
  4. validmind/ai/test_result_description/context.py +73 -0
  5. validmind/ai/test_result_description/image_processing.py +124 -0
  6. validmind/ai/test_result_description/system.jinja +39 -0
  7. validmind/ai/test_result_description/user.jinja +25 -0
  8. validmind/datasets/credit_risk/__init__.py +1 -0
  9. validmind/datasets/credit_risk/datasets/lending_club_biased.csv.gz +0 -0
  10. validmind/datasets/credit_risk/lending_club_bias.py +142 -0
  11. validmind/errors.py +17 -0
  12. validmind/tests/__types__.py +19 -10
  13. validmind/tests/{model_validation/statsmodels → data_validation}/BoxPierce.py +20 -24
  14. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +4 -1
  15. validmind/tests/{model_validation/statsmodels → data_validation}/JarqueBera.py +22 -30
  16. validmind/tests/{model_validation/statsmodels → data_validation}/LJungBox.py +23 -27
  17. validmind/tests/data_validation/ProtectedClassesCombination.py +205 -0
  18. validmind/tests/data_validation/ProtectedClassesDescription.py +130 -0
  19. validmind/tests/data_validation/ProtectedClassesDisparity.py +141 -0
  20. validmind/tests/data_validation/ProtectedClassesThresholdOptimizer.py +180 -0
  21. validmind/tests/{model_validation/statsmodels → data_validation}/RunsTest.py +17 -20
  22. validmind/tests/{model_validation/statsmodels → data_validation}/ShapiroWilk.py +20 -22
  23. validmind/tests/data_validation/nlp/Hashtags.py +15 -20
  24. validmind/tests/data_validation/nlp/TextDescription.py +3 -1
  25. validmind/tests/load.py +21 -5
  26. validmind/tests/model_validation/ContextualRecall.py +3 -0
  27. validmind/tests/model_validation/ragas/AnswerCorrectness.py +12 -5
  28. validmind/tests/model_validation/ragas/AnswerRelevance.py +12 -6
  29. validmind/tests/model_validation/ragas/AnswerSimilarity.py +12 -6
  30. validmind/tests/model_validation/ragas/AspectCritique.py +22 -17
  31. validmind/tests/model_validation/ragas/ContextEntityRecall.py +12 -6
  32. validmind/tests/model_validation/ragas/ContextPrecision.py +12 -6
  33. validmind/tests/model_validation/ragas/ContextRecall.py +12 -6
  34. validmind/tests/model_validation/ragas/ContextUtilization.py +161 -0
  35. validmind/tests/model_validation/ragas/Faithfulness.py +12 -6
  36. validmind/tests/model_validation/ragas/NoiseSensitivity.py +158 -0
  37. validmind/tests/model_validation/sklearn/FeatureImportance.py +3 -3
  38. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +1 -1
  39. validmind/tests/model_validation/sklearn/RegressionR2Square.py +1 -2
  40. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +59 -0
  41. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +40 -20
  42. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +0 -1
  43. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +1 -1
  44. validmind/utils.py +4 -0
  45. validmind/vm_models/test/metric.py +1 -0
  46. validmind/vm_models/test/result_wrapper.py +50 -26
  47. validmind/vm_models/test/threshold_test.py +1 -0
  48. {validmind-2.5.15.dist-info → validmind-2.5.19.dist-info}/METADATA +4 -3
  49. {validmind-2.5.15.dist-info → validmind-2.5.19.dist-info}/RECORD +52 -39
  50. {validmind-2.5.15.dist-info → validmind-2.5.19.dist-info}/WHEEL +1 -1
  51. {validmind-2.5.15.dist-info → validmind-2.5.19.dist-info}/LICENSE +0 -0
  52. {validmind-2.5.15.dist-info → validmind-2.5.19.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,130 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+
6
+ import pandas as pd
7
+ import plotly.graph_objects as go
8
+
9
+ from validmind import tags, tasks
10
+ from validmind.logging import get_logger
11
+
12
+ logger = get_logger(__name__)
13
+
14
+
15
+ @tags("bias_and_fairness", "descriptive_statistics")
16
+ @tasks("classification", "regression")
17
+ def ProtectedClassesDescription(dataset, protected_classes=None):
18
+ """
19
+ Visualizes the distribution of protected classes in the dataset relative to the target variable
20
+ and provides descriptive statistics.
21
+
22
+ ### Purpose
