validmind 2.2.5__py3-none-any.whl → 2.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/{ai.py → ai/test_descriptions.py} +127 -69
- validmind/ai/utils.py +104 -0
- validmind/api_client.py +70 -31
- validmind/client.py +5 -5
- validmind/logging.py +38 -32
- validmind/models/foundation.py +10 -6
- validmind/models/function.py +3 -1
- validmind/models/metadata.py +1 -1
- validmind/test_suites/__init__.py +1 -7
- validmind/test_suites/regression.py +0 -16
- validmind/test_suites/statsmodels_timeseries.py +1 -1
- validmind/tests/data_validation/ACFandPACFPlot.py +36 -27
- validmind/tests/{model_validation/statsmodels → data_validation}/ADF.py +42 -13
- validmind/tests/data_validation/BivariateScatterPlots.py +38 -41
- validmind/tests/{model_validation/statsmodels → data_validation}/DFGLSArch.py +67 -11
- validmind/tests/data_validation/HeatmapFeatureCorrelations.py +1 -1
- validmind/tests/data_validation/HighPearsonCorrelation.py +12 -3
- validmind/tests/data_validation/IsolationForestOutliers.py +2 -2
- validmind/tests/{model_validation/statsmodels → data_validation}/KPSS.py +64 -11
- validmind/tests/{model_validation/statsmodels → data_validation}/PhillipsPerronArch.py +65 -11
- validmind/tests/data_validation/ScatterPlot.py +1 -1
- validmind/tests/data_validation/SeasonalDecompose.py +12 -7
- validmind/tests/data_validation/TabularDateTimeHistograms.py +29 -33
- validmind/tests/data_validation/WOEBinPlots.py +1 -1
- validmind/tests/data_validation/WOEBinTable.py +1 -1
- validmind/tests/{model_validation/statsmodels → data_validation}/ZivotAndrewsArch.py +65 -11
- validmind/tests/data_validation/nlp/CommonWords.py +1 -1
- validmind/tests/data_validation/nlp/Hashtags.py +1 -1
- validmind/tests/data_validation/nlp/Mentions.py +1 -1
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +2 -1
- validmind/tests/data_validation/nlp/Punctuations.py +1 -1
- validmind/tests/data_validation/nlp/Sentiment.py +1 -1
- validmind/tests/data_validation/nlp/TextDescription.py +5 -1
- validmind/tests/data_validation/nlp/Toxicity.py +1 -1
- validmind/tests/decorator.py +1 -1
- validmind/tests/model_validation/FeaturesAUC.py +5 -3
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +4 -0
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +4 -0
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +4 -0
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +4 -0
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +4 -0
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +4 -0
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +3 -3
- validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
- validmind/tests/model_validation/ragas/AspectCritique.py +14 -8
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +3 -4
- validmind/tests/model_validation/ragas/ContextPrecision.py +4 -5
- validmind/tests/model_validation/ragas/ContextRecall.py +3 -4
- validmind/tests/model_validation/ragas/ContextRelevancy.py +5 -4
- validmind/tests/model_validation/ragas/Faithfulness.py +6 -5
- validmind/tests/model_validation/ragas/utils.py +35 -9
- validmind/tests/model_validation/sklearn/ClusterPerformance.py +2 -2
- validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +1 -1
- validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +6 -8
- validmind/tests/model_validation/sklearn/RegressionErrors.py +1 -1
- validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py +14 -8
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +1 -1
- validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +1 -1
- validmind/tests/model_validation/statsmodels/GINITable.py +1 -1
- validmind/tests/model_validation/statsmodels/JarqueBera.py +1 -1
- validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +1 -1
- validmind/tests/model_validation/statsmodels/LJungBox.py +1 -1
- validmind/tests/model_validation/statsmodels/Lilliefors.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +4 -0
- validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +9 -4
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +2 -2
- validmind/tests/model_validation/statsmodels/RunsTest.py +1 -1
- validmind/tests/model_validation/statsmodels/ShapiroWilk.py +1 -1
- validmind/tests/prompt_validation/Bias.py +14 -11
- validmind/tests/prompt_validation/Clarity.py +14 -11
- validmind/tests/prompt_validation/Conciseness.py +14 -11
- validmind/tests/prompt_validation/Delimitation.py +14 -11
- validmind/tests/prompt_validation/NegativeInstruction.py +14 -11
- validmind/tests/prompt_validation/Robustness.py +11 -11
- validmind/tests/prompt_validation/Specificity.py +14 -11
- validmind/tests/prompt_validation/ai_powered_test.py +53 -75
- validmind/unit_metrics/composite.py +2 -1
- validmind/utils.py +4 -49
- validmind/vm_models/dataset/dataset.py +17 -3
- validmind/vm_models/dataset/utils.py +2 -2
- validmind/vm_models/model.py +1 -1
- validmind/vm_models/test/metric.py +1 -8
- validmind/vm_models/test/result_wrapper.py +27 -34
- validmind/vm_models/test/test.py +3 -0
- validmind/vm_models/test/threshold_test.py +1 -1
- validmind/vm_models/test_suite/runner.py +12 -6
- validmind/vm_models/test_suite/summary.py +18 -7
- validmind/vm_models/test_suite/test.py +13 -20
- {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/METADATA +1 -1
- {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/RECORD +95 -104
- validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py +0 -114
- validmind/tests/data_validation/PiTCreditScoresHistogram.py +0 -150
