validmind 2.3.1__py3-none-any.whl → 2.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
validmind/__init__.py CHANGED
@@ -60,7 +60,7 @@ from .client import ( # noqa: E402
60
60
  run_documentation_tests,
61
61
  run_test_suite,
62
62
  )
63
- from .tests.decorator import metric, tags, tasks
63
+ from .tests.decorator import metric, tags, tasks, test
64
64
  from .utils import run_async # noqa: E402
65
65
 
66
66
 
@@ -112,6 +112,7 @@ __all__ = [ # noqa
112
112
  "run_test_suite",
113
113
  "tags",
114
114
  "tasks",
115
+ "test",
115
116
  "tests",
116
117
  "test_suites",
117
118
  "vm_models",
validmind/__version__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "2.3.1"
1
+ __version__ = "2.3.3"
@@ -182,7 +182,6 @@ def describe_suite(test_suite_id: str, verbose=False):
182
182
  "Test Suite Section": "",
183
183
  "Test ID": item,
184
184
  "Test Name": test.__name__,
185
- "Test Type": test.test_type,
186
185
  }
187
186
  )
188
187
  elif isinstance(item, dict):
@@ -195,7 +194,6 @@ def describe_suite(test_suite_id: str, verbose=False):
195
194
  "Test Suite Section": item["section_id"],
196
195
  "Test ID": test_id,
197
196
  "Test Name": test_id_to_name(test_id),
198
- "Test Type": test.test_type,
199
197
  }
200
198
  )
201
199
  else:
@@ -30,7 +30,9 @@ from ..utils import (
30
30
  test_id_to_name,
31
31
  )
32
32
  from ..vm_models import TestContext, TestInput
33
- from .decorator import metric, tags, tasks
33
+ from .__types__ import TestID
34
+ from .decorator import tags, tasks
35
+ from .decorator import test as test_decorator
34
36
  from .test_providers import LocalTestProvider, TestProvider
35
37
 
36
38
  logger = get_logger(__name__)
@@ -84,7 +86,6 @@ def _pretty_list_tests(tests, truncate=True):
84
86
  {
85
87
  "ID": test_id,
86
88
  "Name": test_id_to_name(test_id),
87
- "Test Type": __test_classes[test_id].test_type,
88
89
  "Description": _test_description(__test_classes[test_id], truncate),
89
90
  "Required Inputs": __test_classes[test_id].required_inputs,
90
91
  "Params": __test_classes[test_id].default_params or {},
@@ -340,7 +341,7 @@ def load_test(test_id: str, reload=False):
340
341
  # if its a function, we decorate it and then load the class
341
342
  # TODO: simplify this as we move towards all functional metrics
342
343
  # "_" is used here so it doesn't conflict with other test ids
343
- metric("_")(test)
344
+ test_decorator("_")(test)
344
345
  test = __custom_tests["_"]
345
346
 
346
347
  test.test_id = f"{test_id}:{result_id}" if result_id else test_id
@@ -348,7 +349,7 @@ def load_test(test_id: str, reload=False):
348
349
  return test
349
350
 
350
351
 
351
- def describe_test(test_id: str = None, raw: bool = False, show: bool = True):
352
+ def describe_test(test_id: TestID = None, raw: bool = False, show: bool = True):
352
353
  """Get or show details about the test
353
354
 
354
355
  This function can be used to see test details including the test name, description,
@@ -365,7 +366,6 @@ def describe_test(test_id: str = None, raw: bool = False, show: bool = True):
365
366
  details = {
366
367
  "ID": test_id,
367
368
  "Name": test_id_to_name(test_id),
368
- "Test Type": test.test_type,
369
369
  "Required Inputs": test.required_inputs,
370
370
  "Params": test.default_params or {},
371
371
  "Description": inspect.getdoc(test).strip() or "",
@@ -407,7 +407,7 @@ def describe_test(test_id: str = None, raw: bool = False, show: bool = True):
407
407
 