23
+
24
+ The ProtectedClassesDescription test aims to identify potential biases or significant differences in the
25
+ distribution of target outcomes across different protected classes. This visualization and statistical summary
26
+ help in understanding the relationship between protected attributes and the target variable, which is crucial
27
+ for assessing fairness in machine learning models.
28
+
29
+ ### Test Mechanism
30
+
31
+ The function creates interactive stacked bar charts for each specified protected class using Plotly.
32
+ Additionally, it generates a single table of descriptive statistics for all protected classes, including:
33
+ - Protected class and category
34
+ - Count and percentage of each category within the protected class
35
+ - Mean, median, and mode of the target variable for each category
36
+ - Standard deviation of the target variable for each category
37
+ - Minimum and maximum values of the target variable for each category
38
+
39
+ ### Signs of High Risk
40
+
41
+ - Significant imbalances in the distribution of target outcomes across different categories of a protected class.
42
+ - Large disparities in mean, median, or mode of the target variable across categories.
43
+ - Underrepresentation or overrepresentation of certain groups within protected classes.
44
+ - High standard deviations in certain categories, indicating potential volatility or outliers.
45
+
46
+ ### Strengths
47
+
48
+ - Provides both visual and statistical representation of potential biases in the dataset.
49
+ - Allows for easy identification of imbalances in target variable distribution across protected classes.
50
+ - Interactive plots enable detailed exploration of the data.
51
+ - Consolidated statistical summary provides quantitative measures to complement visual analysis.
52
+ - Applicable to both classification and regression tasks.
53
+
54
+ ### Limitations
55
+
56
+ - Does not provide advanced statistical measures of bias or fairness.
57
+ - May become cluttered if there are many categories within a protected class or many unique target values.
58
+ - Interpretation may require domain expertise to understand the implications of observed disparities.
59
+ - Does not account for intersectionality or complex interactions between multiple protected attributes.
60
+ """
61
+
62
+ if protected_classes is None:
63
+ logger.warning(
64
+ "No protected classes provided. Please pass the 'protected_classes' parameter to run this test."
65
+ )
66
+ return pd.DataFrame()
67
+
68
+ figures = []
69
+ all_stats = []
70
+
71
+ df = dataset._df
72
+ target = dataset.target_column
73
+
74
+ for protected_class in protected_classes:
75
+ # Create the stacked bar chart
76
+ counts = df.groupby([protected_class, target]).size().unstack(fill_value=0)
77
+ fig = go.Figure()
78
+ for col in counts.columns:
79
+ fig.add_trace(
80
+ go.Bar(
81
+ x=counts.index,
82
+ y=counts[col],
83
+ name=str(col),
84
+ text=counts[col],
85
+ textposition="auto",
86
+ )
87
+ )
88
+
89
+ fig.update_layout(
90
+ title=f"Distribution of {protected_class} by {target}",
91
+ xaxis_title=protected_class,
92
+ yaxis_title="Count",
93
+ barmode="stack",
94
+ showlegend=True,
95
+ legend_title=target,
96
+ )
97
+
98
+ figures.append(fig)
99
+
100
+ # Get unique values in the target column
101
+ target_labels = df[target].unique()
102
+
103
+ for category in df[protected_class].unique():
104
+ category_data = df[df[protected_class] == category]
105
+ stats = {
106
+ "Protected Class": protected_class,
107
+ "Category": category,
108
+ "Count": len(category_data),
109
+ "Percentage": len(category_data) / len(df) * 100,
110
+ }
111
+
112
+ # Add mean for each target label
113
+ for label in target_labels:
114
+ label_data = category_data[category_data[target] == label]
115
+ stats[f"Rate {target}: {label}"] = (
116
+ len(label_data) / len(category_data) * 100
117
+ )
118
+
119
+ all_stats.append(stats)
120
+
121
+ # Create a single DataFrame with all statistics
122