- validmind/tests/data_validation/PiTPDHistogram.py +0 -152
- validmind/tests/model_validation/statsmodels/ADFTest.py +0 -88
- validmind/tests/model_validation/statsmodels/FeatureImportanceAndSignificance.py +0 -198
- validmind/tests/model_validation/statsmodels/PDRatingClassPlot.py +0 -151
- validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py +0 -146
- validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py +0 -144
- validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py +0 -127
- validmind/tests/model_validation/statsmodels/ResidualsVisualInspection.py +0 -130
- {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/LICENSE +0 -0
- {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/WHEEL +0 -0
- {validmind-2.2.5.dist-info → validmind-2.3.1.dist-info}/entry_points.txt +0 -0
@@ -1,8 +1,9 @@
|
|
1
1
|
validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
|
2
|
-
validmind/__version__.py,sha256=
|
3
|
-
validmind/ai.py,sha256=
|
4
|
-
validmind/
|
5
|
-
validmind/
|
2
|
+
validmind/__version__.py,sha256=neZxeMmEfjhVZM6xetRikrBdHWt5T5ehL72ZYdPtJ-E,22
|
3
|
+
validmind/ai/test_descriptions.py,sha256=QBV8i13nKeaQPXqnnra0L_BGc6pZzVWejATUTcgKMek,9287
|
4
|
+
validmind/ai/utils.py,sha256=DtlpgcJcYS1FvdZPw5moUmYnv_guGKsxVbIRzFQ7pcg,3380
|
5
|
+
validmind/api_client.py,sha256=0IR8MpH_GxBykOs4Egz7oEKZLoOEwoli81X1oFL0DD8,16893
|
6
|
+
validmind/client.py,sha256=F5F7jYEXgssg8g9Xq_7LzdGwaBU9MtZUF6hj_5p30jU,18648
|
6
7
|
validmind/client_config.py,sha256=58L6s6-9vFWC9vkSs_98CjV1YWmlksdhblJtPQxQsAk,1611
|
7
8
|
validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
|
8
9
|
validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
|
@@ -59,32 +60,33 @@ validmind/errors.py,sha256=qy7Gp6Uom5J6WmLw-CpE5zaTN96SiN7kJjDGBaJdoxY,8023
|
|
59
60
|
validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
60
61
|
validmind/html_templates/content_blocks.py,sha256=AHQ5MlhR1JYldel7soo5ztpTJJ5-kYtyKPBmh-vwxuI,3997
|
61
62
|
validmind/input_registry.py,sha256=zexO3x-vncaoWvQ6VfkvgDLn6x72e2BNel_jCbrVHSE,793
|
62
|
-
validmind/logging.py,sha256=
|
63
|
+
validmind/logging.py,sha256=J1Y1dYCH1dtkoYCHoXMOQH_B7EO4fJytWRDrDqZZz8U,5204
|
63
64
|
validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
|
64
|
-
validmind/models/foundation.py,sha256=
|
65
|
-
validmind/models/function.py,sha256=
|
65
|
+
validmind/models/foundation.py,sha256=ZdVmwwRVbjgqMyfjguyf9Lka_KcgJnDD7ho8zv0gQok,1842
|
66
|
+
validmind/models/function.py,sha256=xLNtgzRiCfF4jrIedHrX1lmCR-92fB3fVDzLS7el4SM,1785
|
66
67
|
validmind/models/huggingface.py,sha256=oDB32iwP_FQ_ZtZgAC5iBPG4suPaSF-J6317TM8Ob2g,2304
|
67
|
-
validmind/models/metadata.py,sha256=
|
68
|
+
validmind/models/metadata.py,sha256=PMcdYuACkSPvuG8io5BhZeMwclQr_q79mXbvd1SC-7I,1665
|
68
69
|
validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
|
69
70
|
validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
|
70
71
|
validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
|
71
72
|
validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
|
72
73
|
validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
|
73
|
-
validmind/test_suites/__init__.py,sha256=
|
74
|
+
validmind/test_suites/__init__.py,sha256=dh6fYH10XmrJ3gL6MPK4Vj67nU7fpl9vNOIYbsu1MnI,7141
|
74
75
|
validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
|
75
76
|
validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
|
76
77
|
validmind/test_suites/embeddings.py,sha256=sBQRMjlp7kzsvPkA0qkgmAr4yzUrHMmXSEfSHMkn-_s,1949
|
77
78
|
validmind/test_suites/llm.py,sha256=SqHGBBoJsQ53RQtVhRB9j9ImN7NRRcgoSUW8uQgbLKs,2026
|
78
79
|
validmind/test_suites/nlp.py,sha256=KiHOoItyLMuRzdjcnJ2rdqOI1Ty47zklG_vJZrDsHxQ,1344
|
79
80
|
validmind/test_suites/parameters_optimization.py,sha256=mYVk8eVQneW5oRUuWztYv2NrV7S_5j_9O6S8v5xLEaQ,731
|
80
|
-
validmind/test_suites/regression.py,sha256=
|
81
|
-
validmind/test_suites/statsmodels_timeseries.py,sha256=
|
81
|
+
validmind/test_suites/regression.py,sha256=knVRJGW5k91CpfNJHjLdkjItSUVg-LBwqMEYcYD7jGM,1915
|
82
|
+
validmind/test_suites/statsmodels_timeseries.py,sha256=iCmhp8nZffw9M_lSpSs4jGyZD9uhrTBdC8AOd10iwjU,963
|
82
83
|
validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S8MBe4pd6E,695
|
83
84
|
validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
|
84
85
|
validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
|
85
86
|
validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
|
86
87
|
validmind/tests/__init__.py,sha256=n22VyCpZD3xEHkJI2-sb5cSK-fNanL2v6b1uZIav0fc,15921
|
87
|
-
validmind/tests/data_validation/ACFandPACFPlot.py,sha256=
|
88
|
+
validmind/tests/data_validation/ACFandPACFPlot.py,sha256=BMXcVZxrZ09xzw0TZtUM81Mss6q2eQg6md5uEfpGu_8,4960
|
89
|
+
validmind/tests/data_validation/ADF.py,sha256=WEFDUdDJlkvDPcLTFAa9RXwMSv_JD-Y-CN-F3xRGBtc,5177
|
88
90
|
validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
|
89
91
|
validmind/tests/data_validation/AutoAR.py,sha256=kulDh8i7p7CjenVvXS54kfZe53M-eXzQ7aHZylnA06M,6676
|
90
92
|
validmind/tests/data_validation/AutoMA.py,sha256=F0Dq1eAnMtM_agQ4QgzeK7bwSb2Am_2V3-ugjFJzY0A,7119
|
@@ -92,36 +94,36 @@ validmind/tests/data_validation/AutoSeasonality.py,sha256=GcCpJgXYA11cEnFl6aSpE5
|
|
92
94
|
validmind/tests/data_validation/AutoStationarity.py,sha256=cDZB8UxoDVq8zj3hNMkHmQnvW0sXTt3WexER5H9QVQA,7902
|
93
95
|
validmind/tests/data_validation/BivariateFeaturesBarPlots.py,sha256=CccBHTjsL2swmGoxpcCtpY_264YwFCO-rZOSqcaMJ_8,5974
|
94
96