408
408
 
409
409
  def run_test(
410
- test_id: str = None,
410
+ test_id: TestID = None,
411
411
  name: str = None,
412
412
  unit_metrics: list = None,
413
413
  params: dict = None,
@@ -451,7 +451,7 @@ def run_test(
451
451
 
452
452
  if unit_metrics:
453
453
  metric_id_name = "".join(word[0].upper() + word[1:] for word in name.split())
454
- test_id = f"validmind.composite_metric.{metric_id_name}"
454
+ test_id = f"validmind.composite_test.{metric_id_name}"
455
455
 
456
456
  error, TestClass = load_composite_metric(
457
457
  unit_metrics=unit_metrics, metric_name=metric_id_name
@@ -0,0 +1,170 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+ """Literal types for test IDs.
6
+
7
+ This module is auto-generated by running `make generate-test-id-types`.
8
+ Should not be modified manually.
9
+ """
10
+
11
+ from typing import Literal
12
+
13
+ TestID = Literal[
14
+ "validmind.prompt_validation.Bias",
15
+ "validmind.prompt_validation.Clarity",
16
+ "validmind.prompt_validation.Specificity",
17
+ "validmind.prompt_validation.Robustness",
18
+ "validmind.prompt_validation.NegativeInstruction",
19
+ "validmind.prompt_validation.Conciseness",
20
+ "validmind.prompt_validation.Delimitation",
21
+ "validmind.model_validation.BertScore",
22
+ "validmind.model_validation.RegardScore",
23
+ "validmind.model_validation.BleuScore",
24
+ "validmind.model_validation.RegressionResidualsPlot",
25
+ "validmind.model_validation.FeaturesAUC",
26
+ "validmind.model_validation.ContextualRecall",
27
+ "validmind.model_validation.MeteorScore",
28
+ "validmind.model_validation.RougeScore",
29
+ "validmind.model_validation.ModelMetadata",
30
+ "validmind.model_validation.ClusterSizeDistribution",
31
+ "validmind.model_validation.TokenDisparity",
32
+ "validmind.model_validation.ToxicityScore",
33
+ "validmind.model_validation.embeddings.CosineSimilarityComparison",
34
+ "validmind.model_validation.embeddings.EmbeddingsVisualization2D",
35
+ "validmind.model_validation.embeddings.StabilityAnalysisRandomNoise",
36
+ "validmind.model_validation.embeddings.TSNEComponentsPairwisePlots",
37
+ "validmind.model_validation.embeddings.CosineSimilarityDistribution",
38
+ "validmind.model_validation.embeddings.PCAComponentsPairwisePlots",
39
+ "validmind.model_validation.embeddings.CosineSimilarityHeatmap",
40
+ "validmind.model_validation.embeddings.StabilityAnalysisTranslation",
41
+ "validmind.model_validation.embeddings.EuclideanDistanceComparison",
42
+ "validmind.model_validation.embeddings.ClusterDistribution",
43
+ "validmind.model_validation.embeddings.EuclideanDistanceHeatmap",
44
+ "validmind.model_validation.embeddings.StabilityAnalysis",
45
+ "validmind.model_validation.embeddings.StabilityAnalysisKeyword",
46
+ "validmind.model_validation.embeddings.StabilityAnalysisSynonyms",
47
+ "validmind.model_validation.embeddings.DescriptiveAnalytics",
48
+ "validmind.model_validation.ragas.ContextEntityRecall",
49
+ "validmind.model_validation.ragas.Faithfulness",
50
+ "validmind.model_validation.ragas.AspectCritique",
51
+ "validmind.model_validation.ragas.AnswerSimilarity",
52
+ "validmind.model_validation.ragas.AnswerCorrectness",
53
+ "validmind.model_validation.ragas.ContextRecall",
54
+ "validmind.model_validation.ragas.ContextRelevancy",
55
+ "validmind.model_validation.ragas.ContextPrecision",