+ stats_df = pd.DataFrame(all_stats)
123
+ stats_df = stats_df.round(2) # Round to 2 decimal places for readability
124
+
125
+ # Sort the DataFrame by Protected Class and Count (descending)
126
+ stats_df = stats_df.sort_values(
127
+ ["Protected Class", "Count"], ascending=[True, False]
128
+ )
129
+
130
+ return (stats_df, *tuple(figures))
@@ -0,0 +1,141 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+ import io
6
+ import sys
7
+
8
+ import pandas as pd
9
+
10
+ from validmind import tags, tasks
11
+ from validmind.errors import MissingDependencyError
12
+ from validmind.logging import get_logger
13
+
14
+ try:
15
+ import aequitas.plot as ap
16
+ from aequitas.bias import Bias
17
+ from aequitas.group import Group
18
+ from aequitas.plotting import Plot
19
+ except ImportError as e:
20
+ raise MissingDependencyError(
21
+ "Missing required package `aequitas` for ProtectedClassesDisparity.",
22
+ required_dependencies=["aequitas"],
23
+ ) from e
24
+
25
+ logger = get_logger(__name__)
26
+
27
+
28
+ @tags("bias_and_fairness")
29
+ @tasks("classification", "regression")
30
+ def ProtectedClassesDisparity(
31
+ dataset,
32
+ model,
33
+ protected_classes=None,
34
+ disparity_tolerance=1.25,
35
+ metrics=["fnr", "fpr", "tpr"],
36
+ ):
37
+ """
38
+ Investigates disparities in model performance across different protected class segments.
39
+
40
+ ### Purpose
41
+
42
+ This test aims to identify and quantify potential biases in model outcomes by comparing various performance metrics
43
+ across different segments of protected classes. It helps in assessing whether the model produces discriminatory
44
+ outcomes for certain groups, which is crucial for ensuring fairness in machine learning models.
45
+
46
+ ### Test Mechanism
47
+
48
+ The test performs the following steps:
49
+ 1. Calculates performance metrics (e.g., false negative rate, false positive rate, true positive rate) for each segment
50
+ of the specified protected classes.
51
+ 2. Computes disparity ratios by comparing these metrics between different segments and a reference group.
52
+ 3. Generates visualizations showing the disparities and their relation to a user-defined disparity tolerance threshold.
53
+ 4. Produces a comprehensive table with various disparity metrics for detailed analysis.
54
+
55
+ ### Signs of High Risk
56
+
57
+ - Disparity ratios exceeding the specified disparity tolerance threshold.
58
+ - Consistent patterns of higher error rates or lower performance for specific protected class segments.
59
+ - Statistically significant differences in performance metrics across segments.
60
+
61
+ ### Strengths
62
+
63
+ - Provides a comprehensive view of model fairness across multiple protected attributes and metrics.
64
+ - Allows for easy identification of problematic disparities through visual and tabular representations.
65
+ - Customizable disparity tolerance threshold to align with specific use-case requirements.
66
+ - Applicable to various performance metrics, offering a multi-faceted analysis of model fairness.
67
+
68
+ ### Limitations
69
+
70
+ - Relies on a predefined reference group for each protected class, which may not always be the most appropriate choice.
71
+ - Does not account for intersectionality between different protected attributes.
72
+ - The interpretation of results may require domain expertise to understand the implications of observed disparities.
73
+ """
74
+
75
+ if protected_classes is None:
76
+ logger.warning(
77
+ "No protected classes provided. Please pass the 'protected_classes' parameter to run this test."
78
+ )
79
+ return pd.DataFrame()
80
+
81
+ if sys.version_info < (3, 9):
82
+ raise RuntimeError("This test requires Python 3.9 or higher.")
83
+
84
+ df = dataset._df
85
+
86
+ for protected_class in protected_classes:
87
+ # make the dataset compatible for the python package of interest
88
+ df[protected_class] = pd.Categorical(df[protected_class]).astype("object")
89
+
90
+ df["score"] = dataset.y_pred(model).astype(int)
