validmind 2.1.1__py3-none-any.whl → 2.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (110) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai.py +3 -3
  3. validmind/api_client.py +2 -3
  4. validmind/client.py +68 -25
  5. validmind/datasets/llm/rag/__init__.py +11 -0
  6. validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv +30 -0
  7. validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv +30 -0
  8. validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv +53 -0
  9. validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv +53 -0
  10. validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv +53 -0
  11. validmind/datasets/llm/rag/rfp.py +41 -0
  12. validmind/html_templates/__init__.py +0 -0
  13. validmind/html_templates/content_blocks.py +89 -14
  14. validmind/models/__init__.py +7 -4
  15. validmind/models/foundation.py +8 -34
  16. validmind/models/function.py +51 -0
  17. validmind/models/huggingface.py +16 -46
  18. validmind/models/metadata.py +42 -0
  19. validmind/models/pipeline.py +66 -0
  20. validmind/models/pytorch.py +8 -42
  21. validmind/models/r_model.py +33 -82
  22. validmind/models/sklearn.py +39 -38
  23. validmind/template.py +8 -26
  24. validmind/tests/__init__.py +43 -20
  25. validmind/tests/data_validation/ANOVAOneWayTable.py +1 -1
  26. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +1 -1
  27. validmind/tests/data_validation/DescriptiveStatistics.py +2 -4
  28. validmind/tests/data_validation/Duplicates.py +1 -1
  29. validmind/tests/data_validation/IsolationForestOutliers.py +2 -2
  30. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +1 -1
  31. validmind/tests/data_validation/TargetRateBarPlots.py +1 -1
  32. validmind/tests/data_validation/nlp/LanguageDetection.py +59 -0
  33. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +48 -0
  34. validmind/tests/data_validation/nlp/Punctuations.py +11 -12
  35. validmind/tests/data_validation/nlp/Sentiment.py +57 -0
  36. validmind/tests/data_validation/nlp/Toxicity.py +45 -0
  37. validmind/tests/decorator.py +2 -2
  38. validmind/tests/model_validation/BertScore.py +100 -98
  39. validmind/tests/model_validation/BleuScore.py +93 -64
  40. validmind/tests/model_validation/ContextualRecall.py +74 -91
  41. validmind/tests/model_validation/MeteorScore.py +86 -74
  42. validmind/tests/model_validation/RegardScore.py +103 -121
  43. validmind/tests/model_validation/RougeScore.py +118 -0
  44. validmind/tests/model_validation/TokenDisparity.py +84 -121
  45. validmind/tests/model_validation/ToxicityScore.py +109 -123
  46. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +96 -0
  47. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +71 -0
  48. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +92 -0
  49. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +69 -0
  50. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +78 -0
  51. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +35 -23
  52. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +3 -0
  53. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +7 -1
  54. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +3 -0
  55. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +3 -0
  56. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +99 -0
  57. validmind/tests/model_validation/ragas/AnswerCorrectness.py +131 -0
  58. validmind/tests/model_validation/ragas/AnswerRelevance.py +134 -0
  59. validmind/tests/model_validation/ragas/AnswerSimilarity.py +119 -0
  60. validmind/tests/model_validation/ragas/AspectCritique.py +167 -0
  61. validmind/tests/model_validation/ragas/ContextEntityRecall.py +133 -0
  62. validmind/tests/model_validation/ragas/ContextPrecision.py +123 -0
  63. validmind/tests/model_validation/ragas/ContextRecall.py +123 -0
  64. validmind/tests/model_validation/ragas/ContextRelevancy.py +114 -0
  65. validmind/tests/model_validation/ragas/Faithfulness.py +119 -0
  66. validmind/tests/model_validation/ragas/utils.py +66 -0
  67. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +3 -7
  68. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +8 -9
  69. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +5 -10
  70. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +3 -2
  71. validmind/tests/model_validation/sklearn/ROCCurve.py +2 -1
  72. validmind/tests/model_validation/sklearn/RegressionR2Square.py +1 -1
  73. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +2 -3
  74. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -11
  75. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +3 -4
  76. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +1 -1
  77. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +1 -1
  78. validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py +1 -1
  79. validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py +1 -1
  80. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +1 -1
  81. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +1 -1
  82. validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py +1 -1
  83. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +5 -6
  84. validmind/unit_metrics/__init__.py +26 -49
  85. validmind/unit_metrics/composite.py +5 -1
  86. validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py +1 -1
  87. validmind/utils.py +56 -6
  88. validmind/vm_models/__init__.py +1 -1
  89. validmind/vm_models/dataset/__init__.py +7 -0