|
validmind/tests/data_validation/BivariateHistograms.py,sha256=2GWca2OynF1FVYkDE8yTt_qqcdJeG2we21TbxPcLcx4,5018
|
95
|
-
validmind/tests/data_validation/BivariateScatterPlots.py,sha256=
|
97
|
+
validmind/tests/data_validation/BivariateScatterPlots.py,sha256=46p64fnqj8zuS1Q66mhgbWe-qFu_vY-46ZM9gnhFlyw,5059
|
96
98
|
validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=qKzMADz_jnEMrNx3BhLp8e1CVtD5pSnkLZptMw0ajpg,6041
|
97
99
|
validmind/tests/data_validation/ClassImbalance.py,sha256=TkI67YUu1DdnRxup-sTo3h6aNS-2ww3LPFxMHnOwAHA,6922
|
100
|
+
validmind/tests/data_validation/DFGLSArch.py,sha256=JTxIP79S2sERAba9jwXrvwZd2O2OWYQ4xFlKXlro8TU,5405
|
98
101
|
validmind/tests/data_validation/DatasetDescription.py,sha256=2ez3MyPhkgvJVXDctADQAayltZzfJAiP5Psv6XgxVuU,11401
|
99
102
|
validmind/tests/data_validation/DatasetSplit.py,sha256=JwhIIkxbTwsHAGyJfe1frVYybnd4290DoL6TXO_1Bbs,5127
|
100
|
-
validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py,sha256=lrVeFrw4rRND7sO2kpv0RHxks9xHQBqkNfz-IN0xw_0,4861
|
101
103
|
validmind/tests/data_validation/DescriptiveStatistics.py,sha256=bQIrHirCrsojciBLeHp5ibAeCpQrMs6wUQ5lW6sWOjQ,6373
|
102
104
|
validmind/tests/data_validation/Duplicates.py,sha256=la6O0Mf2cctT91C3M3lscJ7Jh9u17mkviRDQZ6t9FtM,5632
|
103
105
|
validmind/tests/data_validation/EngleGrangerCoint.py,sha256=Rz8BaptMo79JS8XGrnCGnrMmZo994HBmVGKJCvBqfH0,5580
|
104
106
|
validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=wfYhyK-hhUHGxfWDAUqoorY2EXbDeLCbroPMi14vkzs,5036
|
105
|
-
validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=
|
107
|
+
validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=vUOUN0FKP4gQJF8ZWt-xpwgQkzUpYccMCIMp3bxqMsI,5711
|
106
108
|
validmind/tests/data_validation/HighCardinality.py,sha256=4cjBNoWYUHVhl3TuRLrBa6tZ4AWJAOLgIjtk3JnrEZ4,5111
|
107
|
-
validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=
|
109
|
+
validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=si_CrnG8ZyxCxyhstZ0ATQTxEHVD1hPpT5vY5jPQWbE,5742
|
108
110
|
validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=_O9GXF1hCafLDX6_PjRj7TubRdgs39_N4qk9F6-SHBM,6350
|
109
111
|
validmind/tests/data_validation/IQROutliersTable.py,sha256=GQ0rfkbnfaLIG-hwm-2_Gl4kHqljxwSZCcDDKgNlnHU,5888
|
110
|
-
validmind/tests/data_validation/IsolationForestOutliers.py,sha256=
|
112
|
+
validmind/tests/data_validation/IsolationForestOutliers.py,sha256=KDXrkOt2J_aQv0KVlbF2bdluNEit4IlOXoDupBOZp0g,4881
|
113
|
+
validmind/tests/data_validation/KPSS.py,sha256=3vX9iSpJo_c4mbmcIXGRu3IrCLPcILejhIONxpCMV8Q,5178
|
111
114
|
validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=iAbdO4AcYoB4dFnoREkR6NewJkgx6ISZVf-8iHAvFgY,6048
|
112
115
|
validmind/tests/data_validation/MissingValues.py,sha256=gvLTy5DiBqp0VemOhVEUq3BsrJ3FTIIsK_CPxKfjW6A,4292
|
113
116
|
validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=bTfMCab8gK0VXF1EZ18pTguZkFdfo1ZHhz2hmkFAyG4,6226
|
114
117
|
validmind/tests/data_validation/MissingValuesRisk.py,sha256=GzsGHFL-qMQxuqdu62SF4O5r8UDoUN5xv_b8drR-Afc,4110
|
115
118
|
validmind/tests/data_validation/PearsonCorrelationMatrix.py,sha256=dM6M8jjGHNL9umM1vcKwG5bP3BIW8Psle-_0naKg6iE,4747
|
116
|
-
validmind/tests/data_validation/
|
117
|
-
validmind/tests/data_validation/PiTPDHistogram.py,sha256=d37gdsUle_m7rzJEgvR735P7hZdzz2ly5YA1huwMbgc,5950
|
119
|
+
validmind/tests/data_validation/PhillipsPerronArch.py,sha256=ft4ZbeKsM_8WAvdWHou0AZGXFUc4RWiMdOvn1pMXmr4,5075
|
118
120
|
validmind/tests/data_validation/RollingStatsPlot.py,sha256=MqKooEL1cIRandoSN7sWhKgXDhdbIbCcBTVvc-FIp5k,5901
|
119
|
-
validmind/tests/data_validation/ScatterPlot.py,sha256=
|
120
|
-
validmind/tests/data_validation/SeasonalDecompose.py,sha256=
|
121
|
+
validmind/tests/data_validation/ScatterPlot.py,sha256=5mCr37aD92DUSn82BR7AWdx6-RdJqhjWZPhPcpIexGU,4346
|
122
|
+
validmind/tests/data_validation/SeasonalDecompose.py,sha256=f-rvT_ahhiQooQuFt0bL4FXUjVUofhNizw2wauKPL2s,9026
|
121
123
|
validmind/tests/data_validation/Skewness.py,sha256=lygUUQomckvdX5__JGOn6Rx0kJRfyw-0gZOjqqN9Phk,4935
|
122
124
|
validmind/tests/data_validation/SpreadPlot.py,sha256=3FMhokxIexGzRoIlRElkkgpQRRdvnlyx0-tt8aK-wDY,4591
|
123
125
|
validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=EM1m1v9V5N6bpaed_QYoqEFl4ipYcDEh7TbUL1B2stE,4241
|
124
|
-
validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=
|
126
|
+
validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=Dzrw77U8mbDYFH4wPBOrpyLaPLLr_FMyKUxSLPx3ob4,3987
|
125
127
|
validmind/tests/data_validation/TabularDescriptionTables.py,sha256=Hd78V0CsRR0zbA97GFHV4DuffaT-85CI3wyF3ptdXLk,9281
|
126
128
|
validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=CSdQJxDht6QJRMGXoedP_1MVoem-whlcwxGGBaP3inc,4170
|
127
129
|
validmind/tests/data_validation/TargetRateBarPlots.py,sha256=7BghG2XtWw2ptmNgT-wEWb6gWwUgWIlp-LV5HtQENbM,5737
|
@@ -132,26 +134,27 @@ validmind/tests/data_validation/TimeSeriesMissingValues.py,sha256=4-b55iIMbhDETe
|
|
132
134
|
validmind/tests/data_validation/TimeSeriesOutliers.py,sha256=wwz3SZs2NUTzK5dgQlehcL5kzANj_Ov7NQPqp_qNoEA,9749
|
133
135
|
validmind/tests/data_validation/TooManyZeroValues.py,sha256=lnW0De4o2q56j1LJvoW_4CQbz4OPvPP5K3e0exCnxqc,5875
|
134
136
|
validmind/tests/data_validation/UniqueRows.py,sha256=zyZ6icTq4kRcNUT_ID95j6Ae8OpGHjrlHkR9j4_3aB8,4516
|
135
|
-
validmind/tests/data_validation/WOEBinPlots.py,sha256=
|
136
|
-
validmind/tests/data_validation/WOEBinTable.py,sha256=
|
137
|
+
validmind/tests/data_validation/WOEBinPlots.py,sha256=C3bNTRzbz3wXWoHUdoHZVmzIgMzJTAgwKtgWK2fPbSc,6946
|
138
|
+
validmind/tests/data_validation/WOEBinTable.py,sha256=XvKqFfJAMQcxU7G6dfqRBnHVUHt4S1pR5WlawDAUQJo,4710
|
139
|
+
validmind/tests/data_validation/ZivotAndrewsArch.py,sha256=gFvlpgxpjBcUWHXAz5nAWZeOBRG2JjENo-NMel7TOek,5252
|
137
140
|
validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
138
|
-
validmind/tests/data_validation/nlp/CommonWords.py,sha256=
|
139
|
-
validmind/tests/data_validation/nlp/Hashtags.py,sha256=
|
141
|
+
validmind/tests/data_validation/nlp/CommonWords.py,sha256=2GCwKA85r5qvgIa53sLQhLGTJo3SbYM9z-8ORunG910,4181
|
142
|
+
validmind/tests/data_validation/nlp/Hashtags.py,sha256=Gc5RivYEPfzJVssODSADBZdulvb8Y2uWAp2_CzXUq-o,4345
|
140
143
|
validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=baexhoBN7Bj58_959KfcBBCNxgnbOADokXj-oR2Hrfc,2077
|
141
|
-
validmind/tests/data_validation/nlp/Mentions.py,sha256=
|
142
|
-
validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=
|
143
|
-
validmind/tests/data_validation/nlp/Punctuations.py,sha256=
|
144
|
-
validmind/tests/data_validation/nlp/Sentiment.py,sha256=
|
144
|
+
validmind/tests/data_validation/nlp/Mentions.py,sha256=Wlt2ycqj5X-bbb6LTfyLi8aapyd7qCK35yDKJJF3h7o,4650
|
145
|
+
validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=2QJZRi8jdkc7NiT5e0QjInf4A6lWeUL71dgybA5M5oA,1676
|
146
|
+
validmind/tests/data_validation/nlp/Punctuations.py,sha256=GdxOOjDs4UiDiwa8On8ZUe5JQMzUF9v1PzTXJCGd5p8,3894
|
147
|
+
validmind/tests/data_validation/nlp/Sentiment.py,sha256=boQqEK85uBmWMjtNFrMywh9RsQGFx02xlNNyv8A4Eng,1839
|
145
148
|
validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgUoN4JoBK3750hNByJ5FA,6131
|
146
|
-
validmind/tests/data_validation/nlp/TextDescription.py,sha256=
|
147
|
-
validmind/tests/data_validation/nlp/Toxicity.py,sha256=
|
149
|
+
validmind/tests/data_validation/nlp/TextDescription.py,sha256=AGDUpdDiAg_s6P-jAe-r-QAG5AZJltEAzdbWshCwohc,8842
|
150
|
+
validmind/tests/data_validation/nlp/Toxicity.py,sha256=5sPYUGE8NFFNJnwXiGa4hqduM0S_6f8LX0ro3FnkGes,1534
|
148
151
|
validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
149
|
-
validmind/tests/decorator.py,sha256=
|
152
|
+
validmind/tests/decorator.py,sha256=jnOmPvx1Ang8za-Qly4xBVmOf8_aWFKAY6OM5jxkUeU,9556
|
150
153
|
validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
|
151
154
|
validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
|
152
155
|
validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
|
153
156
|
validmind/tests/model_validation/ContextualRecall.py,sha256=wzLjaliEG441qXvaonchJFr5pHXuPI9pOnlfo59xEAE,4976
|
154
|
-
validmind/tests/model_validation/FeaturesAUC.py,sha256=
|
157
|
+
validmind/tests/model_validation/FeaturesAUC.py,sha256=RKh3oQIyFSaU0rG4trtuPZDrC4-sIky8cVXnB2z5PYA,4733
|
155
158
|
validmind/tests/model_validation/MeteorScore.py,sha256=3YtSjdzxraFYmam03HtOhjayXScFdS5QR_9V4gD-lLI,5010
|
156
159
|
validmind/tests/model_validation/ModelMetadata.py,sha256=F9ctmlIxngkHgOlggRl0WFLilh46SlM3vYfY9zkhtYk,3733
|
157
160
|
validmind/tests/model_validation/RegardScore.py,sha256=EuR1pAgVcn99m5eWagxGgdOCHDBkB2NIzyGE9ly73z4,5206
|
@@ -161,36 +164,36 @@ validmind/tests/model_validation/TokenDisparity.py,sha256=EZlpFQH6qRWedjTQT5o4u-
|
|
161
164
|
validmind/tests/model_validation/ToxicityScore.py,sha256=nFDHU1Z8mGpJrdKE6sWxo9nOqqzne1JsYIiNFyn_gYA,5299
|
162
165
|
validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
163
166
|
validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=8V2mE_V3S3cIBk29MB0xPqgla1mxiGJcXZ1m99ds3ck,3552
|
164
|
-
validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=
|
167
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=xXM1pI-4XOLLSE-sZqQzdUryrAvql5maytFNjzMlrn4,4900
|
165
168
|
validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=B3quw4ZCWVyhDBHbVp637JoVTpSAROJfUwY-ECLOTAo,3459
|
166
|
-
validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=
|
169
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=R16Jq2BQPG4xknAmDGEbRcX8RmDb879NWazSPmB0ARo,3495
|
167
170
|
validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=hLOcJ3lGigyA2VYAQunKB8dkBzh5TORFawg8TZIlG94,4247
|
168
171
|
validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=HxXrkp6OKfGgzuRKWzhAGXYAI8VjYIpLWg62nXHOLVw,4342
|
169
|
-
validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=
|
170
|
-
validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=
|
171
|
-
validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=
|
172
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=UG5etgWn9Rnqts5X_1U6CTj-uDfz6VLqXdQVZ9Mu3y0,4502
|
173
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=ruMY1LK2LwmzwdKMcgFLeaebhEi4_kbJNpEafVCTPfw,3375
|
174
|
+
validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=nUQU9e32RHa3Ytofi_dzId_7VSNH4bJG9I_r8VJNbFk,3893
|
172
175
|
validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=0ZH5zNv52lcA-k1ZohMgo6w8VUXIe1XA0WA3ORCbHtY,4579
|
173
176
|
validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=exnaM-XHiHHflflXfJQLNGQByTBDeKwCtxBoNPKNev8,3970
|
174
177
|
validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=N1hYFnAQKLxSpjd6ZHwi57Zdx10ssEX2Ci73rrEXTGs,5796
|
175
178
|
validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=npnOPAoXb5FoiwQEwp_gDcbGa5xk4rYnXChTJnuGX64,4405
|
176
179
|
validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=9dL06PRlzokEpaEQAj_12FuQnlzfQ2-__6alYfSajmU,4636
|
177
|
-
validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=