91
+ df["label_value"] = df[dataset.target_column].astype(int)
92
+
93
+ # let map the attributes for each protected class
94
+ # default use reference that is most observable for dictionary
95
+ attributes_and_reference_groups = {}
96
+ for protected_class in protected_classes:
97
+ attributes_and_reference_groups.update(
98
+ {protected_class: df[protected_class].value_counts().idxmax()}
99
+ )
100
+
101
+ attributes_to_audit = list(attributes_and_reference_groups.keys())
102
+
103
+ # Initialize Aequitas
104
+ g = Group()
105
+ b = Bias()
106
+ aqp = Plot()
107
+
108
+ columns_to_include = (
109
+ protected_classes + [dataset.target_column] + ["score", "label_value"]
110
+ )
111
+
112
+ # get_crosstabs returns a dataframe of the group counts and group value bias metrics.
113
+ xtab, _ = g.get_crosstabs(df[columns_to_include], attr_cols=attributes_to_audit)
114
+ bdf = b.get_disparity_predefined_groups(
115
+ xtab,
116
+ original_df=df[columns_to_include],
117
+ ref_groups_dict=attributes_and_reference_groups,
118
+ alpha=0.05,
119
+ mask_significance=True,
120
+ )
121
+
122
+ plots = []
123
+ for protected_class in protected_classes:
124
+ plot = ap.disparity(
125
+ bdf, metrics, protected_class, fairness_threshold=disparity_tolerance
126
+ )
127
+
128
+ buf = io.BytesIO() # create a bytes array to save the image into in memory
129
+ plot.save(
130
+ buf, format="png"
131
+ ) # as long as the above library is installed, this will work
132
+ plots.append(buf.getvalue())
133
+
134
+ string = "_disparity"
135
+ metrics_adj = [x + string for x in metrics]
136
+
137
+ table = bdf[["attribute_name", "attribute_value"] + b.list_disparities(bdf)]
138
+ plots.append(aqp.plot_disparity_all(bdf, metrics=metrics_adj))
139
+ plots_return = tuple(plots)
140
+
141
+ return (table, *plots_return)
@@ -0,0 +1,180 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+ import json
6
+ import sys
7
+
8
+ import matplotlib.pyplot as plt
9
+ import pandas as pd
10
+
11
+ from validmind import tags, tasks
12
+ from validmind.errors import MissingDependencyError
13
+ from validmind.logging import get_logger
14
+
15
+ try:
16
+ from fairlearn.metrics import (
17
+ MetricFrame,
18
+ count,
19
+ demographic_parity_ratio,
20
+ equalized_odds_ratio,
21
+ false_negative_rate,
22
+ false_positive_rate,
23
+ true_positive_rate,
24
+ )
25
+ from fairlearn.postprocessing import ThresholdOptimizer, plot_threshold_optimizer
26
+ except ImportError as e:
27
+ raise MissingDependencyError(
28
+ "Missing required package `fairlearn` for ProtectedClassesThresholdOptimizer.",
29
+ required_dependencies=["fairlearn"],
30
+ ) from e
31
+
32
+ logger = get_logger(__name__)
33
+
34
+
35
+ @tags("bias_and_fairness")
36
+ @tasks("classification", "regression")
37
+ def ProtectedClassesThresholdOptimizer(
38
+ dataset, pipeline=None, protected_classes=None, X_train=None, y_train=None
39
+ ):
40
+ """
41
+ Obtains a classifier by applying group-specific thresholds to the provided estimator.
42
+
43
+ ### Purpose
44
+
45
+ This test aims to optimize the fairness of a machine learning model by applying different
46
+ classification thresholds for different protected groups. It helps in mitigating bias and
47
+ achieving more equitable outcomes across different demographic groups.
48
+
49
+ ### Test Mechanism
50
+
51
+ The test uses Fairlearn's ThresholdOptimizer to:
52
+ 1. Fit an optimizer on the training data, considering protected classes.
53
+ 2. Apply optimized thresholds to make predictions on the test data.
54
+ 3. Calculate and report various fairness metrics.
55
+ 4. Visualize the optimized thresholds.
56
+
57
+ ### Signs of High Risk
58
+
59
+ - Large disparities in fairness metrics (e.g., Demographic Parity Ratio, Equalized Odds Ratio)
60
+ across different protected groups.
61
+ - Significant differences in False Positive Rates (FPR) or True Positive Rates (TPR) between groups.
62
+ - Thresholds that vary widely across different protected groups.