  90. validmind/vm_models/dataset/dataset.py +558 -0
  91. validmind/vm_models/dataset/utils.py +146 -0
  92. validmind/vm_models/model.py +97 -72
  93. validmind/vm_models/test/result_wrapper.py +61 -24
  94. validmind/vm_models/test_context.py +1 -1
  95. validmind/vm_models/test_suite/summary.py +3 -4
  96. {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/METADATA +5 -3
  97. {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/RECORD +100 -75
  98. validmind/models/catboost.py +0 -33
  99. validmind/models/statsmodels.py +0 -50
  100. validmind/models/xgboost.py +0 -30
  101. validmind/tests/model_validation/BertScoreAggregate.py +0 -90
  102. validmind/tests/model_validation/RegardHistogram.py +0 -148
  103. validmind/tests/model_validation/RougeMetrics.py +0 -147
  104. validmind/tests/model_validation/RougeMetricsAggregate.py +0 -133
  105. validmind/tests/model_validation/SelfCheckNLIScore.py +0 -112
  106. validmind/tests/model_validation/ToxicityHistogram.py +0 -136
  107. validmind/vm_models/dataset.py +0 -1303
  108. {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/LICENSE +0 -0
  109. {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/WHEEL +0 -0
  110. {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/entry_points.txt +0 -0
@@ -1,8 +1,8 @@
1
1
  validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
2
- validmind/__version__.py,sha256=zPJIgPGcoSNiD0qme18OnYJYE3A9VVytlhO-V5DaAW0,22
3
- validmind/ai.py,sha256=P3cO8FVj_nEhMj7FA5OalMah-lCptCjFC8Sr31fsrHo,6403
4
- validmind/api_client.py,sha256=aZAwgg7U5IwfX__rmhRdAM6zD5skifuEUV4vvyoWp-U,15432
5
- validmind/client.py,sha256=C_8KmuiteezpIfvc-D5lnkm8rQRlS70_iMVc9RMltx4,16818
2
+ validmind/__version__.py,sha256=toAYzE_ok1SiBE0AqAVdW0O8YCXCwcx0w4JATYQuJOg,22
3
+ validmind/ai.py,sha256=-BMP-IEVLBq84k6Y0PvROi3BZOkQNi_0CmYFciv8khY,6388
4
+ validmind/api_client.py,sha256=Uf8SJ9VjoJAVEfCMQJhAoRkB-HssXaVeUZyWcoTr9hk,15440
5
+ validmind/client.py,sha256=S_FozHlMJBgF8IQJES27LeFoYcoCcGZ6dkxE8adyIRQ,18607
6
6
  validmind/client_config.py,sha256=58L6s6-9vFWC9vkSs_98CjV1YWmlksdhblJtPQxQsAk,1611
7
7
  validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
8
8
  validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
@@ -14,6 +14,13 @@ validmind/datasets/cluster/digits.py,sha256=E600pX6QPrqndfr73kwZ1sTNk0hC5kNj4Fhs
14
14
  validmind/datasets/credit_risk/__init__.py,sha256=5y_NKgWbCfPSw34dYEcgu9y2hici2pxidQqkm-emofs,270
15
15
  validmind/datasets/credit_risk/datasets/lending_club_loan_data_2007_2014_clean.csv.gz,sha256=bAgdfmUxjYOdZMPvoHtKr_GLoXNAX04KUTfjn2L62eE,5493810
16
16
  validmind/datasets/credit_risk/lending_club.py,sha256=oscdu1zmDytSU6dJwinl97si4LDdzMBTFUgiJialRmE,11403
17
+ validmind/datasets/llm/rag/__init__.py,sha256=v8BygB6rGECoMIXv2_I1lVUAfPJ_gVo0GgVKhzk60h4,264
18
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv,sha256=8Ae8TD5Yh6rQ67HMCu7iKipj5tyOOhzylZqLppAeKzs,24095
19
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv,sha256=PV7eD-h_KWwLzboCPCAEg2LD4XMVO3tS1cWpu18V6Ok,24520
20
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv,sha256=BEqBELuSjn5JXV3aGrriTBC4mZ--pH9iEWRIzDgu12Y,24417
21
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv,sha256=HFaf8oJmEYwHht-QM_Um4X7lLpWcP2TswcwjXp7fsPw,24854
22
+ validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv,sha256=jJuRVsDbtv3ky8mJVHzpK_4bSlnIZH-hDW6a8DGGvfY,24551
23
+ validmind/datasets/llm/rag/rfp.py,sha256=mlx4I1ipMoPplZOqRPza6XEN5D4FE2xc6_SSuGOkgqk,1234
17
24
  validmind/datasets/nlp/__init__.py,sha256=lu2-SGOSECgrxhDtHdlh_FsbpsFtuZ4DbLSL1sww5nc,323
18
25
  validmind/datasets/nlp/cnn_dailymail.py,sha256=9gAHFWQhSJJ2JF_zarc2oLErZwPtRyfvXV4molhVzXM,3471
19
26
  validmind/datasets/nlp/datasets/Covid_19.csv,sha256=cwAJHgek3JWUhtZQIiC9-wRWycxbiod6nyZikf09iKE,11545066
@@ -49,19 +56,20 @@ validmind/datasets/regression/models/fred_loan_rates_model_3.pkl,sha256=IogZPcUQ
49
56
  validmind/datasets/regression/models/fred_loan_rates_model_4.pkl,sha256=cSxhpcrI4hCbxCwZwE2-nr7KObbWpDii3NzpECoXmmM,48292
50
57
  validmind/datasets/regression/models/fred_loan_rates_model_5.pkl,sha256=FkNLHq9xkPMbYks_vyMjFL371mw9SQYbP1iX9lY4Ljo,60343
51
58
  validmind/errors.py,sha256=jHj__AKOMiwIb7qSs2mxu3LSi0lyzFwSAt1gy2lpDaE,7993
52
- validmind/html_templates/content_blocks.py,sha256=M5BGGXT90kqUrxynkB4DPC4BQziLWglB2oK2En6KP9s,1607
59
+ validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
+ validmind/html_templates/content_blocks.py,sha256=AHQ5MlhR1JYldel7soo5ztpTJJ5-kYtyKPBmh-vwxuI,3997
53
61
  validmind/input_registry.py,sha256=zexO3x-vncaoWvQ6VfkvgDLn6x72e2BNel_jCbrVHSE,793
54
62
  validmind/logging.py,sha256=Ui67RYoB1qbuHm_KX1aGj_8DoK_ljjUDGG6a1XJ4yoY,5041
55
- validmind/models/__init__.py,sha256=SWfy_JTnifVCbl04SZg3vwSJpRX_kWtb5wQlSIhJ9T8,623
56
- validmind/models/catboost.py,sha256=xw3m2iE4k4TL8FLi-hQy5ylIGG7ta4Q58bcQ_04BJbw,1036
57
- validmind/models/foundation.py,sha256=pZVmIC1lpszQLluEOtnuvdVRoOf-j6XsjRfBZQXVITc,2269
58
- validmind/models/huggingface.py,sha256=MjHVm4X8_9_5Qos4UyNyLokN9xi3I4Ebl4ML90Fi_YE,2881
59
- validmind/models/pytorch.py,sha256=sFcfH92nLe0WVBEUuovZxuGIy_PTp1t0fWMpBrej_6U,2602
60
- validmind/models/r_model.py,sha256=GzlVeJgPNwtzcbyThjGyZ4T3vBJFOYDSh0aqRMsIDOQ,8344
61
- validmind/models/sklearn.py,sha256=pSg3eSQovxSD2cqcUDwQOXGseg0Bicsn_FXa9_URekE,2405
62
- validmind/models/statsmodels.py,sha256=_8GYhO21-rs3QUE_YOFi1eGMMBIr-weJmxmCrw1HZxQ,1455
63
