validmind 2.1.1__py3-none-any.whl → 2.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__version__.py +1 -1
- validmind/ai.py +3 -3
- validmind/api_client.py +2 -3
- validmind/client.py +68 -25
- validmind/datasets/llm/rag/__init__.py +11 -0
- validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv +30 -0
- validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv +30 -0
- validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv +53 -0
- validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv +53 -0
- validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv +53 -0
- validmind/datasets/llm/rag/rfp.py +41 -0
- validmind/html_templates/__init__.py +0 -0
- validmind/html_templates/content_blocks.py +89 -14
- validmind/models/__init__.py +7 -4
- validmind/models/foundation.py +8 -34
- validmind/models/function.py +51 -0
- validmind/models/huggingface.py +16 -46
- validmind/models/metadata.py +42 -0
- validmind/models/pipeline.py +66 -0
- validmind/models/pytorch.py +8 -42
- validmind/models/r_model.py +33 -82
- validmind/models/sklearn.py +39 -38
- validmind/template.py +8 -26
- validmind/tests/__init__.py +43 -20
- validmind/tests/data_validation/ANOVAOneWayTable.py +1 -1
- validmind/tests/data_validation/ChiSquaredFeaturesTable.py +1 -1
- validmind/tests/data_validation/DescriptiveStatistics.py +2 -4
- validmind/tests/data_validation/Duplicates.py +1 -1
- validmind/tests/data_validation/IsolationForestOutliers.py +2 -2
- validmind/tests/data_validation/LaggedCorrelationHeatmap.py +1 -1
- validmind/tests/data_validation/TargetRateBarPlots.py +1 -1
- validmind/tests/data_validation/nlp/LanguageDetection.py +59 -0
- validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +48 -0
- validmind/tests/data_validation/nlp/Punctuations.py +11 -12
- validmind/tests/data_validation/nlp/Sentiment.py +57 -0
- validmind/tests/data_validation/nlp/Toxicity.py +45 -0
- validmind/tests/decorator.py +2 -2
- validmind/tests/model_validation/BertScore.py +100 -98
- validmind/tests/model_validation/BleuScore.py +93 -64
- validmind/tests/model_validation/ContextualRecall.py +74 -91
- validmind/tests/model_validation/MeteorScore.py +86 -74
- validmind/tests/model_validation/RegardScore.py +103 -121
- validmind/tests/model_validation/RougeScore.py +118 -0
- validmind/tests/model_validation/TokenDisparity.py +84 -121
- validmind/tests/model_validation/ToxicityScore.py +109 -123
- validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +96 -0
- validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +71 -0
- validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +92 -0
- validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +69 -0
- validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +78 -0
- validmind/tests/model_validation/embeddings/StabilityAnalysis.py +35 -23
- validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +3 -0
- validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +7 -1
- validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +3 -0
- validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +3 -0
- validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +99 -0
- validmind/tests/model_validation/ragas/AnswerCorrectness.py +131 -0
- validmind/tests/model_validation/ragas/AnswerRelevance.py +134 -0
- validmind/tests/model_validation/ragas/AnswerSimilarity.py +119 -0
- validmind/tests/model_validation/ragas/AspectCritique.py +167 -0
- validmind/tests/model_validation/ragas/ContextEntityRecall.py +133 -0
- validmind/tests/model_validation/ragas/ContextPrecision.py +123 -0
- validmind/tests/model_validation/ragas/ContextRecall.py +123 -0
- validmind/tests/model_validation/ragas/ContextRelevancy.py +114 -0
- validmind/tests/model_validation/ragas/Faithfulness.py +119 -0
- validmind/tests/model_validation/ragas/utils.py +66 -0
- validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +3 -7
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +8 -9
- validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +5 -10
- validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +3 -2
- validmind/tests/model_validation/sklearn/ROCCurve.py +2 -1
- validmind/tests/model_validation/sklearn/RegressionR2Square.py +1 -1
- validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +2 -3
- validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -11
- validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +3 -4
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +1 -1
- validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py +1 -1
- validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +5 -6
- validmind/unit_metrics/__init__.py +26 -49
- validmind/unit_metrics/composite.py +5 -1
- validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py +1 -1
- validmind/utils.py +56 -6
- validmind/vm_models/__init__.py +1 -1
- validmind/vm_models/dataset/__init__.py +7 -0
- validmind/vm_models/dataset/dataset.py +558 -0
- validmind/vm_models/dataset/utils.py +146 -0
- validmind/vm_models/model.py +97 -72
- validmind/vm_models/test/result_wrapper.py +61 -24
- validmind/vm_models/test_context.py +1 -1
- validmind/vm_models/test_suite/summary.py +3 -4
- {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/METADATA +5 -3
- {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/RECORD +100 -75
- validmind/models/catboost.py +0 -33
- validmind/models/statsmodels.py +0 -50
- validmind/models/xgboost.py +0 -30
- validmind/tests/model_validation/BertScoreAggregate.py +0 -90
- validmind/tests/model_validation/RegardHistogram.py +0 -148
- validmind/tests/model_validation/RougeMetrics.py +0 -147
- validmind/tests/model_validation/RougeMetricsAggregate.py +0 -133
- validmind/tests/model_validation/SelfCheckNLIScore.py +0 -112
- validmind/tests/model_validation/ToxicityHistogram.py +0 -136
- validmind/vm_models/dataset.py +0 -1303
- {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/LICENSE +0 -0
- {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/WHEEL +0 -0
- {validmind-2.1.1.dist-info → validmind-2.2.2.dist-info}/entry_points.txt +0 -0
@@ -1,8 +1,8 @@
|
|
1
1
|
validmind/__init__.py,sha256=XqPjCbFMvEYl0cIT42EZKP7DFMYDC7KDW6syo8MGkDg,3682
|
2
|
-
validmind/__version__.py,sha256=
|
3
|
-
validmind/ai.py,sha256
|
4
|
-
validmind/api_client.py,sha256=
|
5
|
-
validmind/client.py,sha256=
|
2
|
+
validmind/__version__.py,sha256=toAYzE_ok1SiBE0AqAVdW0O8YCXCwcx0w4JATYQuJOg,22
|
3
|
+
validmind/ai.py,sha256=-BMP-IEVLBq84k6Y0PvROi3BZOkQNi_0CmYFciv8khY,6388
|
4
|
+
validmind/api_client.py,sha256=Uf8SJ9VjoJAVEfCMQJhAoRkB-HssXaVeUZyWcoTr9hk,15440
|
5
|
+
validmind/client.py,sha256=S_FozHlMJBgF8IQJES27LeFoYcoCcGZ6dkxE8adyIRQ,18607
|
6
6
|
validmind/client_config.py,sha256=58L6s6-9vFWC9vkSs_98CjV1YWmlksdhblJtPQxQsAk,1611
|
7
7
|
validmind/datasets/__init__.py,sha256=oYfcvW7BAyUgpghBOnTeGbQF6tpFAWg38rRirdLr8m8,262
|
8
8
|
validmind/datasets/classification/__init__.py,sha256=HlTOBLyb6IorRYmAhP3AIyX-l-NyemyDjV8BBOdrCrY,1787
|
@@ -14,6 +14,13 @@ validmind/datasets/cluster/digits.py,sha256=E600pX6QPrqndfr73kwZ1sTNk0hC5kNj4Fhs
|
|
14
14
|
validmind/datasets/credit_risk/__init__.py,sha256=5y_NKgWbCfPSw34dYEcgu9y2hici2pxidQqkm-emofs,270
|
15
15
|
validmind/datasets/credit_risk/datasets/lending_club_loan_data_2007_2014_clean.csv.gz,sha256=bAgdfmUxjYOdZMPvoHtKr_GLoXNAX04KUTfjn2L62eE,5493810
|
16
16
|
validmind/datasets/credit_risk/lending_club.py,sha256=oscdu1zmDytSU6dJwinl97si4LDdzMBTFUgiJialRmE,11403
|
17
|
+
validmind/datasets/llm/rag/__init__.py,sha256=v8BygB6rGECoMIXv2_I1lVUAfPJ_gVo0GgVKhzk60h4,264
|
18
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_1.csv,sha256=8Ae8TD5Yh6rQ67HMCu7iKipj5tyOOhzylZqLppAeKzs,24095
|
19
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_2.csv,sha256=PV7eD-h_KWwLzboCPCAEg2LD4XMVO3tS1cWpu18V6Ok,24520
|
20
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_3.csv,sha256=BEqBELuSjn5JXV3aGrriTBC4mZ--pH9iEWRIzDgu12Y,24417
|
21
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_4.csv,sha256=HFaf8oJmEYwHht-QM_Um4X7lLpWcP2TswcwjXp7fsPw,24854
|
22
|
+
validmind/datasets/llm/rag/datasets/rfp_existing_questions_client_5.csv,sha256=jJuRVsDbtv3ky8mJVHzpK_4bSlnIZH-hDW6a8DGGvfY,24551
|
23
|
+
validmind/datasets/llm/rag/rfp.py,sha256=mlx4I1ipMoPplZOqRPza6XEN5D4FE2xc6_SSuGOkgqk,1234
|
17
24
|
validmind/datasets/nlp/__init__.py,sha256=lu2-SGOSECgrxhDtHdlh_FsbpsFtuZ4DbLSL1sww5nc,323
|
18
25
|
validmind/datasets/nlp/cnn_dailymail.py,sha256=9gAHFWQhSJJ2JF_zarc2oLErZwPtRyfvXV4molhVzXM,3471
|
19
26
|
validmind/datasets/nlp/datasets/Covid_19.csv,sha256=cwAJHgek3JWUhtZQIiC9-wRWycxbiod6nyZikf09iKE,11545066
|
@@ -49,19 +56,20 @@ validmind/datasets/regression/models/fred_loan_rates_model_3.pkl,sha256=IogZPcUQ
|
|
49
56
|
validmind/datasets/regression/models/fred_loan_rates_model_4.pkl,sha256=cSxhpcrI4hCbxCwZwE2-nr7KObbWpDii3NzpECoXmmM,48292
|
50
57
|
validmind/datasets/regression/models/fred_loan_rates_model_5.pkl,sha256=FkNLHq9xkPMbYks_vyMjFL371mw9SQYbP1iX9lY4Ljo,60343
|
51
58
|
validmind/errors.py,sha256=jHj__AKOMiwIb7qSs2mxu3LSi0lyzFwSAt1gy2lpDaE,7993
|
52
|
-
validmind/html_templates/
|
59
|
+