63
+
64
+ ### Strengths
65
+
66
+ - Provides a post-processing method to improve model fairness without modifying the original model.
67
+ - Allows for balancing multiple fairness criteria simultaneously.
68
+ - Offers visual insights into the threshold optimization process.
69
+
70
+ ### Limitations
71
+
72
+ - May lead to a decrease in overall model performance while improving fairness.
73
+ - Requires access to protected attribute information at prediction time.
74
+ - The effectiveness can vary depending on the chosen fairness constraint and objective.
75
+ """
76
+
77
+ if sys.version_info < (3, 9):
78
+ raise RuntimeError("This test requires Python 3.9 or higher.")
79
+
80
+ if (
81
+ pipeline is None
82
+ or protected_classes is None
83
+ or X_train is None
84
+ or y_train is None
85
+ ):
86
+ logger.warning(
87
+ "Missing required parameters. Please provide pipeline, protected_classes, X_train, and y_train."
88
+ )
89
+ return pd.DataFrame()
90
+
91
+ test_df = dataset.df
92
+
93
+ threshold_optimizer = initialize_and_fit_optimizer(
94
+ pipeline, X_train, y_train, X_train[protected_classes]
95
+ )
96
+
97
+ fig = plot_thresholds(threshold_optimizer)
98
+
99
+ target = dataset.target_column
100
+ y_pred_opt = make_predictions(threshold_optimizer, test_df, protected_classes)
101
+
102
+ fairness_metrics = calculate_fairness_metrics(
103
+ test_df, target, y_pred_opt, protected_classes
104
+ )
105
+
106
+ return (
107
+ {"DPR and EOR Table": fairness_metrics.reset_index()},
108
+ fig,
109
+ )
110
+
111
+
112
+ def initialize_and_fit_optimizer(pipeline, X_train, y_train, protected_classes_df):
113
+ threshold_optimizer = ThresholdOptimizer(
114
+ estimator=pipeline,
115
+ objective="balanced_accuracy_score",
116
+ constraints="demographic_parity",
117
+ predict_method="predict_proba",
118
+ prefit=False,
119
+ )
120
+ threshold_optimizer.fit(X_train, y_train, sensitive_features=protected_classes_df)
121
+ return threshold_optimizer
122
+
123
+
124
+ def plot_thresholds(threshold_optimizer):
125
+ fig = plt.figure()
126
+ plot_threshold_optimizer(threshold_optimizer, show_plot=False)
127
+ return fig
128
+
129
+
130
+ def make_predictions(threshold_optimizer, test_df, protected_classes):
131
+ y_pred_opt = threshold_optimizer.predict(
132
+ test_df, sensitive_features=test_df[protected_classes]
133
+ )
134
+ return y_pred_opt
135
+
136
+
137
+ def calculate_fairness_metrics(test_df, target, y_pred_opt, protected_classes):
138
+ fairness_metrics = pd.DataFrame(
139
+ columns=protected_classes,
140
+ index=["demographic parity ratio", "equal odds ratio"],
141
+ )
142
+
143
+ for feature in protected_classes:
144
+ dpr = demographic_parity_ratio(
145
+ y_true=test_df[target],
146
+ y_pred=y_pred_opt,
147
+ sensitive_features=test_df[[feature]],
148
+ )
149
+ eor = equalized_odds_ratio(
150
+ y_true=test_df[target],
151
+ y_pred=y_pred_opt,
152
+ sensitive_features=test_df[[feature]],
153
+ )
154
+ fairness_metrics[feature] = [round(dpr, 2), round(eor, 2)]
155
+
156
+ return fairness_metrics
157
+
158
+
159
+ def calculate_group_metrics(test_df, target, y_pred_opt, protected_classes):
160
+ metrics = {
161
+ "fpr": false_positive_rate,
162
+ "tpr": true_positive_rate,
163
+ "fnr": false_negative_rate,
164
+ "count": count,
165
+ }
166
+ mf = MetricFrame(
167
+ metrics=metrics,
168
+ y_true=test_df[target],
169
+ y_pred=y_pred_opt,
170
+ sensitive_features=test_df[protected_classes],
171
+ )
172
+ group_metrics = mf.by_group
173
+ return group_metrics
174
+
175
+
176
+ def get_thresholds_by_group(threshold_optimizer):
177
+ threshold_rules = threshold_optimizer.interpolated_thresholder_.interpolation_dict
178
+ thresholds = json.dumps(threshold_rules, default=str, indent=4)
179
+ thresholds_df = pd.DataFrame.from_records(json.loads(thresholds))
180
+ return thresholds_df
@@ -2,12 +2,15 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ import pandas as pd
5
6
  from statsmodels.sandbox.stats.runs import runstest_1samp
6
7
 