- validmind/models/xgboost.py,sha256=joL0uyhE4bJfINHh-dMtPhQ5d1MfWfRMVD77XWmAUnY,951
64
- validmind/template.py,sha256=6k9IcnHwS5Dd4KQrUIpjQ83TZOI3YAhJML7GEB22ZtI,7907
63
+ validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
64
+ validmind/models/foundation.py,sha256=LSUdpnBYlPiOUVrTyofStPdoR6y0_nqJoM9TiYT1MRo,1758
65
+ validmind/models/function.py,sha256=loZoheqGyTvHze1XROEX1aqXgM08kPMr67X1nutaaeU,1629
66
+ validmind/models/huggingface.py,sha256=oDB32iwP_FQ_ZtZgAC5iBPG4suPaSF-J6317TM8Ob2g,2304
67
+ validmind/models/metadata.py,sha256=V5b91J_M3vzx6JGQJH6Taxpf7DT3TPTwkDwLkLRrWn8,1665
68
+ validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
69
+ validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
70
+ validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
71
+ validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
72
+ validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
65
73
  validmind/test_suites/__init__.py,sha256=u_qMwPxpqgIkT7UOuE1qb0qDcNk0tXAVrUg1kGMqW2Q,7259
66
74
  validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
67
75
  validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
@@ -75,9 +83,9 @@ validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S
75
83
  validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
76
84
  validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
77
85
  validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
78
- validmind/tests/__init__.py,sha256=5V86X-H_z2Dx6gxD2-VnOBjE-pGqXesrm8wkBrgv3YE,15290
86
+ validmind/tests/__init__.py,sha256=LXWlMm3AvZk_b7DLjKMsF6pNncBaoG0RkYS4oLhv01I,15913
79
87
  validmind/tests/data_validation/ACFandPACFPlot.py,sha256=__JowNXtc511g_g8VXc0IX7j6qBE5J_v7IoWUKmj_E8,4745
80
- validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=PEHFVJnFAK6Oy5RW1wJThEzri92THRgwQ45f6RXMGMI,6026
88
+ validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
81
89
  validmind/tests/data_validation/AutoAR.py,sha256=kulDh8i7p7CjenVvXS54kfZe53M-eXzQ7aHZylnA06M,6676
82
90
  validmind/tests/data_validation/AutoMA.py,sha256=F0Dq1eAnMtM_agQ4QgzeK7bwSb2Am_2V3-ugjFJzY0A,7119
83
91
  validmind/tests/data_validation/AutoSeasonality.py,sha256=GcCpJgXYA11cEnFl6aSpE5N7bEx41An5Ir3MQjJgl2Q,8085
@@ -85,13 +93,13 @@ validmind/tests/data_validation/AutoStationarity.py,sha256=cDZB8UxoDVq8zj3hNMkHm
85
93
  validmind/tests/data_validation/BivariateFeaturesBarPlots.py,sha256=CccBHTjsL2swmGoxpcCtpY_264YwFCO-rZOSqcaMJ_8,5974
86
94
  validmind/tests/data_validation/BivariateHistograms.py,sha256=2GWca2OynF1FVYkDE8yTt_qqcdJeG2we21TbxPcLcx4,5018
87
95
  validmind/tests/data_validation/BivariateScatterPlots.py,sha256=5JuSs7I1JZaUpXwhGV9u_biMq4xJEUr3CHfh2JXv9JQ,5208
88
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=ss6Ewgigch0Ck25Bn-cwNviWup9OOGH8KgDpfT8DiL4,6048
96
+ validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=qKzMADz_jnEMrNx3BhLp8e1CVtD5pSnkLZptMw0ajpg,6041
89
97
  validmind/tests/data_validation/ClassImbalance.py,sha256=TkI67YUu1DdnRxup-sTo3h6aNS-2ww3LPFxMHnOwAHA,6922
90
98
  validmind/tests/data_validation/DatasetDescription.py,sha256=2ez3MyPhkgvJVXDctADQAayltZzfJAiP5Psv6XgxVuU,11401
91
99
  validmind/tests/data_validation/DatasetSplit.py,sha256=JwhIIkxbTwsHAGyJfe1frVYybnd4290DoL6TXO_1Bbs,5127
92
100
  validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py,sha256=lrVeFrw4rRND7sO2kpv0RHxks9xHQBqkNfz-IN0xw_0,4861
93
- validmind/tests/data_validation/DescriptiveStatistics.py,sha256=oVjFO-mR5sMQwzGFrjN5UP9jugNy0nSRtNwPbcGthGk,6411
94
- validmind/tests/data_validation/Duplicates.py,sha256=rDLxdNLGqfL-Yon04b8uFESazKtn7hqxsegvPfoRHBE,5639
101
+ validmind/tests/data_validation/DescriptiveStatistics.py,sha256=bQIrHirCrsojciBLeHp5ibAeCpQrMs6wUQ5lW6sWOjQ,6373
102
+ validmind/tests/data_validation/Duplicates.py,sha256=la6O0Mf2cctT91C3M3lscJ7Jh9u17mkviRDQZ6t9FtM,5632
95
103
  validmind/tests/data_validation/EngleGrangerCoint.py,sha256=Rz8BaptMo79JS8XGrnCGnrMmZo994HBmVGKJCvBqfH0,5580
96
104
  validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=wfYhyK-hhUHGxfWDAUqoorY2EXbDeLCbroPMi14vkzs,5036
97
105
  validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=JAxx9JUmplFTcQtaFaCk9JCDCMLkDABMhSgj65ARAUc,5707
@@ -99,8 +107,8 @@ validmind/tests/data_validation/HighCardinality.py,sha256=4cjBNoWYUHVhl3TuRLrBa6
99
107
  validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=0W_nai0F169rH-rsQynEkozTUrFEnTkS0RaFjL-zodA,5582
100
108
  validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=_O9GXF1hCafLDX6_PjRj7TubRdgs39_N4qk9F6-SHBM,6350
101
109
  validmind/tests/data_validation/IQROutliersTable.py,sha256=GQ0rfkbnfaLIG-hwm-2_Gl4kHqljxwSZCcDDKgNlnHU,5888
102
- validmind/tests/data_validation/IsolationForestOutliers.py,sha256=JmONgpBoVmqUMGMy7-1JmraAs7tecRPmUeadFK6KyOg,4872
103
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=1xRdB-nP8DSJwi3xsUVxqZZZ2e46H0GYqn3pwKbtuok,6055
110
+ validmind/tests/data_validation/IsolationForestOutliers.py,sha256=DZce1C8eVVnw4bx7ZHI9RlmyEik2tfucUYVtGzspEMY,4858
111
+ validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=iAbdO4AcYoB4dFnoREkR6NewJkgx6ISZVf-8iHAvFgY,6048
104
112
  validmind/tests/data_validation/MissingValues.py,sha256=gvLTy5DiBqp0VemOhVEUq3BsrJ3FTIIsK_CPxKfjW6A,4292
105
113
  validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=bTfMCab8gK0VXF1EZ18pTguZkFdfo1ZHhz2hmkFAyG4,6226
106
114
  validmind/tests/data_validation/MissingValuesRisk.py,sha256=GzsGHFL-qMQxuqdu62SF4O5r8UDoUN5xv_b8drR-Afc,4110