|
178
|
-
validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=
|
179
|
-
validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=
|
180
|
-
validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=
|
181
|
-
validmind/tests/model_validation/ragas/AspectCritique.py,sha256=
|
182
|
-
validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=
|
183
|
-
validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=
|
184
|
-
validmind/tests/model_validation/ragas/ContextRecall.py,sha256=
|
185
|
-
validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=
|
186
|
-
validmind/tests/model_validation/ragas/Faithfulness.py,sha256=
|
187
|
-
validmind/tests/model_validation/ragas/utils.py,sha256=
|
180
|
+
validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=jfEJjLiBhrXGmafNPI0rk3sDugDmuQ6pbpek4rF8v1k,4512
|
181
|
+
validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=PgSxFcyWx2WAI6DsgYJQW3N5EKQgm-uCAZgm8r9Cly4,5002
|
182
|
+
validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=iIgN6CTAYs8V9sfJVhR_p6B5TQLUQ413rXYqwVP3770,4861
|
183
|
+
validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=csCdKnjKXwIAOcc6PdAWl0IO2ttou2ihoXtU-G37hz4,4321
|
184
|
+
validmind/tests/model_validation/ragas/AspectCritique.py,sha256=Tx6dDGLPnHpPdY_93i-gu9robPOsiu1SEdqw0-rs2Ws,6043
|
185
|
+
validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=o8zYuCESyYlTqYHzdDfrbAsFeIEPDFTUoLvCm2SuFic,4768
|
186
|
+
validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=JKmz1nI1HE2tlzVIGRjwunkJ3Wmh7ITu_X3y39-sDSw,4494
|
187
|
+
validmind/tests/model_validation/ragas/ContextRecall.py,sha256=VsBtDqKbvcK12Tblfdy7RwGHTBVQ03O67wRphrTHyZE,4431
|
188
|
+
validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=lLaWSPNDQXae4jiMjDP7841pqnGvcvYqYHYIj6TL698,4019
|
189
|
+
validmind/tests/model_validation/ragas/Faithfulness.py,sha256=zIkTwX4nu78KkuMTzArx0D2HaM3EMKddakB8Bfo0Xr0,4389
|
190
|
+
validmind/tests/model_validation/ragas/utils.py,sha256=wtmY4jWF8RZCl032v0AkfpgZrS1jhnAzkrDhoWNvhEk,2952
|
188
191
|
validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=iUt8PJd7Q-nhfDkU0siZY5Gip_uzSCqwOjpd_WBuv2I,2892
|
189
192
|
validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=Mb03a6R37GagRuy269TE8ZgaMaF3vngcH3-Um6SZYmg,2767
|
190
193
|
validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=bbZkuGEm_D_zZf3hBeqjw9DrDKeKoLQiwfg2Cjd7gZY,5945
|
191
194
|
validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py,sha256=bktc1cEkayjwFd846FgkUwCXChCppcJ7XnbWLauREGo,5485
|
192
|
-
validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=
|
193
|
-
validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256
|
195
|
+
validmind/tests/model_validation/sklearn/ClusterPerformance.py,sha256=kDGdMfxyf6BfcRH9BnsK6uWEgk6pwWNRIwbEoadVGjY,5360
|
196
|
+
validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py,sha256=-9Euc3ZCAFoMSsJuz9zrrQqk3GTXQHYKa3i8lYsJilI,8600
|
194
197
|
validmind/tests/model_validation/sklearn/CompletenessScore.py,sha256=Uj_hTTTqRLHDJ-pjajfuun_2Anq7W0GQpwPsAhdWq24,2559
|
195
198
|
validmind/tests/model_validation/sklearn/ConfusionMatrix.py,sha256=Bm9fsw9nD1KurbBbXf0Jph0MN7_-7GRiydiTTfDgiU4,5776
|
196
199
|
validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py,sha256=hL7hfvdeZ_jR9ktxMH9NI-hwvLsl478iQDajOXUuocM,3049
|
@@ -200,15 +203,15 @@ validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py,sha256=o5
|
|
200
203
|
validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=MAkVBawefPT_ST5odD3Pyqg-Jbfj1HcmNUkVGwFYcNk,5337
|
201
204
|
validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=5QLwdsFkuT-k2QkVR6CZw3gPb6RFrgJe8VtZkqma1eg,4678
|
202
205
|
validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=0KMdAHZOnY_PpoWSNZxmudClqQ469JV_V_vTM3FXAC8,4891
|
203
|
-
validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=
|
206
|
+
validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=ITimCZ0dPxomj6bSI_0g_I5ft_fWc5QDvCTKukciaRU,6196
|
204
207
|
validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=BLyDWAHd7dw17QLuwy9JrvsBNPXhM8yhXWu9EeSIVgg,14075
|
205
208
|
validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=jBRGRFjWzC3MyhNyJ_5Mv21S_ippcy63lMIZ2MQ4588,4929
|
206
209
|
validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=5cp3E78C1OjFomqVmtYOovdoNniLVVg-jmRb9HXQ3XQ,10132
|
207
210
|
validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=Ay0Z3NDpP0w3Tz3nPSSUhA5WZGW4EZyNmCIJga2kixQ,4436
|
208
211
|
validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=gXeUoJ8Gxd4sZ_VRDICEznk8iaNyZmDpgZk2M03lVdo,5822
|
209
|
-
validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=
|
210
|
-
validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=
|
211
|
-
validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=
|
212
|
+
validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=ozczSJX5jwEXVj-kb6BlLzoUVzNXNkFqeaoYmKfTAdM,5976
|
213
|
+
validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=1e0Sv-pfI4sUeMDl-62X97Ai8kezcI_3gUnfZWzq3fA,5789
|
214
|
+
validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=MbVfgxiloCSd32xhlO4_QiDyo3ZTJB4Orc-G3yMltwM,4958
|
212
215
|
validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=762ckUxewgv87Aix48gJQ532v7UEdwIUD_l5iMaQoGU,13738
|
213
216
|
validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=FwY2n65uDBz4D4fFy-Ur7G2lb9W_LcOr-HPevmwTxZk,8951
|
214
217
|
validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=TznxbLhwybNbht6hUg4MSKxX3TI7zJp75tQH0svWon0,6237
|
@@ -216,50 +219,38 @@ validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=Gy2I6
|
|
216
219
|
validmind/tests/model_validation/sklearn/VMeasure.py,sha256=x2cdcN_Wh_hnfAsF715QgWBPbhZMi533PO-No84iEJ4,2772
|
217
220
|
validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=82HubT8NZluBYoLS_t3n6QW3lN6YvFkCeEMR0N43tOQ,14194
|
218
221
|
validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
219
|
-
validmind/tests/model_validation/statsmodels/ADF.py,sha256=97lutdezxrdsFB1rkTESx2uSp8RHPRhEhucrs2ZyR04,4042
|
220
|
-
validmind/tests/model_validation/statsmodels/ADFTest.py,sha256=pNuH0699hyI7533iuMMf2C3FiVb-TM3fSEsZuGdSGJA,4039
|
221
222
|
validmind/tests/model_validation/statsmodels/AutoARIMA.py,sha256=mb-QlmiYDaOWJNneUcgL27km3dGNaqIuP6Bw_rG4Emc,5172
|
222
223
|
validmind/tests/model_validation/statsmodels/BoxPierce.py,sha256=3xhBDYemI07MK-DKO788Vc2q-ST7sycmqr7HN1inU-E,3581
|
223
224
|
validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py,sha256=_l8aPSS_IgGypt3A3nyd3Zd54W8JRvK-t3Rvc7-LQrc,6389
|
224
|
-
validmind/tests/model_validation/statsmodels/
|
225
|
-
validmind/tests/model_validation/statsmodels/
|
226
|
-
validmind/tests/model_validation/statsmodels/
|
227
|
-
validmind/tests/model_validation/statsmodels/
|
228
|
-
validmind/tests/model_validation/statsmodels/
|
229
|
-
validmind/tests/model_validation/statsmodels/
|
230
|
-
validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=RXsSi7FeJeUl8Q0QXvacQ8r9HR4hVtRiGPoMrRLtXjg,4371
|
231
|
-
validmind/tests/model_validation/statsmodels/LJungBox.py,sha256=PTPSW8IT5b8lHV66vQRtjbz7VWPcXCn7PGz6YOK9j0w,3309
|
232
|
-
validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=Gmxw2r4Qsa8kVE-5MCkqE3UJZdR9eGMYTvg-D7s2Mp8,3997
|
233
|
-
validmind/tests/model_validation/statsmodels/PDRatingClassPlot.py,sha256=EqsAG2vpDzBxb-0iGBKegtF25U2nuw8VlQVAWvAnXFs,6064
|
234
|
-
validmind/tests/model_validation/statsmodels/PhillipsPerronArch.py,sha256=Z1wogft3oIJHE795vNUMa1r5r-t0yLm19rJRLKmLFAA,3133
|
225
|
+
validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py,sha256=3NYheqnjfBK2xl6mCCmNiGvOhvbF3-BMUaZJ4mwAwg0,2963
|
226
|
+
validmind/tests/model_validation/statsmodels/GINITable.py,sha256=jJj731XRHaBgJuDj4lgDkJgWfJe5SPfWzGMPCw3arBM,5753
|
227
|
+
validmind/tests/model_validation/statsmodels/JarqueBera.py,sha256=2TlYLc1-jfQfDGhDDaVJjaIa0HmLgsT_AtNgzkYcaBI,3407
|
228
|
+
validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py,sha256=cBksf5Esz_wkQu6lt5ePilVWqzhomfQdjFaDM4EMDHo,4416
|
229
|
+
validmind/tests/model_validation/statsmodels/LJungBox.py,sha256=-Lh6ewdLOdBw7QN9RaE4MYeibmwlrM1A1pECTuc90to,3315
|
230
|
+
validmind/tests/model_validation/statsmodels/Lilliefors.py,sha256=h1MdmcSfcdAzO7qx9tgVuSdkl-otDzFMzWh7PE3M78M,4048
|
235
231
|
validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=6HSzbV9oSPZg7olFtnpheTxAD7hFdPISbhOKtmU0QbY,6394
|
236
|
-
validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=
|
237
|
-
validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=
|
232
|
+
validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=pZS68FHseNpdjcRUts3Bg7gUnWOFg8owvtICZyYIFUI,5834
|
233
|
+
validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=Q9b7-h5QXB-qM0Oz4Y8dDRoYv0Jv20vyoWmrkWXt8hA,5644
|
238
234
|
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=-RU-HMcSWAZQKYAptVTDerkH03K2ruO-vco0DS8vSJM,6573
|
239
235
|
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=GfEOF5OyxQ2tMLhZutp9O4m9MzFl8xDH0IsIQBtPGTs,8321
|
240
|
-
validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=un-7t9pRN4RGv4HYyUH2gVCm7EsjSi7fiotOXEFwJXA,6467
|
241
|
-
validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=3QPYMVJg2EEAWhrh6Cj2jHiqORJpHVC3DfdRze2Vw8s,6276
|
242
236
|
validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=q30wFH7QRZKriVMXBmZVE2K30kjcb6zX4IVl1NHT2kA,7320
|
243
237
|
validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=i4jgUn3Q-GHHXQ3RzjMt5k-scafyNoUuedk_XsuDC5E,4343
|
244
|
-
validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256
|
245
|
-
validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=qECEzP1G1SfQA3EiBBCgDJxzMHgU5bWAIFH6hO59EbY,5436
|
238
|
+
validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=7cl9tn5799sctCzEHNWGa_QfVII_L6H5ZoMpxjUkjzc,4549
|
246
239
|
validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=hrWFViq7poX_G2-AwGffRQnwN9Vr42e4DfZKP-_gsRo,5044
|
247
|
-
validmind/tests/model_validation/statsmodels/
|
248
|
-
validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=TJdixri2vrrA4HUUpTYveoVzr7V9lcH6CJnPTLxSqms,3684
|
240
|
+
validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=56f5n9hgOkCqaWHJGV0YzLZZhxJ5a-rHTfN0YcPYmt0,3729
|
249
241
|
validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=p1ab5K553oxMYVNe3R53Rh4IOJ9G7EgKmjvZY7LO2Dg,6192
|
250
|
-
validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=
|
251
|
-
validmind/tests/model_validation/statsmodels/ZivotAndrewsArch.py,sha256=4QrZImKZYVLKrmUgjnBTldtIqXf8-tyz9CiNqMYtj_w,3291
|
242
|
+
validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=wN9ggwb_N-e2qi5YTVELb5kN72wfrX3-UNWfg6SRhJQ,3288
|
252
243
|
validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
253
244
|
validmind/tests/model_validation/statsmodels/statsutils.py,sha256=s1J7lHJ4kAcp_gGI0LAsaIFxbSqPrqXanxgtDI_Kig0,495
|
254
|
-
validmind/tests/prompt_validation/Bias.py,sha256=
|
255
|
-
validmind/tests/prompt_validation/Clarity.py,sha256=
|
256
|
-