7
- from validmind.vm_models import Metric
8
+ from validmind import tags, tasks
8
9
 
9
10
 
10
- class RunsTest(Metric):
11
+ @tasks("classification", "regression")
12
+ @tags("tabular_data", "statistical_test", "statsmodels")
13
+ def RunsTest(dataset):
11
14
  """
12
15
  Executes Runs Test on ML model to detect non-random patterns in output data sequence.
13
16
 
@@ -52,24 +55,18 @@ class RunsTest(Metric):
52
55
  - Does not provide model performance evaluation; it is used to detect patterns in the sequence of outputs only.
53
56
  """
54
57
 
55
- name = "runs_test"
56
- required_inputs = ["dataset"]
57
- tasks = ["classification", "regression"]
58
- tags = ["tabular_data", "statistical_test", "statsmodels"]
58
+ df = dataset.df[dataset.feature_columns_numeric]
59
59
 
60
- def run(self):
61
- """
62
- Calculates the run test for each of the dataset features
63
- """
64
- x_train = self.inputs.dataset.df[self.inputs.dataset.feature_columns_numeric]
60
+ runs_test_values = {}
61
+ for col in df.columns:
62
+ runs_stat, runs_p_value = runstest_1samp(df[col].values)
63
+ runs_test_values[col] = {
64
+ "stat": runs_stat,
65
+ "pvalue": runs_p_value,
66
+ }
65
67
 
66
- runs_test_values = {}
67
- for col in x_train.columns:
68
- runs_stat, runs_p_value = runstest_1samp(x_train[col].values)
68
+ runs_test_df = pd.DataFrame.from_dict(runs_test_values, orient="index")
69
+ runs_test_df.reset_index(inplace=True)
70
+ runs_test_df.columns = ["feature", "stat", "pvalue"]
69
71
 
70
- runs_test_values[col] = {
71
- "stat": runs_stat,
72
- "pvalue": runs_p_value,
73
- }
74
-
75
- return self.cache_results(runs_test_values)
72
+ return runs_test_df
@@ -2,12 +2,15 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
+ import pandas as pd
5
6
  from scipy import stats
6
7
 
7
- from validmind.vm_models import Metric
8
+ from validmind import tags, tasks
8
9
 
9
10
 
10
- class ShapiroWilk(Metric):
11
+ @tasks("classification", "regression")
12
+ @tags("tabular_data", "data_distribution", "statistical_test")
13
+ def ShapiroWilk(dataset):
11
14
  """
12
15
  Evaluates feature-wise normality of training data using the Shapiro-Wilk test.
13
16
 
@@ -49,23 +52,18 @@ class ShapiroWilk(Metric):
49
52
  - Lastly, the Shapiro-Wilk test is not optimally suited for processing data with pronounced skewness or kurtosis.
50
53
  """
51
54
 
52
- name = "shapiro_wilk"
53
- required_inputs = ["dataset"]
54
- tasks = ["classification", "regression"]
55
- tags = ["tabular_data", "data_distribution", "statistical_test"]
56
-
57
- def run(self):
58
- """
59
- Calculates Shapiro-Wilk test for each of the dataset features.
60
- """
61
- x_train = self.inputs.dataset.df[self.inputs.dataset.feature_columns_numeric]
62
- sw_values = {}
63
- for col in x_train.columns:
64
- sw_stat, sw_pvalue = stats.shapiro(x_train[col].values)
65
-
66
- sw_values[col] = {
67
- "stat": sw_stat,
68
- "pvalue": sw_pvalue,
69
- }
70
-
71
- return self.cache_results(sw_values)
55
+ df = dataset.df[dataset.feature_columns_numeric]
56
+
57
+ sw_values = {}
58
+ for col in df.columns:
59
+ sw_stat, sw_pvalue = stats.shapiro(df[col].values)
60
+ sw_values[col] = {
61
+ "stat": sw_stat,
62
+ "pvalue": sw_pvalue,
63
+ }
64
+
65
+ sw_df = pd.DataFrame.from_dict(sw_values, orient="index")
66
+ sw_df.reset_index(inplace=True)
67
+ sw_df.columns = ["column", "stat", "pvalue"]
68
+
69
+ return sw_df
@@ -9,8 +9,7 @@ Threshold based tests
9
9
  import re
10
10
  from dataclasses import dataclass
11
11
 
12
- import matplotlib.pyplot as plt
13
- import seaborn as sns
12
+ import plotly.graph_objects as go
14
13
 
15
14
  from validmind.vm_models import Figure, ThresholdTest, VMDataset
16
15
 
@@ -74,25 +73,23 @@ class Hashtags(ThresholdTest):
74
73
  text_column = self.inputs.dataset.text_column
75
74
 