@@ -116,7 +124,7 @@ validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=EM1m1v9V5N6
116
124
  validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=aO2xr-a3_76nNyGC98I47ena3kzeUrbrOvQpvJUkHvU,4211
117
125
  validmind/tests/data_validation/TabularDescriptionTables.py,sha256=Hd78V0CsRR0zbA97GFHV4DuffaT-85CI3wyF3ptdXLk,9281
118
126
  validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=CSdQJxDht6QJRMGXoedP_1MVoem-whlcwxGGBaP3inc,4170
119
- validmind/tests/data_validation/TargetRateBarPlots.py,sha256=f_EKTvLIIkZyc4_46VCHJssFVELEmjYjwdBBvEQYIWI,5744
127
+ validmind/tests/data_validation/TargetRateBarPlots.py,sha256=7BghG2XtWw2ptmNgT-wEWb6gWwUgWIlp-LV5HtQENbM,5737
120
128
  validmind/tests/data_validation/TimeSeriesFrequency.py,sha256=b6lfIzGjiMUho1dhBFfgWZf6EM8AhYdFojWVbgEE4F4,7243
121
129
  validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=VDf31cBfaJ9Bfju5CSdfCHMoJtOxGg-BLZdK7W-UsDw,4188
122
130
  validmind/tests/data_validation/TimeSeriesLinePlot.py,sha256=_HQfgfY_ZmT1S2SSF7gJ7RmNoKjGKQ9_dDaxVHESHtI,4173
@@ -129,39 +137,54 @@ validmind/tests/data_validation/WOEBinTable.py,sha256=2Om0eUyWvi1kAZF4z28n9EfEHo
129
137
  validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
130
138
  validmind/tests/data_validation/nlp/CommonWords.py,sha256=vrURXSTcfuPKDmcUJoCBuDPvu58P_-LbaiRDR0V2GCI,4204
131
139
  validmind/tests/data_validation/nlp/Hashtags.py,sha256=CVFvv6hTrB4Mb-b9WqHK1w1GUVs8J8gIrYP2v5OqPOo,4368
140
+ validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=baexhoBN7Bj58_959KfcBBCNxgnbOADokXj-oR2Hrfc,2077
132
141
  validmind/tests/data_validation/nlp/Mentions.py,sha256=4nhJQhZoOEPPjw00tmTmEzUP1lSGL6lHdyVwISBkujA,4673
133
- validmind/tests/data_validation/nlp/Punctuations.py,sha256=5WI3Uu9EpdJ2FWBY2qBXRn6Nf4sldis0huq9QVbDaJ4,3867
142
+ validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=GWgQzeL3WplOeBRF0uKZJEnB6eKwActTF-LpbW2sAls,1655
143
+ validmind/tests/data_validation/nlp/Punctuations.py,sha256=YFA6BqRonCG9q1rAis-k1ZiniIc-SZtnzDJwe_K3CUE,3917
144
+ validmind/tests/data_validation/nlp/Sentiment.py,sha256=1m3l0Xfg0vlUlDtqBmG8BMQztZmeLlw89GRIjj3XYGg,1819
134
145
  validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgUoN4JoBK3750hNByJ5FA,6131
135
146
  validmind/tests/data_validation/nlp/TextDescription.py,sha256=27u4xpFX-FYuMcDVRkw3p1ajcCzd5TgaVkPIqOi8GJc,8718
147
+ validmind/tests/data_validation/nlp/Toxicity.py,sha256=M_ksbd-R8AQjEqhniUETn3iC7zwSbf3xUnwh8OhgXhE,1514
136
148
  validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
- validmind/tests/decorator.py,sha256=d08RohEbcWSzUJvNukmRPD9ajTr_Xcpzgc1LQqvzeRY,9319
138
- validmind/tests/model_validation/BertScore.py,sha256=IcYrorBjpm65Zhg7nwQpYTpmow9QZeW5EOB9wc4IQP0,4551
139
- validmind/tests/model_validation/BertScoreAggregate.py,sha256=UVKZdQ0a0CDRLvCm5OkSw-ERnEoboJAgAWf3s70QKLU,3772
140
- validmind/tests/model_validation/BleuScore.py,sha256=-EVViGcu40ZW6g8v4DTlE1K5q7XoCRuoagvsEgLBlXA,3839
149
+ validmind/tests/decorator.py,sha256=xsGXNWuZh8VYWLUiLyZZTi2nwPHL_IchzPSvvyPwAws,9360
150
+ validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
151
+ validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
141
152
  validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
142
- validmind/tests/model_validation/ContextualRecall.py,sha256=wYyjGu8wMdFfS8y59CB8XxWX2Yblh4GI2qmm1H14HpM,4792
153
+ validmind/tests/model_validation/ContextualRecall.py,sha256=wzLjaliEG441qXvaonchJFr5pHXuPI9pOnlfo59xEAE,4976
143
154
  validmind/tests/model_validation/FeaturesAUC.py,sha256=aJucUD5u9VxnLpE3klr49VvyvtqT5QGhYE5VNT4hE44,4657
144
- validmind/tests/model_validation/MeteorScore.py,sha256=Ym8jaioq6qKlnvltYyHNZ1yDymV7VMGLqn5M-X3tsgQ,4387
155
+ validmind/tests/model_validation/MeteorScore.py,sha256=3YtSjdzxraFYmam03HtOhjayXScFdS5QR_9V4gD-lLI,5010
145
156
  validmind/tests/model_validation/ModelMetadata.py,sha256=F9ctmlIxngkHgOlggRl0WFLilh46SlM3vYfY9zkhtYk,3733
146
- validmind/tests/model_validation/RegardHistogram.py,sha256=zkllYyWi18My7s-dq4aNPEUfDF3Ike5ma9QyQXxiep8,6151
147
- validmind/tests/model_validation/RegardScore.py,sha256=3N_QcE6zfn1Oi_FxjyGYxseu1mu8mZovQTaUZTeb3As,6172
157
+ validmind/tests/model_validation/RegardScore.py,sha256=EuR1pAgVcn99m5eWagxGgdOCHDBkB2NIzyGE9ly73z4,5206
148
158
  validmind/tests/model_validation/RegressionResidualsPlot.py,sha256=EQzJn9wH_1pztHr2JI26Um3E9KzHmu6o76o4ffbXZj4,5025
149
- validmind/tests/model_validation/RougeMetrics.py,sha256=XeenuungQUquTDqpLx34XwIqmc7_uO5MoQyOCahDCEo,5793
150
- validmind/tests/model_validation/RougeMetricsAggregate.py,sha256=A3RwyCZ_btNpEsIM-9p5wg529C7lVrMFOKHbHkaZXgI,5204
151
- validmind/tests/model_validation/SelfCheckNLIScore.py,sha256=dE7X22unmCGwg5E0Fh5zo3R6VhNBX83tQNyEp6wmnzc,5477
152
- validmind/tests/model_validation/TokenDisparity.py,sha256=SnJC9mGywLt0HDxDge83uVJ-0z8qybb7OoedUiaTncc,5456
153
- validmind/tests/model_validation/ToxicityHistogram.py,sha256=V1-SkHqp3-JlLV9c4pO-FulvTSwtThQIrOlQc6gDVSc,5099
154
- validmind/tests/model_validation/ToxicityScore.py,sha256=IWzFMisP7BiM2Tuya4RJkdAbfvHbfsbVunBK8Dgfl20,5562
159
+ validmind/tests/model_validation/RougeScore.py,sha256=1yr09JH1kGJKFL29lmXvEm1Dp482Sjxn0lK6UJfCQ0s,5576
160
+ validmind/tests/model_validation/TokenDisparity.py,sha256=EZlpFQH6qRWedjTQT5o4u-OIdgj1iKK-JB8GEQQlxoA,4394
161
+ validmind/tests/model_validation/ToxicityScore.py,sha256=nFDHU1Z8mGpJrdKE6sWxo9nOqqzne1JsYIiNFyn_gYA,5299
155
162
  validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