validmind/html_templates/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
60
|
+
validmind/html_templates/content_blocks.py,sha256=AHQ5MlhR1JYldel7soo5ztpTJJ5-kYtyKPBmh-vwxuI,3997
|
53
61
|
validmind/input_registry.py,sha256=zexO3x-vncaoWvQ6VfkvgDLn6x72e2BNel_jCbrVHSE,793
|
54
62
|
validmind/logging.py,sha256=Ui67RYoB1qbuHm_KX1aGj_8DoK_ljjUDGG6a1XJ4yoY,5041
|
55
|
-
validmind/models/__init__.py,sha256=
|
56
|
-
validmind/models/
|
57
|
-
validmind/models/
|
58
|
-
validmind/models/huggingface.py,sha256=
|
59
|
-
validmind/models/
|
60
|
-
validmind/models/
|
61
|
-
validmind/models/
|
62
|
-
validmind/models/
|
63
|
-
validmind/models/
|
64
|
-
validmind/template.py,sha256=
|
63
|
+
validmind/models/__init__.py,sha256=lraTbNwoKckXNP3Dbyj-euI78UTkZ_w5wpUOb8l5nWs,729
|
64
|
+
validmind/models/foundation.py,sha256=LSUdpnBYlPiOUVrTyofStPdoR6y0_nqJoM9TiYT1MRo,1758
|
65
|
+
validmind/models/function.py,sha256=loZoheqGyTvHze1XROEX1aqXgM08kPMr67X1nutaaeU,1629
|
66
|
+
validmind/models/huggingface.py,sha256=oDB32iwP_FQ_ZtZgAC5iBPG4suPaSF-J6317TM8Ob2g,2304
|
67
|
+
validmind/models/metadata.py,sha256=V5b91J_M3vzx6JGQJH6Taxpf7DT3TPTwkDwLkLRrWn8,1665
|
68
|
+
validmind/models/pipeline.py,sha256=nSskKWxaS4SGmx_B0IAvS5ogDZyh6tdx_aUkyxSXt88,2051
|
69
|
+
validmind/models/pytorch.py,sha256=aAEUWtISwLh-PMvHkcLwBEbBStAByt4J-NpK-Ndv38E,1826
|
70
|
+
validmind/models/r_model.py,sha256=eYdpCREgBpYv-PxJDuG91I77OOAx3-43FoaYT560ziE,7172
|
71
|
+
validmind/models/sklearn.py,sha256=lOCJlP2wvd5IJHtBS1XG9FXrtIvO_f8xm2Qp1UdsiBw,2406
|
72
|
+
validmind/template.py,sha256=d5I8TjX8Sh5CJPWo_zezMfyvnh7OXo07VV8iKXxlk9E,7184
|
65
73
|
validmind/test_suites/__init__.py,sha256=u_qMwPxpqgIkT7UOuE1qb0qDcNk0tXAVrUg1kGMqW2Q,7259
|
66
74
|
validmind/test_suites/classifier.py,sha256=0ZE3z5X_ZewTvmwQ3cVGJQh7dPgg0IlqcQshJJxCFWQ,4003
|
67
75
|
validmind/test_suites/cluster.py,sha256=Wc2NViwivjiuiJMwrnGbOJYeZ3ApN8usWlOPYZYWAgE,2276
|
@@ -75,9 +83,9 @@ validmind/test_suites/summarization.py,sha256=unEpfk8_etLMuYAtSmBzlqrUpo0kd9Vc3S
|
|
75
83
|
validmind/test_suites/tabular_datasets.py,sha256=WE4eLzRCfiqAxRqXnZFRR3Lo_u-TI6KM6hmTbR8rg5o,1798
|
76
84
|
validmind/test_suites/text_data.py,sha256=YGVGBB05356jN9Gzcy5CHShRzo1fm5mKsZY7YBq0cYU,739
|
77
85
|
validmind/test_suites/time_series.py,sha256=msUyYySAe5VHJJp6z0k0cNt2ekMB8-XkxGER75Zs1hs,6724
|
78
|
-
validmind/tests/__init__.py,sha256=
|
86
|
+
validmind/tests/__init__.py,sha256=LXWlMm3AvZk_b7DLjKMsF6pNncBaoG0RkYS4oLhv01I,15913
|
79
87
|
validmind/tests/data_validation/ACFandPACFPlot.py,sha256=__JowNXtc511g_g8VXc0IX7j6qBE5J_v7IoWUKmj_E8,4745
|
80
|
-
validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=
|
88
|
+
validmind/tests/data_validation/ANOVAOneWayTable.py,sha256=udizp4rxW4VlMaXK2RrkPK5tAUgO0C-A3MIifPjBZMw,6019
|
81
89
|
validmind/tests/data_validation/AutoAR.py,sha256=kulDh8i7p7CjenVvXS54kfZe53M-eXzQ7aHZylnA06M,6676
|
82
90
|
validmind/tests/data_validation/AutoMA.py,sha256=F0Dq1eAnMtM_agQ4QgzeK7bwSb2Am_2V3-ugjFJzY0A,7119
|
83
91
|
validmind/tests/data_validation/AutoSeasonality.py,sha256=GcCpJgXYA11cEnFl6aSpE5N7bEx41An5Ir3MQjJgl2Q,8085
|
@@ -85,13 +93,13 @@ validmind/tests/data_validation/AutoStationarity.py,sha256=cDZB8UxoDVq8zj3hNMkHm
|
|
85
93
|
validmind/tests/data_validation/BivariateFeaturesBarPlots.py,sha256=CccBHTjsL2swmGoxpcCtpY_264YwFCO-rZOSqcaMJ_8,5974
|
86
94
|
validmind/tests/data_validation/BivariateHistograms.py,sha256=2GWca2OynF1FVYkDE8yTt_qqcdJeG2we21TbxPcLcx4,5018
|
87
95
|
validmind/tests/data_validation/BivariateScatterPlots.py,sha256=5JuSs7I1JZaUpXwhGV9u_biMq4xJEUr3CHfh2JXv9JQ,5208
|
88
|
-
validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=
|
96
|
+
validmind/tests/data_validation/ChiSquaredFeaturesTable.py,sha256=qKzMADz_jnEMrNx3BhLp8e1CVtD5pSnkLZptMw0ajpg,6041
|
89
97
|
validmind/tests/data_validation/ClassImbalance.py,sha256=TkI67YUu1DdnRxup-sTo3h6aNS-2ww3LPFxMHnOwAHA,6922
|
90
98
|
validmind/tests/data_validation/DatasetDescription.py,sha256=2ez3MyPhkgvJVXDctADQAayltZzfJAiP5Psv6XgxVuU,11401
|
91
99
|
validmind/tests/data_validation/DatasetSplit.py,sha256=JwhIIkxbTwsHAGyJfe1frVYybnd4290DoL6TXO_1Bbs,5127
|
92
100
|
validmind/tests/data_validation/DefaultRatesbyRiskBandPlot.py,sha256=lrVeFrw4rRND7sO2kpv0RHxks9xHQBqkNfz-IN0xw_0,4861
|
93
|
-
validmind/tests/data_validation/DescriptiveStatistics.py,sha256=
|
94
|
-
validmind/tests/data_validation/Duplicates.py,sha256=
|
101
|
+
validmind/tests/data_validation/DescriptiveStatistics.py,sha256=bQIrHirCrsojciBLeHp5ibAeCpQrMs6wUQ5lW6sWOjQ,6373
|
102
|
+
validmind/tests/data_validation/Duplicates.py,sha256=la6O0Mf2cctT91C3M3lscJ7Jh9u17mkviRDQZ6t9FtM,5632
|
95
103
|
validmind/tests/data_validation/EngleGrangerCoint.py,sha256=Rz8BaptMo79JS8XGrnCGnrMmZo994HBmVGKJCvBqfH0,5580
|
96
104
|
validmind/tests/data_validation/FeatureTargetCorrelationPlot.py,sha256=wfYhyK-hhUHGxfWDAUqoorY2EXbDeLCbroPMi14vkzs,5036
|
97
105
|
validmind/tests/data_validation/HeatmapFeatureCorrelations.py,sha256=JAxx9JUmplFTcQtaFaCk9JCDCMLkDABMhSgj65ARAUc,5707
|
@@ -99,8 +107,8 @@ validmind/tests/data_validation/HighCardinality.py,sha256=4cjBNoWYUHVhl3TuRLrBa6
|
|
99
107
|
validmind/tests/data_validation/HighPearsonCorrelation.py,sha256=0W_nai0F169rH-rsQynEkozTUrFEnTkS0RaFjL-zodA,5582
|
100
108
|
validmind/tests/data_validation/IQROutliersBarPlot.py,sha256=_O9GXF1hCafLDX6_PjRj7TubRdgs39_N4qk9F6-SHBM,6350
|
101
109
|
validmind/tests/data_validation/IQROutliersTable.py,sha256=GQ0rfkbnfaLIG-hwm-2_Gl4kHqljxwSZCcDDKgNlnHU,5888
|
102
|
-
validmind/tests/data_validation/IsolationForestOutliers.py,sha256=
|
103
|
-
validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=
|
110
|
+
validmind/tests/data_validation/IsolationForestOutliers.py,sha256=DZce1C8eVVnw4bx7ZHI9RlmyEik2tfucUYVtGzspEMY,4858
|
111
|
+
validmind/tests/data_validation/LaggedCorrelationHeatmap.py,sha256=iAbdO4AcYoB4dFnoREkR6NewJkgx6ISZVf-8iHAvFgY,6048
|
104
112
|
validmind/tests/data_validation/MissingValues.py,sha256=gvLTy5DiBqp0VemOhVEUq3BsrJ3FTIIsK_CPxKfjW6A,4292
|
105
113
|