56
+ "validmind.model_validation.ragas.AnswerRelevance",
57
+ "validmind.model_validation.sklearn.RegressionModelsPerformanceComparison",
58
+ "validmind.model_validation.sklearn.AdjustedMutualInformation",
59
+ "validmind.model_validation.sklearn.SilhouettePlot",
60
+ "validmind.model_validation.sklearn.RobustnessDiagnosis",
61
+ "validmind.model_validation.sklearn.AdjustedRandIndex",
62
+ "validmind.model_validation.sklearn.SHAPGlobalImportance",
63
+ "validmind.model_validation.sklearn.ConfusionMatrix",
64
+ "validmind.model_validation.sklearn.HomogeneityScore",
65
+ "validmind.model_validation.sklearn.CompletenessScore",
66
+ "validmind.model_validation.sklearn.OverfitDiagnosis",
67
+ "validmind.model_validation.sklearn.ClusterPerformanceMetrics",
68
+ "validmind.model_validation.sklearn.PermutationFeatureImportance",
69
+ "validmind.model_validation.sklearn.FowlkesMallowsScore",
70
+ "validmind.model_validation.sklearn.MinimumROCAUCScore",
71
+ "validmind.model_validation.sklearn.ClusterCosineSimilarity",
72
+ "validmind.model_validation.sklearn.PrecisionRecallCurve",
73
+ "validmind.model_validation.sklearn.ClassifierPerformance",
74
+ "validmind.model_validation.sklearn.VMeasure",
75
+ "validmind.model_validation.sklearn.MinimumF1Score",
76
+ "validmind.model_validation.sklearn.ROCCurve",
77
+ "validmind.model_validation.sklearn.RegressionR2Square",
78
+ "validmind.model_validation.sklearn.RegressionErrors",
79
+ "validmind.model_validation.sklearn.ClusterPerformance",
80
+ "validmind.model_validation.sklearn.TrainingTestDegradation",
81
+ "validmind.model_validation.sklearn.HyperParametersTuning",
82
+ "validmind.model_validation.sklearn.KMeansClustersOptimization",
83
+ "validmind.model_validation.sklearn.ModelsPerformanceComparison",
84
+ "validmind.model_validation.sklearn.WeakspotsDiagnosis",
85
+ "validmind.model_validation.sklearn.PopulationStabilityIndex",
86
+ "validmind.model_validation.sklearn.MinimumAccuracy",
87
+ "validmind.model_validation.statsmodels.RegressionModelsCoeffs",
88
+ "validmind.model_validation.statsmodels.BoxPierce",
89
+ "validmind.model_validation.statsmodels.RegressionCoeffsPlot",
90
+ "validmind.model_validation.statsmodels.RegressionModelSensitivityPlot",
91
+ "validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels",
92
+ "validmind.model_validation.statsmodels.ScorecardHistogram",
93
+ "validmind.model_validation.statsmodels.LJungBox",
94
+ "validmind.model_validation.statsmodels.JarqueBera",
95
+ "validmind.model_validation.statsmodels.KolmogorovSmirnov",
96
+ "validmind.model_validation.statsmodels.ShapiroWilk",
97
+ "validmind.model_validation.statsmodels.CumulativePredictionProbabilities",
98
+ "validmind.model_validation.statsmodels.RegressionFeatureSignificance",
99
+ "validmind.model_validation.statsmodels.RegressionModelSummary",
100
+ "validmind.model_validation.statsmodels.Lilliefors",
101
+ "validmind.model_validation.statsmodels.RunsTest",
102
+ "validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance",
103
+ "validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram",
104
+ "validmind.model_validation.statsmodels.AutoARIMA",
105
+ "validmind.model_validation.statsmodels.GINITable",
106
+ "validmind.model_validation.statsmodels.RegressionModelForecastPlot",
107
+ "validmind.model_validation.statsmodels.DurbinWatsonTest",