163
  validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=8V2mE_V3S3cIBk29MB0xPqgla1mxiGJcXZ1m99ds3ck,3552
164
+ validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=N7HakxwU2XrLzsLrS0uyg_m6KOyjuS6rEhinZkXsU28,4741
157
165
  validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=B3quw4ZCWVyhDBHbVp637JoVTpSAROJfUwY-ECLOTAo,3459
166
+ validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=CGO5zKetkqt51ERDfiqDPVcjM2tounEwsfN5gawt4GE,3336
158
167
  validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=hLOcJ3lGigyA2VYAQunKB8dkBzh5TORFawg8TZIlG94,4247
159
168
  validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=HxXrkp6OKfGgzuRKWzhAGXYAI8VjYIpLWg62nXHOLVw,4342
160
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=L8nx-ihORWr9sAPLXcUwzgek9wfauQLaQkO4fCEtAMc,4185
161
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=qXqGaK8OVcP6h_iEZOf_-5XtbOGpiU00RyI535deAm0,3907
162
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=N20bQgBP0AUt3EASZHofQUWbE3N5ix04-r6cXS7YFcg,5672
163
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=dqq7mDPzxUaCTDQX49KFW_ONg3VXqwQl6hx1qvi5H1k,4342
164
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=mvAmv3PcysITo48GbMS-F_tHUAX_wmS173jrBhBB6mc,4573
169
+ validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=jZAddcbNmm7wqdcjLLkCzK6ZoedhI_FYmsnxiRogBnQ,4343
170
+ validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=4IxOywnfQUBZnf7nLXQQcf9DY139vKGHWJZSQjpzZnM,3216
171
+ validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=JElbl-hGB1SyHQ_m7do4JdPN5n1gM5SNtYRVeIOKR4c,3734
172
+ validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=0ZH5zNv52lcA-k1ZohMgo6w8VUXIe1XA0WA3ORCbHtY,4579
173
+ validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=exnaM-XHiHHflflXfJQLNGQByTBDeKwCtxBoNPKNev8,3970
174
+ validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=N1hYFnAQKLxSpjd6ZHwi57Zdx10ssEX2Ci73rrEXTGs,5796
175
+ validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=npnOPAoXb5FoiwQEwp_gDcbGa5xk4rYnXChTJnuGX64,4405
176
+ validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=9dL06PRlzokEpaEQAj_12FuQnlzfQ2-__6alYfSajmU,4636
177
+ validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=0zdA1oRD9d4d6eVKyRTnGAsukplfYwWHxGNndIU8mkw,4353
178
+ validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=QelJHrxTOQxl233Uq1T3j_OOGDXU4totRF5wFEKitkI,4933
179
+ validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=mtm0rOVfBhpsXf_KJkTvUDnNyTBlCx_b6sveBznE5IY,4771
180
+ validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=EEMc2V1MxxJqKPeK8VWNmVKvH0AYjEJvo6PgNwwU92w,4231
181
+ validmind/tests/model_validation/ragas/AspectCritique.py,sha256=VzB1pEuXVVhmb9FxBXUcnfIkmBwJEfo3VT2XXjT7evg,5836
182
+ validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=AChCUcGTohH7tvOFNroyWRx_sstiMFbxSkCVM0FCgmw,4708
183
+ validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=vtu6seXKPMEEjtQAFxeVYCw91AMQkA3VLKWQqIFvQEM,4420
184
+ validmind/tests/model_validation/ragas/ContextRecall.py,sha256=j4Qgyrsb5BG1kMLzHXnSClLihpecP1JIpgKBR4_fM4k,4371
185
+ validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=oRxmYbYei9yM7HJANnGsJc9gLUwAQyZx2St6V7GYttQ,3929
186
+ validmind/tests/model_validation/ragas/Faithfulness.py,sha256=hJbZ62QKbrc057aiWwqx_12kjxEepqGu8AkNpXLjoF8,4291
187
+ validmind/tests/model_validation/ragas/utils.py,sha256=O8wlir8s7DzVgNrZAAUrMDEvag-FvuefdkTqLIxKkUs,2310
165
188
  validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=iUt8PJd7Q-nhfDkU0siZY5Gip_uzSCqwOjpd_WBuv2I,2892
166
189
  validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=Mb03a6R37GagRuy269TE8ZgaMaF3vngcH3-Um6SZYmg,2767
167
190
  validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=bbZkuGEm_D_zZf3hBeqjw9DrDKeKoLQiwfg2Cjd7gZY,5945
@@ -178,20 +201,20 @@ validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=MAkVBawefPT_S
178
201
  validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=5QLwdsFkuT-k2QkVR6CZw3gPb6RFrgJe8VtZkqma1eg,4678
179
202
  validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=0KMdAHZOnY_PpoWSNZxmudClqQ469JV_V_vTM3FXAC8,4891
180
203
  validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=sUKPQCOrc8r5jCzWyU1n_Cuj9bY4uD8B8aoe-pUoGzY,6297
181
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=dnyk2MR4YZSLGm378NqEW5l4tkS4HcRbNc1PqYE96UI,14156
182
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=APnrI-jXTew4nq4CkCqAkIcNS0uwWegxSwvhiHN5kV0,5038
183
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=4X3tvbzl5X-hF23kqqAQlMSSHhLltVTFeBwODF_cz00,10242
184
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=XA3_5uXvqJ7rawyK8_i8oB59cpZwh8T1FU9c-PTMY3Q,4401
185
- validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=llDy61r921sIcoTZk4tXhjM50sOO90h_zsEKxa3Y4wA,5785
204
+ validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=BLyDWAHd7dw17QLuwy9JrvsBNPXhM8yhXWu9EeSIVgg,14075
205
+ validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=jBRGRFjWzC3MyhNyJ_5Mv21S_ippcy63lMIZ2MQ4588,4929
206
+ validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=5cp3E78C1OjFomqVmtYOovdoNniLVVg-jmRb9HXQ3XQ,10132
207
+ validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=Ay0Z3NDpP0w3Tz3nPSSUhA5WZGW4EZyNmCIJga2kixQ,4436
208
+ validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=gXeUoJ8Gxd4sZ_VRDICEznk8iaNyZmDpgZk2M03lVdo,5822
186
209
  validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=SBxFPZ1-C_ObpLeol7ghf5cdJBimNljYTlFsfohagtA,5980
187
210
  validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=RIup0L4cXycyWfU4GY9J7BuX88OoJ9eSs6ruT4Ho1vU,5539
188
- validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=-EWxr6T6y59whYDDaDeenduHMaYoOpc8AVwe-X0j83o,4969
189
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=JQTWfdocIHYYv69nzbC0M0GAh6ldUMfQ4TKK9jUnhCI,13780
190
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=5GwdmrRduJ2Sq8wt1MU1T5eJ-cvVbmXH43-j2mFM8_c,8886
211
+ validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=301jEnSZiNwsQDdo7q7RBkcNq2ILYoooYiag3Tep2-Y,4962
212
+ validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=762ckUxewgv87Aix48gJQ532v7UEdwIUD_l5iMaQoGU,13738
213
+ validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=FwY2n65uDBz4D4fFy-Ur7G2lb9W_LcOr-HPevmwTxZk,8951
191
214
  validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=TznxbLhwybNbht6hUg4MSKxX3TI7zJp75tQH0svWon0,6237
192
215
  validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=Gy2I67FFu1q_Ny92RAiXyZ_l6TZEY0_X_MMNHy7pqc4,7273
193
216
  validmind/tests/model_validation/sklearn/VMeasure.py,sha256=x2cdcN_Wh_hnfAsF715QgWBPbhZMi533PO-No84iEJ4,2772
194
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=5Ishn16wtBsfmlnlj9mufaElNQ6uGfI9hakvvAVq7os,14227
217
+ validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=82HubT8NZluBYoLS_t3n6QW3lN6YvFkCeEMR0N43tOQ,14194
195
218
  validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
196
219
  validmind/tests/model_validation/statsmodels/ADF.py,sha256=97lutdezxrdsFB1rkTESx2uSp8RHPRhEhucrs2ZyR04,4042
197
220
  validmind/tests/model_validation/statsmodels/ADFTest.py,sha256=pNuH0699hyI7533iuMMf2C3FiVb-TM3fSEsZuGdSGJA,4039
@@ -212,18 +235,18 @@ validmind/tests/model_validation/statsmodels/PhillipsPerronArch.py,sha256=Z1wogf
212
235
  validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=6HSzbV9oSPZg7olFtnpheTxAD7hFdPISbhOKtmU0QbY,6394
213
236
  validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=zWOzmEcdsQMzGzT4nCpSSQLQcdc0BERju-xgLBBGC4Y,5657
214
237
  validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=TGz8ei7pG31tLKjzqNiBNO-UbzGWCabv2rWX-DjiJ4Y,5494
215
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=6WlwIoUTQKP8IMuqKtS0AVvM49ubLUmOWYIK3DoHjeo,6580
216
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=fERW8xCHVGLkJVEMVmHdCrhyBhlNf08Bi22BxyNSXeg,8328
217
- validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=4fJixhDEbMdZOg8EOxNJe3J5H6_PiC1QFg2hWIuauu4,6474
218
- validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=YrFnY3Vy_0L6uQ_1drz-EUNjgqVaQgPtGohf_pFIJRY,6283
238
+ validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=-RU-HMcSWAZQKYAptVTDerkH03K2ruO-vco0DS8vSJM,6573
239
+ validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=GfEOF5OyxQ2tMLhZutp9O4m9MzFl8xDH0IsIQBtPGTs,8321
240
+ validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=un-7t9pRN4RGv4HYyUH2gVCm7EsjSi7fiotOXEFwJXA,6467
241
+ validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=3QPYMVJg2EEAWhrh6Cj2jHiqORJpHVC3DfdRze2Vw8s,6276
219
242
  validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=q30wFH7QRZKriVMXBmZVE2K30kjcb6zX4IVl1NHT2kA,7320
220
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=IkWo8tBh7np_4xTy5cm8SHoXEYggwjk0jiFw3wg1YKA,4350
221
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=XTirM2uYbl-Idf1MooaTPZcrN1s5g-nibHUz5SdYfBg,4592
222
- validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=oY57hquPFXsfrzmOxCvY66CfK3CVAsF9W_XbpMaSaQo,5443
243
+ validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=i4jgUn3Q-GHHXQ3RzjMt5k-scafyNoUuedk_XsuDC5E,4343
244
+ validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=-52QU5EgidZBffs9jcX2oO1BswIUw81y6Zy43DQ6Prg,4578
245
+ validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=qECEzP1G1SfQA3EiBBCgDJxzMHgU5bWAIFH6hO59EbY,5436
223
246
  validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=hrWFViq7poX_G2-AwGffRQnwN9Vr42e4DfZKP-_gsRo,5044
224
247
  validmind/tests/model_validation/statsmodels/ResidualsVisualInspection.py,sha256=ROF3y_akn0cxo6sA38aWElkleg0bcvQfttPc1pjJaHc,5771
225
248
  validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=TJdixri2vrrA4HUUpTYveoVzr7V9lcH6CJnPTLxSqms,3684
226
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=uESuMD8UA_BPRjnIbsnHUQUCzTSWxGG6646QRW1wMH8,6300
249
+ validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=p1ab5K553oxMYVNe3R53Rh4IOJ9G7EgKmjvZY7LO2Dg,6192
227
250
  validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=W8_EARepPA0CpApy0w7cLcbnP7ZegBjntGSUOcuyrqQ,3243
228
251
  validmind/tests/model_validation/statsmodels/ZivotAndrewsArch.py,sha256=4QrZImKZYVLKrmUgjnBTldtIqXf8-tyz9CiNqMYtj_w,3291
229
252
  validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -238,44 +261,46 @@ validmind/tests/prompt_validation/Specificity.py,sha256=v823rZAr9a810Q_RlgH7FqPP
238
261
  validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
239
262
  validmind/tests/prompt_validation/ai_powered_test.py,sha256=pogmrOR2fTY34Tx5TXIs5Smjz09mdh5Kp4NifrmPrFY,2975
240
263
  validmind/tests/test_providers.py,sha256=1tYn_sWNqifFpOp8eNvcVyJzxBjhHV5Py4FxO8opPZA,4944
241
- validmind/unit_metrics/__init__.py,sha256=gPrZWA8hYuV7fGR2sQ5FqzSWU_4l0xkKgDq2mox2Prw,8368
264
+ validmind/unit_metrics/__init__.py,sha256=a7oV8YRC-O6dF7ePz4E8Fqrh4ax6AWT26Y996VPView,7084
242
265
  validmind/unit_metrics/classification/sklearn/Accuracy.py,sha256=2Ra_OpKceY01h1dAFCqRFAwe--K2oVbCUiYjM5AH_nQ,480
243
266
  validmind/unit_metrics/classification/sklearn/F1.py,sha256=Uiq5sPyNpALhApTkmLUhh76mF91bLCABB5OVHOlbmGo,437
244
267
  validmind/unit_metrics/classification/sklearn/Precision.py,sha256=8zO5VDZhfT8R2VFYiV-CzsZwhsTwVAKca4nhD-qALLw,458
245
268
  validmind/unit_metrics/classification/sklearn/ROC_AUC.py,sha256=5-i1xhrLg7Ix4sk7pBKDBtlqBCNRD365LnTvsekSVYs,452
246
269
  validmind/unit_metrics/classification/sklearn/Recall.py,sha256=0WG3A6K9M1UmbWQKoS_wwLfq-cXVDDTIA1ZpaJNyKp8,449
247
- validmind/unit_metrics/composite.py,sha256=3bf8oUPCevOixJIHsc_y0WTb7mG1B1Wt54RTyyx7QK0,7603
270
+ validmind/unit_metrics/composite.py,sha256=sMdfjFEEIrMas3GGYzTZ7gCiEb3BB8O_cWX-GngtPDs,7851
248
271
  validmind/unit_metrics/regression/GiniCoefficient.py,sha256=ebh1rOob8mEmQp0EpXcneAXjc4AIfm6O3Y0_mnTahKA,984
249
272
  validmind/unit_metrics/regression/HuberLoss.py,sha256=JAUxKFpXp1NtQKEJMZlGgxDlk8pFT1tY3ZcxNQPDhHM,680
250
273
  validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=DRHuFH3DqDMy56tzkN8ETwt36FCu1m-nGxK0OJCPMDk,981
251
274
  validmind/unit_metrics/regression/MeanAbsolutePercentageError.py,sha256=u7dOSwSnxYsszp-0uyYwVVvMDTh9jKbWUh1gi8pbczM,471
252
275
  validmind/unit_metrics/regression/MeanBiasDeviation.py,sha256=TCjnGGOSqgPYcOU8MpMZgYkYQbXKXekQNzOVIFEQ5ZA,395
253
276
  validmind/unit_metrics/regression/QuantileLoss.py,sha256=9WITHNHCy-RFVZiUp-bSDrKsePKYbb0a7o13Ohvhvas,470
254
- validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py,sha256=rhFpUMFI1mUaB8dGnNz_vO79VmdUIkJVRS-f1cB-6l0,636
277
+ validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py,sha256=YJY4bwjMTHbpwWnXaTY20fhd4Lo0qIsgJnkOMWLP0Vo,629
255
278
  validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FBHUuMZfDkJj0VEI7g3miH8xucrMQQ0Qgio,491
256
279
  validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
257
280
  validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
258
281
  validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
259
- validmind/utils.py,sha256=8vJutsXoSi9v3_0UznWEvSm-m-TGgLv33rTcuZtsqw8,12876
260
- validmind/vm_models/__init__.py,sha256=QjrOZpqDNJlW8cH2D0xTkPAgX9UadS_ITNHgJ4NxrFs,1160
261
- validmind/vm_models/dataset.py,sha256=aNDR0tkqZUipTZG21ajkvJ7DumhWNT_h6E2X-binc1w,43308
282
+ validmind/utils.py,sha256=ZvTJEV5MwO9pt0CmebmXORnJxU0f5WiL-fpRHhsHFBg,14602
283
+ validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
284
+ validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
285
+ validmind/vm_models/dataset/dataset.py,sha256=mVv9mMhSsUZP-mI5e0xzoS2miW-PXOS21zWzQ3_WqAM,21783
286
+ validmind/vm_models/dataset/utils.py,sha256=IZDCM_FNaaMAWm9Vrvmf_h8ZzhkOffxa6SHLnHPP1TA,5157
262
287
  validmind/vm_models/figure.py,sha256=iSrvPcCG5sQrMkX1Fh6c5utRzaroh3bc6IlnGDOK_Eg,6651
263
- validmind/vm_models/model.py,sha256=f6hAy1J-UfVxLsSCu4VjpGyL-UnJWMivqkBB2Uhd2uU,4823
288
+ validmind/vm_models/model.py,sha256=n3XgTPHO4qeHiSxUq4Y8ajPYnxCe2Y_6X-02Ehb4s7M,6074
264
289
  validmind/vm_models/test/metric.py,sha256=C2AjlSOC0N72ucAaMdH3EMHXnvZ8jXlGSQwEs3S1N1g,3911
265
290
  validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
266
291
  validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
267
292
  validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
268
- validmind/vm_models/test/result_wrapper.py,sha256=Fkj2KFBjy_fRiBtOLJmnplXhLn2D3cnRrQhwlopowkg,13938
293
+ validmind/vm_models/test/result_wrapper.py,sha256=PMcmnsBsjTldmv0zI_quRah4Cv0kk00rVaNZEv4Nbxk,15340
269
294
  validmind/vm_models/test/test.py,sha256=434PqhPcbwfCmNjYVwHGMG-rViIatb9-1nmxkdZF8Xo,3104
270
295
  validmind/vm_models/test/threshold_test.py,sha256=Iy84PLsuabhZSPlxVQZ_kAo_FTqxmZ8AeN9yQDO5wMI,4270
271
296
  validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
272
- validmind/vm_models/test_context.py,sha256=URm6YvK6ReRevngIIVSPmV2tdc4rRZaWbB6hlRKsOj4,9027
297
+ validmind/vm_models/test_context.py,sha256=AN7-atBgOcD04MLVitCFJYooxF6_iNmvI2H4nkv32iw,9035
273
298
  validmind/vm_models/test_suite/runner.py,sha256=U93TauwLNEbAgJIzBZ9k9ip9NnlTt0gACHVgfO7J9BI,6754
274
- validmind/vm_models/test_suite/summary.py,sha256=roSzR-wWs6_eoKq-yDA-cMi5pA0K3H7cpR2TUCG0uog,4555
299
+ validmind/vm_models/test_suite/summary.py,sha256=GpqabqN_RcI5vbv4-A9YCLTpUOTKockp6oL1hi8IwVs,4541
275
300
  validmind/vm_models/test_suite/test.py,sha256=cIa-6_YkFp7Io4wBkr09aFNmljmUFSagV4JreLd1Q6Y,5285
276
301
  validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
277
- validmind-2.1.1.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
278
- validmind-2.1.1.dist-info/METADATA,sha256=XN2qwNEVsWxi30j8yPvq1-8VZqqvTbiRq7P-fmAHyyI,3826
279
- validmind-2.1.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
280
- validmind-2.1.1.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
281
- validmind-2.1.1.dist-info/RECORD,,
302
+ validmind-2.2.2.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
303
+ validmind-2.2.2.dist-info/METADATA,sha256=rTVJeIpNhMGnFm6p1kq9V0egZZgxRb4IsUM9IAxvjFY,3911
304
+ validmind-2.2.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
305
+ validmind-2.2.2.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
306
+ validmind-2.2.2.dist-info/RECORD,,
@@ -1,33 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- from validmind.vm_models.model import ModelAttributes
6
-
7
- from .sklearn import SKlearnModel
8
-
9
-
10
- class CatBoostModel(SKlearnModel):
11
- """
12
- An CatBoost model class that wraps a trained model instance and its associated data.