76
75
  def find_hash(text):
77
- line = re.findall(r"(?<=#)\w+", text)
78
- return " ".join(line)
79
-
80
- temp = (
81
- self.inputs.dataset.df[text_column]
82
- .apply(lambda x: find_hash(x))
83
- .value_counts()[:][1 : self.params["top_hashtags"]]
84
- )
85
- temp = (
86
- temp.to_frame()
87
- .reset_index()
88
- .rename(columns={"index": "Hashtag", text_column: "count"})
89
- )
76
+ return re.findall(r"(?<=#)\w+", str(text))
77
+
78
+ # Extract hashtags from the text column and count occurrences
79
+ hashtags = self.inputs.dataset.df[text_column].apply(find_hash).explode()
80
+ temp = hashtags.value_counts().head(self.params["top_hashtags"])
81
+
82
+ print(f"temp: {temp}")
90
83
 
91
84
  figures = []
92
85
  if not temp.empty:
93
- fig = plt.figure()
94
- sns.barplot(x="Hashtag", y="count", data=temp)
95
- plt.xticks(rotation=90)
86
+ fig = go.Figure(data=[go.Bar(x=temp.index, y=temp.values)])
87
+ fig.update_layout(
88
+ title="Top Hashtags",
89
+ xaxis_title="Hashtag",
90
+ yaxis_title="Count",
91
+ xaxis_tickangle=-45,
92
+ )
96
93
  figures.append(
97
94
  Figure(
98
95
  for_object=self,
@@ -100,7 +97,5 @@ class Hashtags(ThresholdTest):
100
97
  figure=fig,
101
98
  )
102
99
  )
103
- # Do this if you want to prevent the figure from being displayed
104
- plt.close("all")
105
100
 
106
101
  return self.cache_results([], passed=True, figures=figures)
@@ -84,7 +84,6 @@ class TextDescription(Metric):
84
84
  tags = ["nlp", "text_data", "visualization"]
85
85
 
86
86
  def general_text_metrics(self, df, text_column):
87
- nltk.download("punkt", quiet=True)
88
87
  results = []
89
88
 
90
89
  for text in df[text_column]:
@@ -175,6 +174,9 @@ class TextDescription(Metric):
175
174
  if not isinstance(self.inputs.dataset, VMDataset):
176
175
  raise ValueError("TextDescription requires a validmind Dataset object")
177
176
 
177
+ # download nltk data
178
+ nltk.download("punkt_tab", quiet=True)
179
+
178
180
  df_text_description = self.text_description_table(
179
181
  self.inputs.dataset.df, self.params
180
182
  )
validmind/tests/load.py CHANGED
@@ -15,7 +15,7 @@ from uuid import uuid4
15
15
  import pandas as pd
16
16
  from ipywidgets import HTML, Accordion
17
17
 
18
- from ..errors import LoadTestError
18
+ from ..errors import LoadTestError, MissingDependencyError
19
19
  from ..html_templates.content_blocks import test_content_block_html
20
20
  from ..logging import get_logger
21
21
  from ..unit_metrics.composite import load_composite_metric
@@ -88,10 +88,26 @@ def list_tests(
88
88
  Returns:
89
89
  list or pandas.DataFrame: A list of all tests or a formatted table.
90
90
  """
91
- tests = {
92
- test_id: load_test(test_id, reload=True)
93
- for test_id in test_store.get_test_ids()
94
- }
91
+ tests = {}
92
+ for test_id in test_store.get_test_ids():
93
+ try:
94
+ tests[test_id] = load_test(test_id, reload=True)
95
+ except MissingDependencyError as e:
96
+ # skip tests that have missing dependencies
97
+ logger.debug(str(e))
98
+
99
+ if e.extra:
100
+ logger.info(
101
+ f"Skipping `{test_id}` as it requires extra dependencies: {e.required_dependencies}."
102
+ f" Please run `pip install validmind[{e.extra}]` to view and run this test."
103
+ )
104
+ else:
105
+ logger.info(
106
+ f"Skipping `{test_id}` as it requires missing dependencies: {e.required_dependencies}."
107
+ " Please install the missing dependencies to view and run this test."
108
+ )
109
+
110
+ continue
95
111
 
96
112
  # first search by the filter string since it's the most general search
97
113
  if filter is not None: