validmind 2.2.5__py3-none-any.whl → 2.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (105) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/{ai.py → ai/test_descriptions.py} +127 -69
  3. validmind/ai/utils.py +104 -0
  4. validmind/api_client.py +70 -31
  5. validmind/client.py +5 -5
  6. validmind/logging.py +38 -32
  7. validmind/models/foundation.py +10 -6
  8. validmind/models/function.py +3 -1
  9. validmind/models/metadata.py +1 -1
  10. validmind/test_suites/__init__.py +1 -7
  11. validmind/test_suites/regression.py +0 -16
  12. validmind/test_suites/statsmodels_timeseries.py +1 -1
  13. validmind/tests/data_validation/ACFandPACFPlot.py +36 -27
  14. validmind/tests/{model_validation/statsmodels → data_validation}/ADF.py +42 -13
  15. validmind/tests/data_validation/BivariateScatterPlots.py +38 -41
  16. validmind/tests/{model_validation/statsmodels → data_validation}/DFGLSArch.py +67 -11
  17. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +1 -1
  18. validmind/tests/data_validation/HighPearsonCorrelation.py +12 -3
  19. validmind/tests/data_validation/IsolationForestOutliers.py +2 -2
  20. validmind/tests/{model_validation/statsmodels → data_validation}/KPSS.py +64 -11
  21. validmind/tests/{model_validation/statsmodels → data_validation}/PhillipsPerronArch.py +65 -11
  22. validmind/tests/data_validation/ScatterPlot.py +1 -1
  23. validmind/tests/data_validation/SeasonalDecompose.py +12 -7
  24. validmind/tests/data_validation/TabularDateTimeHistograms.py +29 -33
  25. validmind/tests/data_validation/WOEBinPlots.py +1 -1
  26. validmind/tests/data_validation/WOEBinTable.py +1 -1
  27. validmind/tests/{model_validation/statsmodels → data_validation}/ZivotAndrewsArch.py +65 -11
  28. validmind/tests/data_validation/nlp/CommonWords.py +1 -1
  29. validmind/tests/data_validation/nlp/Hashtags.py +1 -1
  30. validmind/tests/data_validation/nlp/Mentions.py +1 -1
  31. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +2 -1
  32. validmind/tests/data_validation/nlp/Punctuations.py +1 -1
  33. validmind/tests/data_validation/nlp/Sentiment.py +1 -1
  34. validmind/tests/data_validation/nlp/TextDescription.py +5 -1
  35. validmind/tests/data_validation/nlp/Toxicity.py +1 -1
  36. validmind/tests/decorator.py +1 -1
  37. validmind/tests/model_validation/FeaturesAUC.py +5 -3
  38. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +4 -0
  39. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +4 -0
  40. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +4 -0
  41. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +4 -0
  42. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +4 -0
  43. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +4 -0
  44. validmind/tests/model_validation/ragas/AnswerCorrectness.py +3 -3
  45. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  46. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  47. validmind/tests/model_validation/ragas/AspectCritique.py +14 -8
  48. validmind/tests/model_validation/ragas/ContextEntityRecall.py +3 -4
  49. validmind/tests/model_validation/ragas/ContextPrecision.py +4 -5
  50. validmind/tests/model_validation/ragas/ContextRecall.py +3 -4
  51. validmind/tests/model_validation/ragas/ContextRelevancy.py +5 -4
  52. validmind/tests/model_validation/ragas/Faithfulness.py +6 -5
  53. validmind/tests/model_validation/ragas/utils.py +35 -9
  54. validmind/tests/model_validation/sklearn/ClusterPerformance.py +2 -2
  55. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +1 -1
  56. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +6 -8
  57. validmind/tests/model_validation/sklearn/RegressionErrors.py +1 -1
  58. validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py +14 -8
  59. validmind/tests/model_validation/sklearn/RegressionR2Square.py +1 -1
  60. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +1 -1
  61. validmind/tests/model_validation/statsmodels/GINITable.py +1 -1
  62. validmind/tests/model_validation/statsmodels/JarqueBera.py +1 -1
  63. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +1 -1
  64. validmind/tests/model_validation/statsmodels/LJungBox.py +1 -1
  65. validmind/tests/model_validation/statsmodels/Lilliefors.py +1 -1
  66. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +4 -0
  67. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +9 -4
  68. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +2 -2
  69. validmind/tests/model_validation/statsmodels/RunsTest.py +1 -1
  70. validmind/tests/model_validation/statsmodels/ShapiroWilk.py +1 -1
  71. validmind/tests/prompt_validation/Bias.py +14 -11
  72. validmind/tests/prompt_validation/Clarity.py +14 -11
  73. validmind/tests/prompt_validation/Conciseness.py +14 -11
  74. validmind/tests/prompt_validation/Delimitation.py +14 -11
  75. validmind/tests/prompt_validation/NegativeInstruction.py +14 -11
  76. validmind/tests/prompt_validation/Robustness.py +11 -11
  77. validmind/tests/prompt_validation/Specificity.py +14 -11
  78. validmind/tests/prompt_validation/ai_powered_test.py +53 -75
  79. validmind/unit_metrics/composite.py +2 -1
  80. validmind/utils.py +4 -49
  81. validmind/vm_models/dataset/dataset.py +17 -3
  82. validmind/vm_models/dataset/utils.py +2 -2
  83. validmind/vm_models/model.py +1 -1
  84. validmind/vm_models/test/metric.py +1 -8
  85. validmind/vm_models/test/result_wrapper.py +27 -34
  86. validmind/vm_models/test/test.py +3 -0
  87. validmind/vm_models/test/threshold_test.py +1 -1
  88. validmind/vm_models/test_suite/runner.py +12 -6
  89. validmind/vm_models/test_suite/summary.py +18 -7
  90. validmind/vm_models/test_suite/test.py +13 -20
  91. {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/METADATA +1 -1
  92. {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/RECORD +95 -104
  93. validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py +0 -114
  94. validmind/tests/data_validation/PiTCreditScoresHistogram.py +0 -150
  95. validmind/tests/data_validation/PiTPDHistogram.py +0 -152
  96. validmind/tests/model_validation/statsmodels/ADFTest.py +0 -88
  97. validmind/tests/model_validation/statsmodels/FeatureImportanceAndSignificance.py +0 -198
  98. validmind/tests/model_validation/statsmodels/PDRatingClassPlot.py +0 -151
  99. validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py +0 -146
  100. validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py +0 -144
  101. validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py +0 -127
  102. validmind/tests/model_validation/statsmodels/ResidualsVisualInspection.py +0 -130
  103. {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/LICENSE +0 -0
  104. {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/WHEEL +0 -0
  105. {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/entry_points.txt +0 -0
@@ -1,8 +1,9 @@
1
1
  validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
2
- validmind/__version__.py,sha256=r1Tn-QXWA9VMrkPdk9c6Clll9uei6qKO7PemQL_uDYI,22
3
- validmind/ai.py,sha256=7iJtKD7G27HLabNKUmVSD_tCbJH62BEqbrlv2IB8sHI,6881
4
- validmind/api_client.py,sha256=A8RLYFdRGdffXkd1qTa0o2_yy6e491N1o17KHHXmb8I,16035
5
- validmind/client.py,sha256=S_FozHlMJBgF8IQJES27LeFoYcoCcGZ6dkxE8adyIRQ,18607
2
+ validmind/__version__.py,sha256=neZxeMmEfjhVZM6xetRikrBdHWt5T5ehL72ZYdPtJ-E,22
3
+ validmind/ai/test_descriptions.py,sha256=QBV8i13nKeaQPXqnnra0L_BGc6pZzVWejATUTcgKMek,9287
4
+ validmind/ai/utils.py,sha256=DtlpgcJcYS1FvdZPw5moUmYnv_guGKsxVbIRzFQ7pcg,3380
5
+ validmind/api_client.py,sha256=0IR8MpH_GxBykOs4Egz7oEKZLoOEwoli81X1oFL0DD8,16893
6
+ validmind/client.py,sha256=F5F7jYEXgssg8g9Xq_7LzdGwaBU9MtZUF6hj_5p30jU,18648
6
7
  validmind/client_config.py,sha256=58L6s6-9vFWC9vkSs_98CjV1YWmlksdhblJtPQxQsAk,1611
7
8
  validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
8
9
  validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
@@ -59,32 +60,33 @@ validmind/errors.py,sha256=qy7Gp6Uom5J6WmLw-CpE5zaTN96SiN7kJjDGBaJdoxY,8023
59
60
  validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
61
  validmind/html_templates/content_blocks.py,sha256=AHQ5MlhR1JYldel7soo5ztpTJJ5-kYtyKPBmh-vwxuI,3997
61
62
  validmind/input_registry.py,sha256=zexO3x-vncaoWvQ6VfkvgDLn6x72e2BNel_jCbrVHSE,793
62
- validmind/logging.py,sha256=Ui67RYoB1qbuHm_KX1aGj_8DoK_ljjUDGG6a1XJ4yoY,5041
63
+ validmind/logging.py,sha256=J1Y1dYCH1dtkoYCHoXMOQH_B7EO4fJytWRDrDqZZz8U,5204
63
64
  validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
64
- validmind/models/foundation.py,sha256=LSUdpnBYlPiOUVrTyofStPdoR6y0_nqJoM9TiYT1MRo,1758
65
- validmind/models/function.py,sha256=loZoheqGyTvHze1XROEX1aqXgM08kPMr67X1nutaaeU,1629
65
+ validmind/models/foundation.py,sha256=ZdVmwwRVbjgqMyfjguyf9Lka_KcgJnDD7ho8zv0gQok,1842
66
+ validmind/models/function.py,sha256=xLNtgzRiCfF4jrIedHrX1lmCR-92fB3fVDzLS7el4SM,1785
66
67
  validmind/models/huggingface.py,sha256=oDB32iwP_FQ_ZtZgAC5iBPG4suPaSF-J6317TM8Ob2g,2304
67
- validmind/models/metadata.py,sha256=V5b91J_M3vzx6JGQJH6Taxpf7DT3TPTwkDwLkLRrWn8,1665
68
+ validmind/models/metadata.py,sha256=PMcdYuACkSPvuG8io5BhZeMwclQr_q79mXbvd1SC-7I,1665
68
69
  validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
69
70
  validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
70
71
  validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
71
72
  validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
72
73
  validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
73
- validmind/test_suites/__init__.py,sha256=u_qMwPxpqgIkT7UOuE1qb0qDcNk0tXAVrUg1kGMqW2Q,7259
74
+ validmind/test_suites/__init__.py,sha256=dh6fYH10XmrJ3gL6MPK4Vj67nU7fpl9vNOIYbsu1MnI,7141
74
75
  validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
75
76
  validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
76
77
  validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
77
78
  validmind/test_suites/llm.py,sha256=SqHGBBoJsQ53RQtVhRB9j9ImN7NRRcgoSUW8uQgbLKs,2026
78
79
  validmind/test_suites/nlp.py,sha256=KiHOoItyLMuRzdjcnJ2rdqOI1Ty47zklG_vJZrDsHxQ,1344
79
80
  validmind/test_suites/parameters_optimization.py,sha256=mYVk8eVQneW5oRUuWztYv2NrV7S_5j_9O6S8v5xLEaQ,731
80
- validmind/test_suites/regression.py,sha256=ZBK0RtfugEJoanaHVW4HyS_bBMBV4brPNTXp3T45evU,2407
81
- validmind/test_suites/statsmodels_timeseries.py,sha256=Znv7ZI-ZlKx9C9OMvs2Yfdlme_xdm6ThFAwyPVX7s1Q,957
81
+ validmind/test_suites/regression.py,sha256=knVRJGW5k91CpfNJHjLdkjItSUVg-LBwqMEYcYD7jGM,1915
82
+ validmind/test_suites/statsmodels_timeseries.py,sha256=iCmhp8nZffw9M_lSpSs4jGyZD9uhrTBdC8AOd10iwjU,963
82
83
  validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S8MBe4pd6E,695
83
84
  validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
84
85
  validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
85
86
  validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
86
87
  validmind/tests/__init__.py,sha256=n22VyCpZD3xEHkJI2-sb5cSK-fNanL2v6b1uZIav0fc,15921
87
- validmind/tests/data_validation/ACFandPACFPlot.py,sha256=__JowNXtc511g_g8VXc0IX7j6qBE5J_v7IoWUKmj_E8,4745
88
+ validmind/tests/data_validation/ACFandPACFPlot.py,sha256=BMXcVZxrZ09xzw0TZtUM81Mss6q2eQg6md5uEfpGu_8,4960
89
+ validmind/tests/data_validation/ADF.py,sha256=WEFDUdDJlkvDPcLTFAa9RXwMSv_JD-Y-CN-F3xRGBtc,5177
88
90
  validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
89
91
  validmind/tests/data_validation/AutoAR.py,sha256=kulDh8i7p7CjenVvXS54kfZe53M-eXzQ7aHZylnA06M,6676
90
92
  validmind/tests/data_validation/AutoMA.py,sha256=F0Dq1eAnMtM_agQ4QgzeK7bwSb2Am_2V3-ugjFJzY0A,7119
@@ -92,36 +94,36 @@ validmind/tests/data_validation/AutoSeasonality.py,sha256=GcCpJgXYA11cEnFl6aSpE5
92
94
  validmind/tests/data_validation/AutoStationarity.py,sha256=cDZB8UxoDVq8zj3hNMkHmQnvW0sXTt3WexER5H9QVQA,7902
93
95
  validmind/tests/data_validation/BivariateFeaturesBarPlots.py,sha256=CccBHTjsL2swmGoxpcCtpY_264YwFCO-rZOSqcaMJ_8,5974
94
96
  validmind/tests/data_validation/BivariateHistograms.py,sha256=2GWca2OynF1FVYkDE8yTt_qqcdJeG2we21TbxPcLcx4,5018
95
- validmind/tests/data_validation/BivariateScatterPlots.py,sha256=5JuSs7I1JZaUpXwhGV9u_biMq4xJEUr3CHfh2JXv9JQ,5208
97
+ validmind/tests/data_validation/BivariateScatterPlots.py,sha256=46p64fnqj8zuS1Q66mhgbWe-qFu_vY-46ZM9gnhFlyw,5059
96
98
  validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=qKzMADz_jnEMrNx3BhLp8e1CVtD5pSnkLZptMw0ajpg,6041
97
99
  validmind/tests/data_validation/ClassImbalance.py,sha256=TkI67YUu1DdnRxup-sTo3h6aNS-2ww3LPFxMHnOwAHA,6922
100
+ validmind/tests/data_validation/DFGLSArch.py,sha256=JTxIP79S2sERAba9jwXrvwZd2O2OWYQ4xFlKXlro8TU,5405
98
101
  validmind/tests/data_validation/DatasetDescription.py,sha256=2ez3MyPhkgvJVXDctADQAayltZzfJAiP5Psv6XgxVuU,11401
99
102
  validmind/tests/data_validation/DatasetSplit.py,sha256=JwhIIkxbTwsHAGyJfe1frVYybnd4290DoL6TXO_1Bbs,5127
100
- validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py,sha256=lrVeFrw4rRND7sO2kpv0RHxks9xHQBqkNfz-IN0xw_0,4861
101
103
  validmind/tests/data_validation/DescriptiveStatistics.py,sha256=bQIrHirCrsojciBLeHp5ibAeCpQrMs6wUQ5lW6sWOjQ,6373
102
104
  validmind/tests/data_validation/Duplicates.py,sha256=la6O0Mf2cctT91C3M3lscJ7Jh9u17mkviRDQZ6t9FtM,5632
103
105
  validmind/tests/data_validation/EngleGrangerCoint.py,sha256=Rz8BaptMo79JS8XGrnCGnrMmZo994HBmVGKJCvBqfH0,5580
104
106
  validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=wfYhyK-hhUHGxfWDAUqoorY2EXbDeLCbroPMi14vkzs,5036
105
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=JAxx9JUmplFTcQtaFaCk9JCDCMLkDABMhSgj65ARAUc,5707
107
+ validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=vUOUN0FKP4gQJF8ZWt-xpwgQkzUpYccMCIMp3bxqMsI,5711
106
108
  validmind/tests/data_validation/HighCardinality.py,sha256=4cjBNoWYUHVhl3TuRLrBa6tZ4AWJAOLgIjtk3JnrEZ4,5111
107
- validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=0W_nai0F169rH-rsQynEkozTUrFEnTkS0RaFjL-zodA,5582
109
+ validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=si_CrnG8ZyxCxyhstZ0ATQTxEHVD1hPpT5vY5jPQWbE,5742
108
110
  validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=_O9GXF1hCafLDX6_PjRj7TubRdgs39_N4qk9F6-SHBM,6350
109
111
  validmind/tests/data_validation/IQROutliersTable.py,sha256=GQ0rfkbnfaLIG-hwm-2_Gl4kHqljxwSZCcDDKgNlnHU,5888
110
- validmind/tests/data_validation/IsolationForestOutliers.py,sha256=DZce1C8eVVnw4bx7ZHI9RlmyEik2tfucUYVtGzspEMY,4858
112
+ validmind/tests/data_validation/IsolationForestOutliers.py,sha256=KDXrkOt2J_aQv0KVlbF2bdluNEit4IlOXoDupBOZp0g,4881
113
+ validmind/tests/data_validation/KPSS.py,sha256=3vX9iSpJo_c4mbmcIXGRu3IrCLPcILejhIONxpCMV8Q,5178
111
114
  validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=iAbdO4AcYoB4dFnoREkR6NewJkgx6ISZVf-8iHAvFgY,6048
112
115
  validmind/tests/data_validation/MissingValues.py,sha256=gvLTy5DiBqp0VemOhVEUq3BsrJ3FTIIsK_CPxKfjW6A,4292
113
116
  validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=bTfMCab8gK0VXF1EZ18pTguZkFdfo1ZHhz2hmkFAyG4,6226
114
117
  validmind/tests/data_validation/MissingValuesRisk.py,sha256=GzsGHFL-qMQxuqdu62SF4O5r8UDoUN5xv_b8drR-Afc,4110
115
118
  validmind/tests/data_validation/PearsonCorrelationMatrix.py,sha256=dM6M8jjGHNL9umM1vcKwG5bP3BIW8Psle-_0naKg6iE,4747
116
- validmind/tests/data_validation/PiTCreditScoresHistogram.py,sha256=tH6DB9mlNsg87p2JIYhUaCEiRCrYh2JCFYnS4anoD44,5630
117
- validmind/tests/data_validation/PiTPDHistogram.py,sha256=d37gdsUle_m7rzJEgvR735P7hZdzz2ly5YA1huwMbgc,5950
119
+ validmind/tests/data_validation/PhillipsPerronArch.py,sha256=ft4ZbeKsM_8WAvdWHou0AZGXFUc4RWiMdOvn1pMXmr4,5075
118
120
  validmind/tests/data_validation/RollingStatsPlot.py,sha256=MqKooEL1cIRandoSN7sWhKgXDhdbIbCcBTVvc-FIp5k,5901
119
- validmind/tests/data_validation/ScatterPlot.py,sha256=57wfWhJY0c0l_iqVYq6DqrbHHNYdH-AJY_sPppLqeYI,4371
120
- validmind/tests/data_validation/SeasonalDecompose.py,sha256=U56NXO1q9wnzCWnK3xCeklKPGVUxIOTzi-6cLrUkUsY,8903
121
+ validmind/tests/data_validation/ScatterPlot.py,sha256=5mCr37aD92DUSn82BR7AWdx6-RdJqhjWZPhPcpIexGU,4346
122
+ validmind/tests/data_validation/SeasonalDecompose.py,sha256=f-rvT_ahhiQooQuFt0bL4FXUjVUofhNizw2wauKPL2s,9026
121
123
  validmind/tests/data_validation/Skewness.py,sha256=lygUUQomckvdX5__JGOn6Rx0kJRfyw-0gZOjqqN9Phk,4935
122
124
  validmind/tests/data_validation/SpreadPlot.py,sha256=3FMhokxIexGzRoIlRElkkgpQRRdvnlyx0-tt8aK-wDY,4591
123
125
  validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=EM1m1v9V5N6bpaed_QYoqEFl4ipYcDEh7TbUL1B2stE,4241
124
- validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=aO2xr-a3_76nNyGC98I47ena3kzeUrbrOvQpvJUkHvU,4211
126
+ validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=Dzrw77U8mbDYFH4wPBOrpyLaPLLr_FMyKUxSLPx3ob4,3987
125
127
  validmind/tests/data_validation/TabularDescriptionTables.py,sha256=Hd78V0CsRR0zbA97GFHV4DuffaT-85CI3wyF3ptdXLk,9281
126
128
  validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=CSdQJxDht6QJRMGXoedP_1MVoem-whlcwxGGBaP3inc,4170
127
129
  validmind/tests/data_validation/TargetRateBarPlots.py,sha256=7BghG2XtWw2ptmNgT-wEWb6gWwUgWIlp-LV5HtQENbM,5737
@@ -132,26 +134,27 @@ validmind/tests/data_validation/TimeSeriesMissingValues.py,sha256=4-b55iIMbhDETe
132
134
  validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=wwz3SZs2NUTzK5dgQlehcL5kzANj_Ov7NQPqp_qNoEA,9749
133
135
  validmind/tests/data_validation/TooManyZeroValues.py,sha256=lnW0De4o2q56j1LJvoW_4CQbz4OPvPP5K3e0exCnxqc,5875
134
136
  validmind/tests/data_validation/UniqueRows.py,sha256=zyZ6icTq4kRcNUT_ID95j6Ae8OpGHjrlHkR9j4_3aB8,4516
135
- validmind/tests/data_validation/WOEBinPlots.py,sha256=CipBghounK36v_uysP_OyJfDTYzmLg-0q3jiaRpv0u0,6947
136
- validmind/tests/data_validation/WOEBinTable.py,sha256=2Om0eUyWvi1kAZF4z28n9EfEHoeMf-SuwBYYe5Eag_E,4711
137
+ validmind/tests/data_validation/WOEBinPlots.py,sha256=C3bNTRzbz3wXWoHUdoHZVmzIgMzJTAgwKtgWK2fPbSc,6946