108
+ "validmind.data_validation.MissingValuesRisk",
109
+ "validmind.data_validation.IQROutliersTable",
110
+ "validmind.data_validation.BivariateFeaturesBarPlots",
111
+ "validmind.data_validation.Skewness",
112
+ "validmind.data_validation.Duplicates",
113
+ "validmind.data_validation.MissingValuesBarPlot",
114
+ "validmind.data_validation.DatasetDescription",
115
+ "validmind.data_validation.ZivotAndrewsArch",
116
+ "validmind.data_validation.ScatterPlot",
117
+ "validmind.data_validation.TimeSeriesOutliers",
118
+ "validmind.data_validation.TabularCategoricalBarPlots",
119
+ "validmind.data_validation.AutoStationarity",
120
+ "validmind.data_validation.DescriptiveStatistics",
121
+ "validmind.data_validation.ANOVAOneWayTable",
122
+ "validmind.data_validation.TargetRateBarPlots",
123
+ "validmind.data_validation.PearsonCorrelationMatrix",
124
+ "validmind.data_validation.FeatureTargetCorrelationPlot",
125
+ "validmind.data_validation.TabularNumericalHistograms",
126
+ "validmind.data_validation.IsolationForestOutliers",
127
+ "validmind.data_validation.ChiSquaredFeaturesTable",
128
+ "validmind.data_validation.HighCardinality",
129
+ "validmind.data_validation.MissingValues",
130
+ "validmind.data_validation.PhillipsPerronArch",
131
+ "validmind.data_validation.RollingStatsPlot",
132
+ "validmind.data_validation.TabularDescriptionTables",
133
+ "validmind.data_validation.AutoMA",
134
+ "validmind.data_validation.UniqueRows",
135
+ "validmind.data_validation.TooManyZeroValues",
136
+ "validmind.data_validation.HighPearsonCorrelation",
137
+ "validmind.data_validation.ACFandPACFPlot",
138
+ "validmind.data_validation.BivariateHistograms",
139
+ "validmind.data_validation.WOEBinTable",
140
+ "validmind.data_validation.HeatmapFeatureCorrelations",
141
+ "validmind.data_validation.TimeSeriesFrequency",
142
+ "validmind.data_validation.DatasetSplit",
143
+ "validmind.data_validation.SpreadPlot",
144
+ "validmind.data_validation.TimeSeriesLinePlot",
145
+ "validmind.data_validation.KPSS",
146
+ "validmind.data_validation.AutoSeasonality",
147
+ "validmind.data_validation.BivariateScatterPlots",
148
+ "validmind.data_validation.EngleGrangerCoint",
149
+ "validmind.data_validation.TimeSeriesMissingValues",
150
+ "validmind.data_validation.TimeSeriesHistogram",
151
+ "validmind.data_validation.LaggedCorrelationHeatmap",
152
+ "validmind.data_validation.SeasonalDecompose",
153
+ "validmind.data_validation.WOEBinPlots",
154
+ "validmind.data_validation.ClassImbalance",
155
+ "validmind.data_validation.IQROutliersBarPlot",
156
+ "validmind.data_validation.DFGLSArch",
157
+ "validmind.data_validation.AutoAR",
158
+ "validmind.data_validation.TabularDateTimeHistograms",
159
+ "validmind.data_validation.ADF",
160
+ "validmind.data_validation.nlp.Toxicity",
161
+ "validmind.data_validation.nlp.PolarityAndSubjectivity",
162
+ "validmind.data_validation.nlp.Punctuations",
163
+ "validmind.data_validation.nlp.Sentiment",
164
+ "validmind.data_validation.nlp.CommonWords",
165
+ "validmind.data_validation.nlp.Hashtags",
166
+ "validmind.data_validation.nlp.LanguageDetection",
167
+ "validmind.data_validation.nlp.Mentions",
168
+ "validmind.data_validation.nlp.TextDescription",
169
+ "validmind.data_validation.nlp.StopWords",
170
+ ]
@@ -226,6 +226,18 @@ def _get_save_func(func, test_id):
226
226
 
227
227
 
228
228
  def metric(func_or_id):
229
+ """
230
+ DEPRECATED, use @vm.test instead
231
+ """
232
+ # print a deprecation notice and call the test() function instead
233
+ logger.warning(
234
+ "The @vm.metric decorator is deprecated and will be removed in a future release. "
235
+ "Please use @vm.test instead."
236
+ )
237
+ return test(func_or_id)
238
+
239
+
240
+ def test(func_or_id):
229
241
  """Decorator for creating and registering metrics with the ValidMind framework.
230
242
 
231
243
  Creates a metric object and registers it with ValidMind under the provided ID. If
validmind/utils.py CHANGED
@@ -4,6 +4,7 @@
4
4
 
5
5
  import asyncio
6
6
  import difflib
7
+ import inspect
7
8
  import json
8
9
  import math
9
10
  import re
@@ -458,3 +459,36 @@ def md_to_html(md: str, mathml=False) -> str:
458
459
  )
459
460
 
460
461
  return html
462
+
463
+
464
+ def inspect_obj(obj):
465
+ # Filtering only attributes
466
+ print(len("Attributes:") * "-")
467
+ print("Attributes:")
468
+ print(len("Attributes:") * "-")
469
+
470
+ # Get only attributes (not methods)
471
+ attributes = [
472
+ attr
473
+ for attr in dir(obj)
474
+ if not callable(getattr(obj, attr)) and not attr.startswith("__")
475
+ ]
476
+ for attr in attributes:
477
+ print(f"{attr}")
478
+
479
+ # Filtering only methods using inspect and displaying their parameters
480
+ print("\nMethods with Parameters:")
481
+
482
+ # Get only methods (functions) using inspect.ismethod
483
+ methods = inspect.getmembers(obj, predicate=inspect.ismethod)
484
+ print("Methods:")
485
+ for name, method in methods:
486
+ # Get the signature of the method
487
+ sig = inspect.signature(method)
488
+ print(len(f"{name}") * "-")
489
+ print(f"{name}")
490
+ print(len(f"{name}") * "-")
491
+ print("Parameters:")
492
+ # Loop through the parameters and print detailed information
493
+ for param_name, param in sig.parameters.items():
494
+ print(f"{param_name} - ({param.default})")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: validmind
3
- Version: 2.3.1
3
+ Version: 2.3.3
4
4
  Summary: ValidMind Developer Framework
5
5
  License: Commercial License
6
6
  Author: Andres Rodriguez
@@ -1,5 +1,5 @@
1
- validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
2
- validmind/__version__.py,sha256=neZxeMmEfjhVZM6xetRikrBdHWt5T5ehL72ZYdPtJ-E,22
1
+ validmind/__init__.py,sha256=UfmzPwUCdUWbWq3zPqqmq4jw0_kfl3hX4U72p_seE4I,3700
2
+ validmind/__version__.py,sha256=s0EEVOzZFl_WT6PzFxk9cgtfsNGRuqeXrX3fgGq9Ogs,22
3
3
  validmind/ai/test_descriptions.py,sha256=QBV8i13nKeaQPXqnnra0L_BGc6pZzVWejATUTcgKMek,9287
4
4
  validmind/ai/utils.py,sha256=DtlpgcJcYS1FvdZPw5moUmYnv_guGKsxVbIRzFQ7pcg,3380
5
5
  validmind/api_client.py,sha256=0IR8MpH_GxBykOs4Egz7oEKZLoOEwoli81X1oFL0DD8,16893
@@ -71,7 +71,7 @@ validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1
71
71
  validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
72
72
  validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
73
73
  validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
74
- validmind/test_suites/__init__.py,sha256=dh6fYH10XmrJ3gL6MPK4Vj67nU7fpl9vNOIYbsu1MnI,7141
74
+ validmind/test_suites/__init__.py,sha256=T7446YfTnxfBKNFwIXVcbMb4uIyRzHFAyUQLdDQCjVc,7039
75
75
  validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
76
76
  validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
77
77
  validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
@@ -84,7 +84,8 @@ validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S
84
84
  validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
85
85
  validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
86
86
  validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
87
- validmind/tests/__init__.py,sha256=n22VyCpZD3xEHkJI2-sb5cSK-fNanL2v6b1uZIav0fc,15921
87
+ validmind/tests/__init__.py,sha256=9-SR070X6SUZIURkh7M1jUMiqaDS0SVUmzZ8gNtm-10,15904
88
+ validmind/tests/__types__.py,sha256=0SjOvsJp9p-6Lt5b_VVmoqJBLLsVG4XfsR_TlcuuY8E,9271
88
89
  validmind/tests/data_validation/ACFandPACFPlot.py,sha256=BMXcVZxrZ09xzw0TZtUM81Mss6q2eQg6md5uEfpGu_8,4960
89
90
  validmind/tests/data_validation/ADF.py,sha256=WEFDUdDJlkvDPcLTFAa9RXwMSv_JD-Y-CN-F3xRGBtc,5177
90
91
  validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
@@ -149,7 +150,7 @@ validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgU
149
150
  validmind/tests/data_validation/nlp/TextDescription.py,sha256=AGDUpdDiAg_s6P-jAe-r-QAG5AZJltEAzdbWshCwohc,8842
150
151
  validmind/tests/data_validation/nlp/Toxicity.py,sha256=5sPYUGE8NFFNJnwXiGa4hqduM0S_6f8LX0ro3FnkGes,1534
151
152
  validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
152
- validmind/tests/decorator.py,sha256=jnOmPvx1Ang8za-Qly4xBVmOf8_aWFKAY6OM5jxkUeU,9556
153
+ validmind/tests/decorator.py,sha256=JygzPCUWZL2UPL2NV50SK3wKtmHs8h_a5_j3NjvoM1s,9887
153
154
  validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
154
155
  validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
155
156
  validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
@@ -270,7 +271,7 @@ validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FB
270
271
  validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
271
272
  validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
272
273
  validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
273
- validmind/utils.py,sha256=7eK4jGTdGGnHIKGuppmB6SHh8sdtFRRkN6QRVzwnw68,14731
274
+ validmind/utils.py,sha256=MQDsW7YuwEJ50tA01n3xb8D_Ihmji_Mn22AlMnJJQT8,15819
274
275
  validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
275
276
  validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
276
277
  validmind/vm_models/dataset/dataset.py,sha256=YP6l5sq7SJNExWK3RvkxeCBTLj4z2GkBsmv4KxfBS1I,22753
@@ -290,8 +291,8 @@ validmind/vm_models/test_suite/runner.py,sha256=wgjyqx2CU4bjX3fZKmzJP7gb5GFooGvs
290
291
  validmind/vm_models/test_suite/summary.py,sha256=co-xJJMUYGb7cOiVmw0i8vpZlfiMqrWjaCOmHKMAbcE,4686
291
292
  validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
292
293
  validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
293
- validmind-2.3.1.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
294
- validmind-2.3.1.dist-info/METADATA,sha256=GxV1nkn6sX3Cl-vFqqcxhy8W_3YjVrPhB-tlSsnfgbo,3911
295
- validmind-2.3.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
296
- validmind-2.3.1.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
297
- validmind-2.3.1.dist-info/RECORD,,
294
+ validmind-2.3.3.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
295
+ validmind-2.3.3.dist-info/METADATA,sha256=enT83SFLRsAK6vYP6sJRnjx8JFWRzSQnCwnFa291nXc,3911
296
+ validmind-2.3.3.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
297
+ validmind-2.3.3.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
298
+ validmind-2.3.3.dist-info/RECORD,,