validmind/tests/prompt_validation/Conciseness.py,sha256=
|
257
|
-
validmind/tests/prompt_validation/Delimitation.py,sha256=
|
258
|
-
validmind/tests/prompt_validation/NegativeInstruction.py,sha256=
|
259
|
-
validmind/tests/prompt_validation/Robustness.py,sha256=
|
260
|
-
validmind/tests/prompt_validation/Specificity.py,sha256=
|
245
|
+
validmind/tests/prompt_validation/Bias.py,sha256=h7fC0DiVlSxtciMIJOlS_65bwWuT4soONd7YFhIVHhY,7052
|
246
|
+
validmind/tests/prompt_validation/Clarity.py,sha256=TaVmv6pP3e-b-Nr5-tiMHoQgvGoVmDQbwa8HyabL3l0,6248
|
247
|
+
validmind/tests/prompt_validation/Conciseness.py,sha256=HoUtzMAYSzScLG3crxpg6yXETG_Wpjkpj1TQAAlAoQE,5996
|
248
|
+
validmind/tests/prompt_validation/Delimitation.py,sha256=eYTq6JyEs3LJ6hienklXB5yAEhBe6-BAeBq7op5andg,5514
|
249
|
+
validmind/tests/prompt_validation/NegativeInstruction.py,sha256=PeSvEN1-sp_BrPIknIPFsJqYoTeFqmK-yunlrUwys9o,6663
|
250
|
+
validmind/tests/prompt_validation/Robustness.py,sha256=k1C0HoOiddhNU88VARZMS40tM49Cg8LfT5D8RUtub8w,6829
|
251
|
+
validmind/tests/prompt_validation/Specificity.py,sha256=cHQmRlseosTQVi4sqMtfkS6P8j6z1LZur1_EkVLw8ck,6108
|
261
252
|
validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
262
|
-
validmind/tests/prompt_validation/ai_powered_test.py,sha256=
|
253
|
+
validmind/tests/prompt_validation/ai_powered_test.py,sha256=7TTeIR5GotQosm7oVT8Y3KnwPB3XkVT1Fzhckpr-SgE,1963
|
263
254
|
validmind/tests/test_providers.py,sha256=1tYn_sWNqifFpOp8eNvcVyJzxBjhHV5Py4FxO8opPZA,4944
|
264
255
|
validmind/unit_metrics/__init__.py,sha256=a7oV8YRC-O6dF7ePz4E8Fqrh4ax6AWT26Y996VPView,7084
|
265
256
|
validmind/unit_metrics/classification/sklearn/Accuracy.py,sha256=2Ra_OpKceY01h1dAFCqRFAwe--K2oVbCUiYjM5AH_nQ,480
|
@@ -267,7 +258,7 @@ validmind/unit_metrics/classification/sklearn/F1.py,sha256=Uiq5sPyNpALhApTkmLUhh
|
|
267
258
|
validmind/unit_metrics/classification/sklearn/Precision.py,sha256=8zO5VDZhfT8R2VFYiV-CzsZwhsTwVAKca4nhD-qALLw,458
|
268
259
|
validmind/unit_metrics/classification/sklearn/ROC_AUC.py,sha256=5-i1xhrLg7Ix4sk7pBKDBtlqBCNRD365LnTvsekSVYs,452
|
269
260
|
validmind/unit_metrics/classification/sklearn/Recall.py,sha256=0WG3A6K9M1UmbWQKoS_wwLfq-cXVDDTIA1ZpaJNyKp8,449
|
270
|
-
validmind/unit_metrics/composite.py,sha256=
|
261
|
+
validmind/unit_metrics/composite.py,sha256=2FRvPv028BvpisGJvyJ0RjS4P3upKB4iRfFn3DSXOBo,8005
|
271
262
|
validmind/unit_metrics/regression/GiniCoefficient.py,sha256=ebh1rOob8mEmQp0EpXcneAXjc4AIfm6O3Y0_mnTahKA,984
|
272
263
|
validmind/unit_metrics/regression/HuberLoss.py,sha256=JAUxKFpXp1NtQKEJMZlGgxDlk8pFT1tY3ZcxNQPDhHM,680
|
273
264
|
validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=DRHuFH3DqDMy56tzkN8ETwt36FCu1m-nGxK0OJCPMDk,981
|
@@ -279,28 +270,28 @@ validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FB
|
|
279
270
|
validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
|
280
271
|
validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
|
281
272
|
validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
|
282
|
-
validmind/utils.py,sha256=
|
273
|
+
validmind/utils.py,sha256=7eK4jGTdGGnHIKGuppmB6SHh8sdtFRRkN6QRVzwnw68,14731
|
283
274
|
validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
|
284
275
|
validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
|
285
|
-
validmind/vm_models/dataset/dataset.py,sha256=
|
286
|
-
validmind/vm_models/dataset/utils.py,sha256=
|
276
|
+
validmind/vm_models/dataset/dataset.py,sha256=YP6l5sq7SJNExWK3RvkxeCBTLj4z2GkBsmv4KxfBS1I,22753
|
277
|
+
validmind/vm_models/dataset/utils.py,sha256=ygT6hUw0KklKCboo7tqLxh_hf-dEiaccVyCpR9DCPF8,5177
|
287
278
|
validmind/vm_models/figure.py,sha256=iSrvPcCG5sQrMkX1Fh6c5utRzaroh3bc6IlnGDOK_Eg,6651
|
288
|
-
validmind/vm_models/model.py,sha256=
|
289
|
-
validmind/vm_models/test/metric.py,sha256=
|
279
|
+
validmind/vm_models/model.py,sha256=b-UL73EWOpj-X5aQbHQ3HLkONHCH9hYwUlKxVwPC6gI,6088
|
280
|
+
validmind/vm_models/test/metric.py,sha256=nq3htPGW51D_HZCk0rDovZud6DeTUsmN0voW-zCs4c0,3230
|
290
281
|
validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
|
291
282
|
validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
|
292
283
|
validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
|
293
|
-
validmind/vm_models/test/result_wrapper.py,sha256=
|
294
|
-
validmind/vm_models/test/test.py,sha256=
|
295
|
-
validmind/vm_models/test/threshold_test.py,sha256=
|
284
|
+
validmind/vm_models/test/result_wrapper.py,sha256=wBCkHg9a5Vrys98EjJG7XwWMU-0L1BkK3aufTCn9KxY,17629
|
285
|
+
validmind/vm_models/test/test.py,sha256=2arTeCZXN3ogc2ONN_RII1bw8FOdkFRwLXx5vOtoB9o,3239
|
286
|
+
validmind/vm_models/test/threshold_test.py,sha256=uN_jgnHE1MGIuL7KVvGIwmOKTIaQwTn7FvydWKh4St8,3677
|
296
287
|
validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
|
297
288
|
validmind/vm_models/test_context.py,sha256=AN7-atBgOcD04MLVitCFJYooxF6_iNmvI2H4nkv32iw,9035
|
298
|
-
validmind/vm_models/test_suite/runner.py,sha256=
|
299
|
-
validmind/vm_models/test_suite/summary.py,sha256=
|
300
|
-
validmind/vm_models/test_suite/test.py,sha256=
|
289
|
+
validmind/vm_models/test_suite/runner.py,sha256=wgjyqx2CU4bjX3fZKmzJP7gb5GFooGvsrVt93Ko8g1Y,6956
|
290
|
+
validmind/vm_models/test_suite/summary.py,sha256=co-xJJMUYGb7cOiVmw0i8vpZlfiMqrWjaCOmHKMAbcE,4686
|
291
|
+
validmind/vm_models/test_suite/test.py,sha256=_GfbK36l98SjzgVcucmp0OKBJKqMW3neO7SqJ3EWeps,5049
|
301
292
|
validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
|
302
|
-
validmind-2.