13
-
14
- Attributes:
15
- attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
16
- model (object, optional): The trained model instance. Defaults to None.
17
- device_type(str, optional) The device where model is trained
18
- """
19
-
20
- def __init__(
21
- self,
22
- input_id: str = None,
23
- model: object = None, # Trained model instance
24
- attributes: ModelAttributes = None,
25
- ):
26
- """
27
- Initialize CatBoostModel
28
- """
29
- super().__init__(
30
- input_id=input_id,
31
- model=model,
32
- attributes=attributes,
33
- )
@@ -1,50 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- import pandas as pd
6
-
7
- from validmind.vm_models.model import ModelAttributes
8
-
9
- from .sklearn import SKlearnModel
10
-
11
-
12
- class StatsModelsModel(SKlearnModel):
13
- """
14
- An Statsmodels model class that wraps a trained model instance and its associated data.
15
-
16
- Attributes:
17
- attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
18
- model (object, optional): The trained model instance. Defaults to None.
19
- device_type(str, optional) The device where model is trained
20
- """
21
-
22
- def __init__(
23
- self,
24
- model: object = None, # Trained model instance
25
- input_id: str = None,
26
- attributes: ModelAttributes = None,
27
- ):
28
- super().__init__(
29
- model=model,
30
- input_id=input_id,
31
- attributes=attributes,
32
- )
33
-
34
- def model_class(self):
35
- """
36
- Returns the model class name
37
- """
38
- return "statsmodels"
39
-
40
- def regression_coefficients(self):
41
- """
42
- Returns the regression coefficients summary of the model
43
- """
44
- raw_summary = self.model.summary()
45
-
46
- table = raw_summary.tables[1].data
47
- headers = table.pop(0)
48
- headers[0] = "Feature"
49
-
50
- return pd.DataFrame(table, columns=headers)
@@ -1,30 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- from validmind.vm_models.model import ModelAttributes
6
-
7
- from .sklearn import SKlearnModel
8
-
9
-
10
- class XGBoostModel(SKlearnModel):
11
- """
12
- An XGBoost model class that wraps a trained model instance and its associated data.
13
-
14
- Attributes:
15
- attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
16
- model (object, optional): The trained model instance. Defaults to None.
17
- device_type(str, optional) The device where model is trained
18
- """
19
-
20
- def __init__(
21
- self,
22
- model: object = None,
23
- input_id: str = None,
24
- attributes: ModelAttributes = None,
25
- ):
26
- super().__init__(
27
- model=model,
28
- input_id=input_id,
29
- attributes=attributes,
30
- )
@@ -1,90 +0,0 @@
1
- # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
- # See the LICENSE file in the root of this repository for details.
3
- # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
-
5
- import itertools
6
- from dataclasses import dataclass
7
-
8
- import evaluate
9
- import pandas as pd
10
- import plotly.graph_objects as go
11
-
12
- from validmind.vm_models import Figure, Metric
13
-
14
-
15
- @dataclass
16
- class BertScoreAggregate(Metric):
17
- """
18
- Evaluates the aggregate performance of text generation models by computing the average precision, recall,
19
- and F1 score based on BERT contextual embeddings.
20
-
21
- **Purpose**: The BERTScore Aggregate metric provides an overall assessment of text generation models by
22
- averaging the similarity scores between the reference and the generated text over the entire dataset.
23
- Using contextual embeddings from BERT models, it gives a high-level view of the contextual relevance
24
- of the model's outputs.
25
-
26
- **Test Mechanism**: This metric takes the true values from the model's test dataset and the model's
27
- predictions to compute the average BERTScore. It showcases the aggregate precision, recall, and F1 score
28
- for the entire test set, providing an overview of the model's overall contextual accuracy.
29
-
30
- **Signs of High Risk**:
31
- - Average Precision, Recall, or F1 Score that is significantly low.
32
- - A low Precision average suggests the model's tendency to include irrelevant contexts.
33
- - A low Recall average indicates the model's propensity to miss relevant contexts.
34
- - A low F1 score average denotes a general deficiency in both precision and recall.
35
-
36
- **Strengths**:
37
- - Provides a holistic view of the model's performance in terms of contextual similarity.
38
- - Factors in the semantic similarity in context, advancing beyond basic n-gram matching.
39
- - The single aggregate score for each metric simplifies the evaluation process and aids in quick insights.
40
-
41
- **Limitations**:
42
- - As an average, it might obscure individual instances where the model performed exceptionally well or poorly.
43
- - Relies on BERT model embeddings, so the quality of the base BERT model can affect results.
44
- - May miss nuances in text similarity that detailed metrics or other evaluations like BLEU or ROUGE might catch.
45
- - Computationally demanding due to the use of BERT embeddings.
46
- """
47
-
48
- name = "bert_score_aggregate"
49
- required_inputs = ["model", "dataset"]
50
-
51
- def run(self):
52
- y_true = list(itertools.chain.from_iterable(self.inputs.dataset.y))
53
- y_pred = self.inputs.dataset.y_pred(self.inputs.model)
54
-
55
- bert = evaluate.load("bertscore")
56
- bert_s = bert.compute(predictions=y_pred, references=y_true, lang="en")
57
- metrics_df = pd.DataFrame(bert_s)
58
-
59
- mean_precision = metrics_df["precision"].mean()
60
- mean_recall = metrics_df["recall"].mean()
61
- mean_f1 = metrics_df["f1"].mean()
62
-
63
- fig = go.Figure(
64
- data=[
65
- go.Bar(
66
- name="Precision",
67
- x=["Precision"],
68
- y=[mean_precision],
69
- marker_color="blue",
70
- ),
71
- go.Bar(
72
- name="Recall", x=["Recall"], y=[mean_recall], marker_color="green"
73
- ),
74
- go.Bar(
75
- name="F1 Score", x=["F1 Score"], y=[mean_f1], marker_color="red"
76
- ),
77
- ]
78
- )
79
-
80
- fig.update_layout(
81
- title="Aggregated Bert Scores",
82
- xaxis_title="Metric",
83
- yaxis_title="Score",
84
- showlegend=False,
85
- width=600,
86
- height=600,
87
- )
88
-
89
- figures = [Figure(for_object=self, key=self.key, figure=fig)]
90
- return self.cache_results(figures=figures)