validmind/tests/data_validation/MissingValuesBarPlot.py,sha256=bTfMCab8gK0VXF1EZ18pTguZkFdfo1ZHhz2hmkFAyG4,6226
|
106
114
|
validmind/tests/data_validation/MissingValuesRisk.py,sha256=GzsGHFL-qMQxuqdu62SF4O5r8UDoUN5xv_b8drR-Afc,4110
|
@@ -116,7 +124,7 @@ validmind/tests/data_validation/TabularCategoricalBarPlots.py,sha256=EM1m1v9V5N6
|
|
116
124
|
validmind/tests/data_validation/TabularDateTimeHistograms.py,sha256=aO2xr-a3_76nNyGC98I47ena3kzeUrbrOvQpvJUkHvU,4211
|
117
125
|
validmind/tests/data_validation/TabularDescriptionTables.py,sha256=Hd78V0CsRR0zbA97GFHV4DuffaT-85CI3wyF3ptdXLk,9281
|
118
126
|
validmind/tests/data_validation/TabularNumericalHistograms.py,sha256=CSdQJxDht6QJRMGXoedP_1MVoem-whlcwxGGBaP3inc,4170
|
119
|
-
validmind/tests/data_validation/TargetRateBarPlots.py,sha256=
|
127
|
+
validmind/tests/data_validation/TargetRateBarPlots.py,sha256=7BghG2XtWw2ptmNgT-wEWb6gWwUgWIlp-LV5HtQENbM,5737
|
120
128
|
validmind/tests/data_validation/TimeSeriesFrequency.py,sha256=b6lfIzGjiMUho1dhBFfgWZf6EM8AhYdFojWVbgEE4F4,7243
|
121
129
|
validmind/tests/data_validation/TimeSeriesHistogram.py,sha256=VDf31cBfaJ9Bfju5CSdfCHMoJtOxGg-BLZdK7W-UsDw,4188
|
122
130
|
validmind/tests/data_validation/TimeSeriesLinePlot.py,sha256=_HQfgfY_ZmT1S2SSF7gJ7RmNoKjGKQ9_dDaxVHESHtI,4173
|
@@ -129,39 +137,54 @@ validmind/tests/data_validation/WOEBinTable.py,sha256=2Om0eUyWvi1kAZF4z28n9EfEHo
|
|
129
137
|
validmind/tests/data_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
130
138
|
validmind/tests/data_validation/nlp/CommonWords.py,sha256=vrURXSTcfuPKDmcUJoCBuDPvu58P_-LbaiRDR0V2GCI,4204
|
131
139
|
validmind/tests/data_validation/nlp/Hashtags.py,sha256=CVFvv6hTrB4Mb-b9WqHK1w1GUVs8J8gIrYP2v5OqPOo,4368
|
140
|
+
validmind/tests/data_validation/nlp/LanguageDetection.py,sha256=baexhoBN7Bj58_959KfcBBCNxgnbOADokXj-oR2Hrfc,2077
|
132
141
|
validmind/tests/data_validation/nlp/Mentions.py,sha256=4nhJQhZoOEPPjw00tmTmEzUP1lSGL6lHdyVwISBkujA,4673
|
133
|
-
validmind/tests/data_validation/nlp/
|
142
|
+
validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py,sha256=GWgQzeL3WplOeBRF0uKZJEnB6eKwActTF-LpbW2sAls,1655
|
143
|
+
validmind/tests/data_validation/nlp/Punctuations.py,sha256=YFA6BqRonCG9q1rAis-k1ZiniIc-SZtnzDJwe_K3CUE,3917
|
144
|
+
validmind/tests/data_validation/nlp/Sentiment.py,sha256=1m3l0Xfg0vlUlDtqBmG8BMQztZmeLlw89GRIjj3XYGg,1819
|
134
145
|
validmind/tests/data_validation/nlp/StopWords.py,sha256=YAwXyfoCLR8jLm7dlXknSpgUoN4JoBK3750hNByJ5FA,6131
|
135
146
|
validmind/tests/data_validation/nlp/TextDescription.py,sha256=27u4xpFX-FYuMcDVRkw3p1ajcCzd5TgaVkPIqOi8GJc,8718
|
147
|
+
validmind/tests/data_validation/nlp/Toxicity.py,sha256=M_ksbd-R8AQjEqhniUETn3iC7zwSbf3xUnwh8OhgXhE,1514
|
136
148
|
validmind/tests/data_validation/nlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
137
|
-
validmind/tests/decorator.py,sha256=
|
138
|
-
validmind/tests/model_validation/BertScore.py,sha256=
|
139
|
-
validmind/tests/model_validation/
|
140
|
-
validmind/tests/model_validation/BleuScore.py,sha256=-EVViGcu40ZW6g8v4DTlE1K5q7XoCRuoagvsEgLBlXA,3839