138
+ validmind/tests/data_validation/WOEBinTable.py,sha256=XvKqFfJAMQcxU7G6dfqRBnHVUHt4S1pR5WlawDAUQJo,4710
139
+ validmind/tests/data_validation/ZivotAndrewsArch.py,sha256=gFvlpgxpjBcUWHXAz5nAWZeOBRG2JjENo-NMel7TOek,5252
137
140
  validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
138
- validmind/tests/data_validation/nlp/CommonWords.py,sha256=vrURXSTcfuPKDmcUJoCBuDPvu58P_-LbaiRDR0V2GCI,4204
139
- validmind/tests/data_validation/nlp/Hashtags.py,sha256=CVFvv6hTrB4Mb-b9WqHK1w1GUVs8J8gIrYP2v5OqPOo,4368
141
+ validmind/tests/data_validation/nlp/CommonWords.py,sha256=2GCwKA85r5qvgIa53sLQhLGTJo3SbYM9z-8ORunG910,4181
142
+ validmind/tests/data_validation/nlp/Hashtags.py,sha256=Gc5RivYEPfzJVssODSADBZdulvb8Y2uWAp2_CzXUq-o,4345
140
143
  validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=baexhoBN7Bj58_959KfcBBCNxgnbOADokXj-oR2Hrfc,2077
141
- validmind/tests/data_validation/nlp/Mentions.py,sha256=4nhJQhZoOEPPjw00tmTmEzUP1lSGL6lHdyVwISBkujA,4673
142
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=GWgQzeL3WplOeBRF0uKZJEnB6eKwActTF-LpbW2sAls,1655
143
- validmind/tests/data_validation/nlp/Punctuations.py,sha256=YFA6BqRonCG9q1rAis-k1ZiniIc-SZtnzDJwe_K3CUE,3917
144
- validmind/tests/data_validation/nlp/Sentiment.py,sha256=1m3l0Xfg0vlUlDtqBmG8BMQztZmeLlw89GRIjj3XYGg,1819
144
+ validmind/tests/data_validation/nlp/Mentions.py,sha256=Wlt2ycqj5X-bbb6LTfyLi8aapyd7qCK35yDKJJF3h7o,4650
145
+ validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=2QJZRi8jdkc7NiT5e0QjInf4A6lWeUL71dgybA5M5oA,1676
146
+ validmind/tests/data_validation/nlp/Punctuations.py,sha256=GdxOOjDs4UiDiwa8On8ZUe5JQMzUF9v1PzTXJCGd5p8,3894
147
+ validmind/tests/data_validation/nlp/Sentiment.py,sha256=boQqEK85uBmWMjtNFrMywh9RsQGFx02xlNNyv8A4Eng,1839
145
148
  validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgUoN4JoBK3750hNByJ5FA,6131
146
- validmind/tests/data_validation/nlp/TextDescription.py,sha256=27u4xpFX-FYuMcDVRkw3p1ajcCzd5TgaVkPIqOi8GJc,8718
147
- validmind/tests/data_validation/nlp/Toxicity.py,sha256=M_ksbd-R8AQjEqhniUETn3iC7zwSbf3xUnwh8OhgXhE,1514
149
+ validmind/tests/data_validation/nlp/TextDescription.py,sha256=AGDUpdDiAg_s6P-jAe-r-QAG5AZJltEAzdbWshCwohc,8842
150
+ validmind/tests/data_validation/nlp/Toxicity.py,sha256=5sPYUGE8NFFNJnwXiGa4hqduM0S_6f8LX0ro3FnkGes,1534
148
151
  validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
149
- validmind/tests/decorator.py,sha256=0R6EMNKc7lZT7qNiWgzjC1OkvCHpf-qtncbXv4hTKjk,9541
152
+ validmind/tests/decorator.py,sha256=jnOmPvx1Ang8za-Qly4xBVmOf8_aWFKAY6OM5jxkUeU,9556
150
153
  validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
151
154
  validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
152
155
  validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
153
156
  validmind/tests/model_validation/ContextualRecall.py,sha256=wzLjaliEG441qXvaonchJFr5pHXuPI9pOnlfo59xEAE,4976
154
- validmind/tests/model_validation/FeaturesAUC.py,sha256=aJucUD5u9VxnLpE3klr49VvyvtqT5QGhYE5VNT4hE44,4657
157
+ validmind/tests/model_validation/FeaturesAUC.py,sha256=RKh3oQIyFSaU0rG4trtuPZDrC4-sIky8cVXnB2z5PYA,4733
155
158
  validmind/tests/model_validation/MeteorScore.py,sha256=3YtSjdzxraFYmam03HtOhjayXScFdS5QR_9V4gD-lLI,5010
156
159
  validmind/tests/model_validation/ModelMetadata.py,sha256=F9ctmlIxngkHgOlggRl0WFLilh46SlM3vYfY9zkhtYk,3733
157
160
  validmind/tests/model_validation/RegardScore.py,sha256=EuR1pAgVcn99m5eWagxGgdOCHDBkB2NIzyGE9ly73z4,5206
@@ -161,36 +164,36 @@ validmind/tests/model_validation/TokenDisparity.py,sha256=EZlpFQH6qRWedjTQT5o4u-
161
164
  validmind/tests/model_validation/ToxicityScore.py,sha256=nFDHU1Z8mGpJrdKE6sWxo9nOqqzne1JsYIiNFyn_gYA,5299
162
165
  validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
163
166
  validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=8V2mE_V3S3cIBk29MB0xPqgla1mxiGJcXZ1m99ds3ck,3552
164
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=N7HakxwU2XrLzsLrS0uyg_m6KOyjuS6rEhinZkXsU28,4741
167
+ validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=xXM1pI-4XOLLSE-sZqQzdUryrAvql5maytFNjzMlrn4,4900
165
168
  validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=B3quw4ZCWVyhDBHbVp637JoVTpSAROJfUwY-ECLOTAo,3459
166
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=CGO5zKetkqt51ERDfiqDPVcjM2tounEwsfN5gawt4GE,3336
169
+ validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=R16Jq2BQPG4xknAmDGEbRcX8RmDb879NWazSPmB0ARo,3495
167
170
  validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=hLOcJ3lGigyA2VYAQunKB8dkBzh5TORFawg8TZIlG94,4247
168
171
  validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=HxXrkp6OKfGgzuRKWzhAGXYAI8VjYIpLWg62nXHOLVw,4342
169
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=jZAddcbNmm7wqdcjLLkCzK6ZoedhI_FYmsnxiRogBnQ,4343
170
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=4IxOywnfQUBZnf7nLXQQcf9DY139vKGHWJZSQjpzZnM,3216
171
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=JElbl-hGB1SyHQ_m7do4JdPN5n1gM5SNtYRVeIOKR4c,3734
172
+ validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=UG5etgWn9Rnqts5X_1U6CTj-uDfz6VLqXdQVZ9Mu3y0,4502
173
+ validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=ruMY1LK2LwmzwdKMcgFLeaebhEi4_kbJNpEafVCTPfw,3375
174
+ validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=nUQU9e32RHa3Ytofi_dzId_7VSNH4bJG9I_r8VJNbFk,3893
172
175
  validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=0ZH5zNv52lcA-k1ZohMgo6w8VUXIe1XA0WA3ORCbHtY,4579
173
176
  validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=exnaM-XHiHHflflXfJQLNGQByTBDeKwCtxBoNPKNev8,3970
174
177
  validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=N1hYFnAQKLxSpjd6ZHwi57Zdx10ssEX2Ci73rrEXTGs,5796
175
178
  validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=npnOPAoXb5FoiwQEwp_gDcbGa5xk4rYnXChTJnuGX64,4405
176
179
  validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=9dL06PRlzokEpaEQAj_12FuQnlzfQ2-__6alYfSajmU,4636
177
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=0zdA1oRD9d4d6eVKyRTnGAsukplfYwWHxGNndIU8mkw,4353
178
- validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=QelJHrxTOQxl233Uq1T3j_OOGDXU4totRF5wFEKitkI,4933
179
- validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=mtm0rOVfBhpsXf_KJkTvUDnNyTBlCx_b6sveBznE5IY,4771
180
- validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=EEMc2V1MxxJqKPeK8VWNmVKvH0AYjEJvo6PgNwwU92w,4231
181
- validmind/tests/model_validation/ragas/AspectCritique.py,sha256=VzB1pEuXVVhmb9FxBXUcnfIkmBwJEfo3VT2XXjT7evg,5836
182
- validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=AChCUcGTohH7tvOFNroyWRx_sstiMFbxSkCVM0FCgmw,4708
183
- validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=vtu6seXKPMEEjtQAFxeVYCw91AMQkA3VLKWQqIFvQEM,4420
184
- validmind/tests/model_validation/ragas/ContextRecall.py,sha256=j4Qgyrsb5BG1kMLzHXnSClLihpecP1JIpgKBR4_fM4k,4371
185
- validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=oRxmYbYei9yM7HJANnGsJc9gLUwAQyZx2St6V7GYttQ,3929
186
- validmind/tests/model_validation/ragas/Faithfulness.py,sha256=hJbZ62QKbrc057aiWwqx_12kjxEepqGu8AkNpXLjoF8,4291
187
- validmind/tests/model_validation/ragas/utils.py,sha256=O8wlir8s7DzVgNrZAAUrMDEvag-FvuefdkTqLIxKkUs,2310
180
+ validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=jfEJjLiBhrXGmafNPI0rk3sDugDmuQ6pbpek4rF8v1k,4512
181
+ validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=PgSxFcyWx2WAI6DsgYJQW3N5EKQgm-uCAZgm8r9Cly4,5002
182
+ validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=iIgN6CTAYs8V9sfJVhR_p6B5TQLUQ413rXYqwVP3770,4861
183
+ validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=csCdKnjKXwIAOcc6PdAWl0IO2ttou2ihoXtU-G37hz4,4321
184
+ validmind/tests/model_validation/ragas/AspectCritique.py,sha256=Tx6dDGLPnHpPdY_93i-gu9robPOsiu1SEdqw0-rs2Ws,6043
185
+ validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=o8zYuCESyYlTqYHzdDfrbAsFeIEPDFTUoLvCm2SuFic,4768
186
+ validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=JKmz1nI1HE2tlzVIGRjwunkJ3Wmh7ITu_X3y39-sDSw,4494
187
+ validmind/tests/model_validation/ragas/ContextRecall.py,sha256=VsBtDqKbvcK12Tblfdy7RwGHTBVQ03O67wRphrTHyZE,4431
188
+ validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=lLaWSPNDQXae4jiMjDP7841pqnGvcvYqYHYIj6TL698,4019
189
+ validmind/tests/model_validation/ragas/Faithfulness.py,sha256=zIkTwX4nu78KkuMTzArx0D2HaM3EMKddakB8Bfo0Xr0,4389
190
+ validmind/tests/model_validation/ragas/utils.py,sha256=wtmY4jWF8RZCl032v0AkfpgZrS1jhnAzkrDhoWNvhEk,2952
188
191
  validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=iUt8PJd7Q-nhfDkU0siZY5Gip_uzSCqwOjpd_WBuv2I,2892
189
192
  validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=Mb03a6R37GagRuy269TE8ZgaMaF3vngcH3-Um6SZYmg,2767
190
193
  validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=bbZkuGEm_D_zZf3hBeqjw9DrDKeKoLQiwfg2Cjd7gZY,5945
191
194
  validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py,sha256=bktc1cEkayjwFd846FgkUwCXChCppcJ7XnbWLauREGo,5485
192
- validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=Rq2OXSx6DgbUrR9VP8ncUvCK-BFTzxTrMMlLKMQyu7M,5369
193
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=iFbLvZkiYUDa9Lul1jX85TfrkwUAIkOhGTUrRlV3U4Y,8604
195
+ validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=kDGdMfxyf6BfcRH9BnsK6uWEgk6pwWNRIwbEoadVGjY,5360
196
+ validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=-9Euc3ZCAFoMSsJuz9zrrQqk3GTXQHYKa3i8lYsJilI,8600
194
197
  validmind/tests/model_validation/sklearn/CompletenessScore.py,sha256=Uj_hTTTqRLHDJ-pjajfuun_2Anq7W0GQpwPsAhdWq24,2559
195
198
  validmind/tests/model_validation/sklearn/ConfusionMatrix.py,sha256=Bm9fsw9nD1KurbBbXf0Jph0MN7_-7GRiydiTTfDgiU4,5776
196
199
  validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py,sha256=hL7hfvdeZ_jR9ktxMH9NI-hwvLsl478iQDajOXUuocM,3049
@@ -200,15 +203,15 @@ validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py,sha256=o5
200
203
  validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=MAkVBawefPT_ST5odD3Pyqg-Jbfj1HcmNUkVGwFYcNk,5337
201
204
  validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=5QLwdsFkuT-k2QkVR6CZw3gPb6RFrgJe8VtZkqma1eg,4678
202
205
  validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=0KMdAHZOnY_PpoWSNZxmudClqQ469JV_V_vTM3FXAC8,4891
203
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=sUKPQCOrc8r5jCzWyU1n_Cuj9bY4uD8B8aoe-pUoGzY,6297
206
+ validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=ITimCZ0dPxomj6bSI_0g_I5ft_fWc5QDvCTKukciaRU,6196
204
207
  validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=BLyDWAHd7dw17QLuwy9JrvsBNPXhM8yhXWu9EeSIVgg,14075
205
208
  validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=jBRGRFjWzC3MyhNyJ_5Mv21S_ippcy63lMIZ2MQ4588,4929
206
209
  validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=5cp3E78C1OjFomqVmtYOovdoNniLVVg-jmRb9HXQ3XQ,10132
207
210
  validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=Ay0Z3NDpP0w3Tz3nPSSUhA5WZGW4EZyNmCIJga2kixQ,4436
208
211
  validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=gXeUoJ8Gxd4sZ_VRDICEznk8iaNyZmDpgZk2M03lVdo,5822
209
- validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=SBxFPZ1-C_ObpLeol7ghf5cdJBimNljYTlFsfohagtA,5980
210
- validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=RIup0L4cXycyWfU4GY9J7BuX88OoJ9eSs6ruT4Ho1vU,5539
211
- validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=301jEnSZiNwsQDdo7q7RBkcNq2ILYoooYiag3Tep2-Y,4962
212
+ validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=ozczSJX5jwEXVj-kb6BlLzoUVzNXNkFqeaoYmKfTAdM,5976
213
+ validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=1e0Sv-pfI4sUeMDl-62X97Ai8kezcI_3gUnfZWzq3fA,5789
214
+ validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=MbVfgxiloCSd32xhlO4_QiDyo3ZTJB4Orc-G3yMltwM,4958
212
215
  validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=762ckUxewgv87Aix48gJQ532v7UEdwIUD_l5iMaQoGU,13738
213
216
  validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=FwY2n65uDBz4D4fFy-Ur7G2lb9W_LcOr-HPevmwTxZk,8951
214
217
  validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=TznxbLhwybNbht6hUg4MSKxX3TI7zJp75tQH0svWon0,6237
@@ -216,50 +219,38 @@ validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=Gy2I6
216
219
  validmind/tests/model_validation/sklearn/VMeasure.py,sha256=x2cdcN_Wh_hnfAsF715QgWBPbhZMi533PO-No84iEJ4,2772
217
220
  validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=82HubT8NZluBYoLS_t3n6QW3lN6YvFkCeEMR0N43tOQ,14194
218
221
  validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
219
- validmind/tests/model_validation/statsmodels/ADF.py,sha256=97lutdezxrdsFB1rkTESx2uSp8RHPRhEhucrs2ZyR04,4042
220
- validmind/tests/model_validation/statsmodels/ADFTest.py,sha256=pNuH0699hyI7533iuMMf2C3FiVb-TM3fSEsZuGdSGJA,4039
221
222
  validmind/tests/model_validation/statsmodels/AutoARIMA.py,sha256=mb-QlmiYDaOWJNneUcgL27km3dGNaqIuP6Bw_rG4Emc,5172
222
223
  validmind/tests/model_validation/statsmodels/BoxPierce.py,sha256=3xhBDYemI07MK-DKO788Vc2q-ST7sycmqr7HN1inU-E,3581
223
224
  validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py,sha256=_l8aPSS_IgGypt3A3nyd3Zd54W8JRvK-t3Rvc7-LQrc,6389
224
- validmind/tests/model_validation/statsmodels/DFGLSArch.py,sha256=SjmQYMazR4QzfpCwwhxty_JvJaUU88hcdqH0uFz3tlE,3365
225
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py,sha256=dkdMH0dfFCbHacpFCL_7KBUzHiwmV5DYhsJlV4_k9dI,2957
226
- validmind/tests/model_validation/statsmodels/FeatureImportanceAndSignificance.py,sha256=ZOZucyM6YbWInqS_flSpgC2saOVDPdrcvUYWZ_gk9Go,7199
227
- validmind/tests/model_validation/statsmodels/GINITable.py,sha256=QUbvTuxm8l0vL7OkVqLmiI21gaDEZ35SA4wikxK93YM,5753
228
- validmind/tests/model_validation/statsmodels/JarqueBera.py,sha256=G2Jyry_knx3h5daErRUNZO5JP63M9OurUSuCQBVEke4,3362
229
- validmind/tests/model_validation/statsmodels/KPSS.py,sha256=tP6Xzp7oZ_p1ktIV3g8bG4CA4YTrXt7hrTdvnfCUf4M,3313
230
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=RXsSi7FeJeUl8Q0QXvacQ8r9HR4hVtRiGPoMrRLtXjg,4371
231
- validmind/tests/model_validation/statsmodels/LJungBox.py,sha256=PTPSW8IT5b8lHV66vQRtjbz7VWPcXCn7PGz6YOK9j0w,3309
232
- validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=Gmxw2r4Qsa8kVE-5MCkqE3UJZdR9eGMYTvg-D7s2Mp8,3997
233
- validmind/tests/model_validation/statsmodels/PDRatingClassPlot.py,sha256=EqsAG2vpDzBxb-0iGBKegtF25U2nuw8VlQVAWvAnXFs,6064
234
- validmind/tests/model_validation/statsmodels/PhillipsPerronArch.py,sha256=Z1wogft3oIJHE795vNUMa1r5r-t0yLm19rJRLKmLFAA,3133
225
+ validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py,sha256=3NYheqnjfBK2xl6mCCmNiGvOhvbF3-BMUaZJ4mwAwg0,2963
226
+ validmind/tests/model_validation/statsmodels/GINITable.py,sha256=jJj731XRHaBgJuDj4lgDkJgWfJe5SPfWzGMPCw3arBM,5753
227
+ validmind/tests/model_validation/statsmodels/JarqueBera.py,sha256=2TlYLc1-jfQfDGhDDaVJjaIa0HmLgsT_AtNgzkYcaBI,3407
228
+ validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=cBksf5Esz_wkQu6lt5ePilVWqzhomfQdjFaDM4EMDHo,4416
229
+ validmind/tests/model_validation/statsmodels/LJungBox.py,sha256=-Lh6ewdLOdBw7QN9RaE4MYeibmwlrM1A1pECTuc90to,3315
230
+ validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=h1MdmcSfcdAzO7qx9tgVuSdkl-otDzFMzWh7PE3M78M,4048
235
231
  validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=6HSzbV9oSPZg7olFtnpheTxAD7hFdPISbhOKtmU0QbY,6394
236
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=zWOzmEcdsQMzGzT4nCpSSQLQcdc0BERju-xgLBBGC4Y,5657
237
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=TGz8ei7pG31tLKjzqNiBNO-UbzGWCabv2rWX-DjiJ4Y,5494
232
+ validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=pZS68FHseNpdjcRUts3Bg7gUnWOFg8owvtICZyYIFUI,5834
233
+ validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=Q9b7-h5QXB-qM0Oz4Y8dDRoYv0Jv20vyoWmrkWXt8hA,5644
238
234
  validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=-RU-HMcSWAZQKYAptVTDerkH03K2ruO-vco0DS8vSJM,6573
239
235
  validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=GfEOF5OyxQ2tMLhZutp9O4m9MzFl8xDH0IsIQBtPGTs,8321
240
- validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=un-7t9pRN4RGv4HYyUH2gVCm7EsjSi7fiotOXEFwJXA,6467
241
- validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=3QPYMVJg2EEAWhrh6Cj2jHiqORJpHVC3DfdRze2Vw8s,6276
242
236
  validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=q30wFH7QRZKriVMXBmZVE2K30kjcb6zX4IVl1NHT2kA,7320
243
237
  validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=i4jgUn3Q-GHHXQ3RzjMt5k-scafyNoUuedk_XsuDC5E,4343
244
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=-52QU5EgidZBffs9jcX2oO1BswIUw81y6Zy43DQ6Prg,4578
245
- validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=qECEzP1G1SfQA3EiBBCgDJxzMHgU5bWAIFH6hO59EbY,5436
238
+ validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=7cl9tn5799sctCzEHNWGa_QfVII_L6H5ZoMpxjUkjzc,4549
246
239
  validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=hrWFViq7poX_G2-AwGffRQnwN9Vr42e4DfZKP-_gsRo,5044
247
- validmind/tests/model_validation/statsmodels/ResidualsVisualInspection.py,sha256=ROF3y_akn0cxo6sA38aWElkleg0bcvQfttPc1pjJaHc,5771
248
- validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=TJdixri2vrrA4HUUpTYveoVzr7V9lcH6CJnPTLxSqms,3684
240
+ validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=56f5n9hgOkCqaWHJGV0YzLZZhxJ5a-rHTfN0YcPYmt0,3729
249
241
  validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=p1ab5K553oxMYVNe3R53Rh4IOJ9G7EgKmjvZY7LO2Dg,6192
250
- validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=W8_EARepPA0CpApy0w7cLcbnP7ZegBjntGSUOcuyrqQ,3243
251
- validmind/tests/model_validation/statsmodels/ZivotAndrewsArch.py,sha256=4QrZImKZYVLKrmUgjnBTldtIqXf8-tyz9CiNqMYtj_w,3291
242
+ validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=wN9ggwb_N-e2qi5YTVELb5kN72wfrX3-UNWfg6SRhJQ,3288
252
243
  validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
253
244
  validmind/tests/model_validation/statsmodels/statsutils.py,sha256=s1J7lHJ4kAcp_gGI0LAsaIFxbSqPrqXanxgtDI_Kig0,495
254
- validmind/tests/prompt_validation/Bias.py,sha256=0b3IxjMrEJSrxuI7IB-8orPKtEa6tMtg9JH62cR_tns,7060
255
- validmind/tests/prompt_validation/Clarity.py,sha256=DMBJ99OBJmrVBSEqaKupE3jHTr514Tilm283b1omSz0,6256
256
- validmind/tests/prompt_validation/Conciseness.py,sha256=y1HH8dC3sbqs3pEvWjQGJ6pDHdVwo-xL835UFkG-kEc,6004
257
- validmind/tests/prompt_validation/Delimitation.py,sha256=2YFncdONGoAnqo2PownXKRLzPYQl8BoRW-nIQbiQ0Cg,5522
258
- validmind/tests/prompt_validation/NegativeInstruction.py,sha256=1aqNV_vB5oM2_8UXDZ0S6DJtnPcp1hDkMuRj2rokJzI,6671
259
- validmind/tests/prompt_validation/Robustness.py,sha256=VIQotugWQ32Q1kr1kacBuqk-q1EPTRi9NZAIYrTDsY0,6826
260
- validmind/tests/prompt_validation/Specificity.py,sha256=v823rZAr9a810Q_RlgH7FqPPxXZ00hDJApkFaJJ8mgk,6116
245
+ validmind/tests/prompt_validation/Bias.py,sha256=h7fC0DiVlSxtciMIJOlS_65bwWuT4soONd7YFhIVHhY,7052
246
+ validmind/tests/prompt_validation/Clarity.py,sha256=TaVmv6pP3e-b-Nr5-tiMHoQgvGoVmDQbwa8HyabL3l0,6248
247
+ validmind/tests/prompt_validation/Conciseness.py,sha256=HoUtzMAYSzScLG3crxpg6yXETG_Wpjkpj1TQAAlAoQE,5996
248
+ validmind/tests/prompt_validation/Delimitation.py,sha256=eYTq6JyEs3LJ6hienklXB5yAEhBe6-BAeBq7op5andg,5514
249
+ validmind/tests/prompt_validation/NegativeInstruction.py,sha256=PeSvEN1-sp_BrPIknIPFsJqYoTeFqmK-yunlrUwys9o,6663
250
+ validmind/tests/prompt_validation/Robustness.py,sha256=k1C0HoOiddhNU88VARZMS40tM49Cg8LfT5D8RUtub8w,6829
251
+ validmind/tests/prompt_validation/Specificity.py,sha256=cHQmRlseosTQVi4sqMtfkS6P8j6z1LZur1_EkVLw8ck,6108
261
252
  validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
262
- validmind/tests/prompt_validation/ai_powered_test.py,sha256=pogmrOR2fTY34Tx5TXIs5Smjz09mdh5Kp4NifrmPrFY,2975
253
+ validmind/tests/prompt_validation/ai_powered_test.py,sha256=7TTeIR5GotQosm7oVT8Y3KnwPB3XkVT1Fzhckpr-SgE,1963
263
254
  validmind/tests/test_providers.py,sha256=1tYn_sWNqifFpOp8eNvcVyJzxBjhHV5Py4FxO8opPZA,4944
264
255
  validmind/unit_metrics/__init__.py,sha256=a7oV8YRC-O6dF7ePz4E8Fqrh4ax6AWT26Y996VPView,7084
265
256
  validmind/unit_metrics/classification/sklearn/Accuracy.py,sha256=2Ra_OpKceY01h1dAFCqRFAwe--K2oVbCUiYjM5AH_nQ,480
@@ -267,7 +258,7 @@ validmind/unit_metrics/classification/sklearn/F1.py,sha256=Uiq5sPyNpALhApTkmLUhh
267
258
  validmind/unit_metrics/classification/sklearn/Precision.py,sha256=8zO5VDZhfT8R2VFYiV-CzsZwhsTwVAKca4nhD-qALLw,458
268
259
  validmind/unit_metrics/classification/sklearn/ROC_AUC.py,sha256=5-i1xhrLg7Ix4sk7pBKDBtlqBCNRD365LnTvsekSVYs,452
269
260
  validmind/unit_metrics/classification/sklearn/Recall.py,sha256=0WG3A6K9M1UmbWQKoS_wwLfq-cXVDDTIA1ZpaJNyKp8,449
270
- validmind/unit_metrics/composite.py,sha256=wuOTBnj-eNOBIkCdJ589gr0TEwl0i3TLvqJ1BwwJ9KI,7971
261
+ validmind/unit_metrics/composite.py,sha256=2FRvPv028BvpisGJvyJ0RjS4P3upKB4iRfFn3DSXOBo,8005
271
262
  validmind/unit_metrics/regression/GiniCoefficient.py,sha256=ebh1rOob8mEmQp0EpXcneAXjc4AIfm6O3Y0_mnTahKA,984
272
263
  validmind/unit_metrics/regression/HuberLoss.py,sha256=JAUxKFpXp1NtQKEJMZlGgxDlk8pFT1tY3ZcxNQPDhHM,680
273
264
  validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=DRHuFH3DqDMy56tzkN8ETwt36FCu1m-nGxK0OJCPMDk,981
@@ -279,28 +270,28 @@ validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FB
279
270
  validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
280
271
  validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
281
272
  validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
282
- validmind/utils.py,sha256=ckmtwpKvlUAbW4atFWOb8NWqhiz0LurXoqMtI2qq26Y,16342
273
+ validmind/utils.py,sha256=7eK4jGTdGGnHIKGuppmB6SHh8sdtFRRkN6QRVzwnw68,14731
283
274
  validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
284
275
  validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
285
- validmind/vm_models/dataset/dataset.py,sha256=VlR5Wp5pCoXY3U0C8AbevaySFGf0KJ3QIK3go5OEbog,21843
286
- validmind/vm_models/dataset/utils.py,sha256=IZDCM_FNaaMAWm9Vrvmf_h8ZzhkOffxa6SHLnHPP1TA,5157
276
+ validmind/vm_models/dataset/dataset.py,sha256=YP6l5sq7SJNExWK3RvkxeCBTLj4z2GkBsmv4KxfBS1I,22753
277
+ validmind/vm_models/dataset/utils.py,sha256=ygT6hUw0KklKCboo7tqLxh_hf-dEiaccVyCpR9DCPF8,5177
287
278
  validmind/vm_models/figure.py,sha256=iSrvPcCG5sQrMkX1Fh6c5utRzaroh3bc6IlnGDOK_Eg,6651
288
- validmind/vm_models/model.py,sha256=n3XgTPHO4qeHiSxUq4Y8ajPYnxCe2Y_6X-02Ehb4s7M,6074
289
- validmind/vm_models/test/metric.py,sha256=R7Y-_fzBcIrkJw7-BeifQHMuHTV3HLDc8T3nS_lbCF8,3385
279
+ validmind/vm_models/model.py,sha256=b-UL73EWOpj-X5aQbHQ3HLkONHCH9hYwUlKxVwPC6gI,6088
280
+ validmind/vm_models/test/metric.py,sha256=nq3htPGW51D_HZCk0rDovZud6DeTUsmN0voW-zCs4c0,3230
290
281
  validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
291
282
  validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
292
283
  validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
293
- validmind/vm_models/test/result_wrapper.py,sha256=e0hN_oE31g64PU39zYes-PBgqd05TRXRUKF87VnjMUk,17654
294
- validmind/vm_models/test/test.py,sha256=434PqhPcbwfCmNjYVwHGMG-rViIatb9-1nmxkdZF8Xo,3104
295
- validmind/vm_models/test/threshold_test.py,sha256=7d46Z5N_U1hTr6LGa2A0_ZuaIFl54xZ_eRzgf-KUGjk,3662
284
+ validmind/vm_models/test/result_wrapper.py,sha256=wBCkHg9a5Vrys98EjJG7XwWMU-0L1BkK3aufTCn9KxY,17629
285
+ validmind/vm_models/test/test.py,sha256=2arTeCZXN3ogc2ONN_RII1bw8FOdkFRwLXx5vOtoB9o,3239
286
+ validmind/vm_models/test/threshold_test.py,sha256=uN_jgnHE1MGIuL7KVvGIwmOKTIaQwTn7FvydWKh4St8,3677
296
287
  validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
297
288
  validmind/vm_models/test_context.py,sha256=AN7-atBgOcD04MLVitCFJYooxF6_iNmvI2H4nkv32iw,9035
298
- validmind/vm_models/test_suite/runner.py,sha256=U93TauwLNEbAgJIzBZ9k9ip9NnlTt0gACHVgfO7J9BI,6754
299
- validmind/vm_models/test_suite/summary.py,sha256=GpqabqN_RcI5vbv4-A9YCLTpUOTKockp6oL1hi8IwVs,4541
300
- validmind/vm_models/test_suite/test.py,sha256=cIa-6_YkFp7Io4wBkr09aFNmljmUFSagV4JreLd1Q6Y,5285
289
+ validmind/vm_models/test_suite/runner.py,sha256=wgjyqx2CU4bjX3fZKmzJP7gb5GFooGvsrVt93Ko8g1Y,6956
290
+ validmind/vm_models/test_suite/summary.py,sha256=co-xJJMUYGb7cOiVmw0i8vpZlfiMqrWjaCOmHKMAbcE,4686
291
+ validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
301
292
  validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
302
- validmind-2.2.5.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
303
- validmind-2.2.5.dist-info/METADATA,sha256=a8SDCtFs4QR76UFHhVR2olxYIvPODKUTiInrAW9ZDCI,3911
304
- validmind-2.2.5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
305
- validmind-2.2.5.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
306
- validmind-2.2.5.dist-info/RECORD,,
293
+ validmind-2.3.1.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
294
+ validmind-2.3.1.dist-info/METADATA,sha256=GxV1nkn6sX3Cl-vFqqcxhy8W_3YjVrPhB-tlSsnfgbo,3911
295
+ validmind-2.3.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
296
+ validmind-2.3.1.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
297
+ validmind-2.3.1.dist-info/RECORD,,
@@ -1,114 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- from dataclasses import dataclass
6
-
7
- import plotly.express as px
8
- import plotly.graph_objects as go
9
-
10
- from validmind.vm_models import Figure, Metric
11
-
12
-
13
- @dataclass
14
- class DefaultRatesbyRiskBandPlot(Metric):
15
- """
16
- Generates a bar plot showcasing the distribution of default rates across different risk bands in a dataset.
17
-
18
- **Purpose**:
19
- The Default Rates by Risk Band Plot metric aims to quantify and visually represent default rates across varying
20
- risk bands within a specific dataset. This information is essential in evaluating the functionality of credit risk
21
- models, by providing a comprehensive view of default rates across a range of risk categories.
22
-
23
- **Test Mechanism**:
24
- The applied test approach involves a calculated bar plot. This plot is derived by initially determining the count
25
- of accounts in every risk band and then converting these count values into percentages by dividing by the total
26
- quantity of accounts. The percentages are then depicted as a bar plot, clearly showcasing the proportion of total
27
- accounts associated with each risk band. Hence, the plot delivers a summarized depiction of default risk across
28
- various bands. The 'Dark24' color sequence is used in the plot to ensure each risk band is easily distinguishable.
29
-
30
- **Signs of High Risk**:
31
- - High risk may be indicated by a significantly large percentage of accounts associated with high-risk bands.
32
- - High exposure to potential default risk in the dataset indicates potential weaknesses in the model's capability
33
- to effectively manage or predict credit risk.
34
-
35
- **Strengths**:
36
- - The metric's primary strengths lie in its simplicity and visual impact.
37
- - The graphical display of default rates allows for a clear understanding of the spread of default risk across risk
38
- bands.
39
- - Using a bar chart simplifies the comparison between various risk bands and can highlight potential spots of high
40
- risk.
41
- - This approach assists in identifying any numerical imbalances or anomalies, thus facilitating the task of
42
- evaluating and contrasting performance across various credit risk models.
43
-
44
- **Limitations**:
45
- - The key constraint of this metric is that it cannot provide any insights as to why certain risk bands might have
46
- higher default rates than others.
47
- - If there is a large imbalance in the number of accounts across risk bands, the visual representation might not
48
- accurately depict the true distribution of risk.
49
- - Other factors contributing to credit risk beyond the risk bands are not considered.
50
- - The metric's reliance on a visual format might potentially lead to misinterpretation of results, as graphical
51
- depictions can sometimes be misleading.
52
- """
53
-
54
- name = "default_rates_by_risk_band_plot"
55
- required_context = ["dataset"]
56
- default_params = {"title": "Percentage of Total Accounts by Risk Band"}
57
- metadata = {
58
- "task_types": ["classification"],
59
- "tags": ["tabular_data", "visualization", "credit_risk"],
60
- }
61
-
62
- @staticmethod
63
- def plot_band_percentages(df, risk_band_column, title):
64
- # Calculate the count of accounts in each risk band
65
- risk_band_counts = df[risk_band_column].value_counts().sort_index()
66
-
67
- # Convert to percentage
68
- total_accounts = len(df)
69
- risk_band_percentages = (risk_band_counts / total_accounts) * 100
70
-
71
- # Use 'Dark24' color sequence for more distinguishable colors
72
- colors = px.colors.qualitative.Dark24[: len(risk_band_percentages)]
73
-
74
- # Create the bar plot
75
- fig = go.Figure(
76
- data=[
77
- go.Bar(
78
- x=risk_band_percentages.index,
79
- y=risk_band_percentages.values,
80
- marker_color=colors,
81
- )
82
- ]
83
- )
84
-
85
- # Customize the plot
86
- fig.update_layout(
87
- title_text=title,
88
- xaxis_title="Risk Band",
89
- yaxis_title="Percentage of Total Accounts",
90
- )
91
-
92
- return fig, risk_band_percentages
93
-
94
- def run(self):
95
- df = self.inputs.dataset
96
- risk_band_column = self.params["risk_band_column"]
97
- title = self.params["title"]
98
-
99
- fig, risk_band_percentages = self.plot_band_percentages(
100
- df, risk_band_column, title
101
- )
102
-
103
- return self.cache_results(
104
- metric_value={
105
- "band_percentages": risk_band_percentages.to_dict(),
106
- },
107
- figures=[
108
- Figure(
109
- for_object=self,
110
- key="band_percentages",
111
- figure=fig,
112
- )
113
- ],
114
- )