|
303
|
-
validmind-2.
|
304
|
-
validmind-2.
|
305
|
-
validmind-2.
|
306
|
-
validmind-2.
|
293
|
+
validmind-2.3.1.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
|
294
|
+
validmind-2.3.1.dist-info/METADATA,sha256=GxV1nkn6sX3Cl-vFqqcxhy8W_3YjVrPhB-tlSsnfgbo,3911
|
295
|
+
validmind-2.3.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
296
|
+
validmind-2.3.1.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
|
297
|
+
validmind-2.3.1.dist-info/RECORD,,
|
@@ -1,114 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
from dataclasses import dataclass
|
6
|
-
|
7
|
-
import plotly.express as px
|
8
|
-
import plotly.graph_objects as go
|
9
|
-
|
10
|
-
from validmind.vm_models import Figure, Metric
|
11
|
-
|
12
|
-
|
13
|
-
@dataclass
|
14
|
-
class DefaultRatesbyRiskBandPlot(Metric):
|
15
|
-
"""
|
16
|
-
Generates a bar plot showcasing the distribution of default rates across different risk bands in a dataset.
|
17
|
-
|
18
|
-
**Purpose**:
|
19
|
-
The Default Rates by Risk Band Plot metric aims to quantify and visually represent default rates across varying
|
20
|
-
risk bands within a specific dataset. This information is essential in evaluating the functionality of credit risk
|
21
|
-
models, by providing a comprehensive view of default rates across a range of risk categories.
|
22
|
-
|
23
|
-
**Test Mechanism**:
|
24
|
-
The applied test approach involves a calculated bar plot. This plot is derived by initially determining the count
|
25
|
-
of accounts in every risk band and then converting these count values into percentages by dividing by the total
|
26
|
-
quantity of accounts. The percentages are then depicted as a bar plot, clearly showcasing the proportion of total
|
27
|
-
accounts associated with each risk band. Hence, the plot delivers a summarized depiction of default risk across
|
28
|
-
various bands. The 'Dark24' color sequence is used in the plot to ensure each risk band is easily distinguishable.
|
29
|
-
|
30
|
-
**Signs of High Risk**:
|
31
|
-
- High risk may be indicated by a significantly large percentage of accounts associated with high-risk bands.
|
32
|
-
- High exposure to potential default risk in the dataset indicates potential weaknesses in the model's capability
|
33
|
-
to effectively manage or predict credit risk.
|
34
|
-
|
35
|
-
**Strengths**:
|
36
|
-
- The metric's primary strengths lie in its simplicity and visual impact.
|
37
|
-
- The graphical display of default rates allows for a clear understanding of the spread of default risk across risk
|
38
|
-
bands.
|
39
|
-
- Using a bar chart simplifies the comparison between various risk bands and can highlight potential spots of high
|
40
|
-
risk.
|
41
|
-
- This approach assists in identifying any numerical imbalances or anomalies, thus facilitating the task of
|
42
|
-
evaluating and contrasting performance across various credit risk models.
|
43
|
-
|
44
|
-
**Limitations**:
|
45
|
-
- The key constraint of this metric is that it cannot provide any insights as to why certain risk bands might have
|
46
|
-
higher default rates than others.
|
47
|
-
- If there is a large imbalance in the number of accounts across risk bands, the visual representation might not
|
48
|
-
accurately depict the true distribution of risk.
|
49
|
-
- Other factors contributing to credit risk beyond the risk bands are not considered.
|
50
|
-
- The metric's reliance on a visual format might potentially lead to misinterpretation of results, as graphical
|
51
|
-
depictions can sometimes be misleading.
|
52
|
-
"""
|
53
|
-
|
54
|
-
name = "default_rates_by_risk_band_plot"
|
55
|
-
required_context = ["dataset"]
|
56
|
-
default_params = {"title": "Percentage of Total Accounts by Risk Band"}
|
57
|
-
metadata = {
|
58
|
-
"task_types": ["classification"],
|
59
|
-
"tags": ["tabular_data", "visualization", "credit_risk"],
|
60
|
-
}
|
61
|
-
|
62
|
-
@staticmethod
|
63
|
-
def plot_band_percentages(df, risk_band_column, title):
|
64
|
-
# Calculate the count of accounts in each risk band
|
65
|
-
risk_band_counts = df[risk_band_column].value_counts().sort_index()
|
66
|
-
|
67
|
-
# Convert to percentage
|
68
|
-
total_accounts = len(df)
|
69
|
-
risk_band_percentages = (risk_band_counts / total_accounts) * 100
|
70
|
-
|
71
|
-
# Use 'Dark24' color sequence for more distinguishable colors
|
72
|
-
colors = px.colors.qualitative.Dark24[: len(risk_band_percentages)]
|
73
|
-
|
74
|
-
# Create the bar plot
|
75
|
-
fig = go.Figure(
|
76
|
-
data=[
|
77
|
-
go.Bar(
|
78
|
-
x=risk_band_percentages.index,
|
79
|
-
y=risk_band_percentages.values,
|
80
|
-
marker_color=colors,
|
81
|
-
)
|
82
|
-
]
|
83
|
-
)
|
84
|
-
|
85
|
-
# Customize the plot
|
86
|
-
fig.update_layout(
|
87
|
-
title_text=title,
|
88
|
-
xaxis_title="Risk Band",
|
89
|
-
yaxis_title="Percentage of Total Accounts",
|
90
|
-
)
|
91
|
-
|
92
|
-
return fig, risk_band_percentages
|
93
|
-
|
94
|
-
def run(self):
|
95
|
-
df = self.inputs.dataset
|
96
|
-
risk_band_column = self.params["risk_band_column"]
|
97
|
-
title = self.params["title"]
|
98
|
-
|
99
|
-
fig, risk_band_percentages = self.plot_band_percentages(
|
100
|
-
df, risk_band_column, title
|
101
|
-
)
|
102
|
-
|
103
|
-
return self.cache_results(
|
104
|
-
metric_value={
|
105
|
-
"band_percentages": risk_band_percentages.to_dict(),
|
106
|
-
},
|
107
|
-
figures=[
|
108
|
-
Figure(
|
109
|
-
for_object=self,
|
110
|
-
key="band_percentages",
|
111
|
-
figure=fig,
|
112
|
-
)
|
113
|
-
],
|
114
|
-
)
|