|
149
|
+
validmind/tests/decorator.py,sha256=xsGXNWuZh8VYWLUiLyZZTi2nwPHL_IchzPSvvyPwAws,9360
|
150
|
+
validmind/tests/model_validation/BertScore.py,sha256=XJss9sqrkkkNkT44vIf6s5ID_M87PPjWJ-pN0bCTe2E,5300
|
151
|
+
validmind/tests/model_validation/BleuScore.py,sha256=UmlOsr2chqSEcOV6OtuJey9Cb3qvBD6hDOuvLg2X9_s,4925
|
141
152
|
validmind/tests/model_validation/ClusterSizeDistribution.py,sha256=IKcMBCBsasbi6i8LTqv0H6PUUsG8FXnBtc15uj209WY,4155
|
142
|
-
validmind/tests/model_validation/ContextualRecall.py,sha256=
|
153
|
+
validmind/tests/model_validation/ContextualRecall.py,sha256=wzLjaliEG441qXvaonchJFr5pHXuPI9pOnlfo59xEAE,4976
|
143
154
|
validmind/tests/model_validation/FeaturesAUC.py,sha256=aJucUD5u9VxnLpE3klr49VvyvtqT5QGhYE5VNT4hE44,4657
|
144
|
-
validmind/tests/model_validation/MeteorScore.py,sha256=
|
155
|
+
validmind/tests/model_validation/MeteorScore.py,sha256=3YtSjdzxraFYmam03HtOhjayXScFdS5QR_9V4gD-lLI,5010
|
145
156
|
validmind/tests/model_validation/ModelMetadata.py,sha256=F9ctmlIxngkHgOlggRl0WFLilh46SlM3vYfY9zkhtYk,3733
|
146
|
-
validmind/tests/model_validation/
|
147
|
-
validmind/tests/model_validation/RegardScore.py,sha256=3N_QcE6zfn1Oi_FxjyGYxseu1mu8mZovQTaUZTeb3As,6172
|
157
|
+
validmind/tests/model_validation/RegardScore.py,sha256=EuR1pAgVcn99m5eWagxGgdOCHDBkB2NIzyGE9ly73z4,5206
|
148
158
|
validmind/tests/model_validation/RegressionResidualsPlot.py,sha256=EQzJn9wH_1pztHr2JI26Um3E9KzHmu6o76o4ffbXZj4,5025
|
149
|
-
validmind/tests/model_validation/
|
150
|
-
validmind/tests/model_validation/
|
151
|
-
validmind/tests/model_validation/
|
152
|
-
validmind/tests/model_validation/TokenDisparity.py,sha256=SnJC9mGywLt0HDxDge83uVJ-0z8qybb7OoedUiaTncc,5456
|
153
|
-
validmind/tests/model_validation/ToxicityHistogram.py,sha256=V1-SkHqp3-JlLV9c4pO-FulvTSwtThQIrOlQc6gDVSc,5099
|
154
|
-
validmind/tests/model_validation/ToxicityScore.py,sha256=IWzFMisP7BiM2Tuya4RJkdAbfvHbfsbVunBK8Dgfl20,5562
|
159
|
+
validmind/tests/model_validation/RougeScore.py,sha256=1yr09JH1kGJKFL29lmXvEm1Dp482Sjxn0lK6UJfCQ0s,5576
|
160
|
+
validmind/tests/model_validation/TokenDisparity.py,sha256=EZlpFQH6qRWedjTQT5o4u-OIdgj1iKK-JB8GEQQlxoA,4394
|
161
|
+
validmind/tests/model_validation/ToxicityScore.py,sha256=nFDHU1Z8mGpJrdKE6sWxo9nOqqzne1JsYIiNFyn_gYA,5299
|
155
162
|
validmind/tests/model_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
156
163
|
validmind/tests/model_validation/embeddings/ClusterDistribution.py,sha256=8V2mE_V3S3cIBk29MB0xPqgla1mxiGJcXZ1m99ds3ck,3552
|
164
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py,sha256=N7HakxwU2XrLzsLrS0uyg_m6KOyjuS6rEhinZkXsU28,4741
|
157
165
|
validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py,sha256=B3quw4ZCWVyhDBHbVp637JoVTpSAROJfUwY-ECLOTAo,3459
|
166
|
+
validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py,sha256=CGO5zKetkqt51ERDfiqDPVcjM2tounEwsfN5gawt4GE,3336
|
158
167
|
validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py,sha256=hLOcJ3lGigyA2VYAQunKB8dkBzh5TORFawg8TZIlG94,4247
|
159
168
|
validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py,sha256=HxXrkp6OKfGgzuRKWzhAGXYAI8VjYIpLWg62nXHOLVw,4342
|
160
|
-
validmind/tests/model_validation/embeddings/
|
161
|
-
validmind/tests/model_validation/embeddings/
|
162
|
-
validmind/tests/model_validation/embeddings/
|
163
|
-
validmind/tests/model_validation/embeddings/
|
164
|
-
validmind/tests/model_validation/embeddings/
|
169
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py,sha256=jZAddcbNmm7wqdcjLLkCzK6ZoedhI_FYmsnxiRogBnQ,4343
|
170
|
+
validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py,sha256=4IxOywnfQUBZnf7nLXQQcf9DY139vKGHWJZSQjpzZnM,3216
|
171
|
+
validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py,sha256=JElbl-hGB1SyHQ_m7do4JdPN5n1gM5SNtYRVeIOKR4c,3734
|
172
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysis.py,sha256=0ZH5zNv52lcA-k1ZohMgo6w8VUXIe1XA0WA3ORCbHtY,4579
|
173
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py,sha256=exnaM-XHiHHflflXfJQLNGQByTBDeKwCtxBoNPKNev8,3970
|
174
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py,sha256=N1hYFnAQKLxSpjd6ZHwi57Zdx10ssEX2Ci73rrEXTGs,5796
|
175
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py,sha256=npnOPAoXb5FoiwQEwp_gDcbGa5xk4rYnXChTJnuGX64,4405
|
176
|
+
validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py,sha256=9dL06PRlzokEpaEQAj_12FuQnlzfQ2-__6alYfSajmU,4636
|
177
|
+
validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py,sha256=0zdA1oRD9d4d6eVKyRTnGAsukplfYwWHxGNndIU8mkw,4353
|
178
|
+
validmind/tests/model_validation/ragas/AnswerCorrectness.py,sha256=QelJHrxTOQxl233Uq1T3j_OOGDXU4totRF5wFEKitkI,4933
|
179
|
+
validmind/tests/model_validation/ragas/AnswerRelevance.py,sha256=mtm0rOVfBhpsXf_KJkTvUDnNyTBlCx_b6sveBznE5IY,4771
|
180
|
+
validmind/tests/model_validation/ragas/AnswerSimilarity.py,sha256=EEMc2V1MxxJqKPeK8VWNmVKvH0AYjEJvo6PgNwwU92w,4231
|
181
|
+
validmind/tests/model_validation/ragas/AspectCritique.py,sha256=VzB1pEuXVVhmb9FxBXUcnfIkmBwJEfo3VT2XXjT7evg,5836
|
182
|
+
validmind/tests/model_validation/ragas/ContextEntityRecall.py,sha256=AChCUcGTohH7tvOFNroyWRx_sstiMFbxSkCVM0FCgmw,4708
|
183
|
+
validmind/tests/model_validation/ragas/ContextPrecision.py,sha256=vtu6seXKPMEEjtQAFxeVYCw91AMQkA3VLKWQqIFvQEM,4420
|
184
|
+
validmind/tests/model_validation/ragas/ContextRecall.py,sha256=j4Qgyrsb5BG1kMLzHXnSClLihpecP1JIpgKBR4_fM4k,4371
|
185
|
+
validmind/tests/model_validation/ragas/ContextRelevancy.py,sha256=oRxmYbYei9yM7HJANnGsJc9gLUwAQyZx2St6V7GYttQ,3929
|
186
|
+
validmind/tests/model_validation/ragas/Faithfulness.py,sha256=hJbZ62QKbrc057aiWwqx_12kjxEepqGu8AkNpXLjoF8,4291
|
187
|
+
validmind/tests/model_validation/ragas/utils.py,sha256=O8wlir8s7DzVgNrZAAUrMDEvag-FvuefdkTqLIxKkUs,2310
|
165
188
|
validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py,sha256=iUt8PJd7Q-nhfDkU0siZY5Gip_uzSCqwOjpd_WBuv2I,2892
|
166
189
|
validmind/tests/model_validation/sklearn/AdjustedRandIndex.py,sha256=Mb03a6R37GagRuy269TE8ZgaMaF3vngcH3-Um6SZYmg,2767
|
167
190
|
validmind/tests/model_validation/sklearn/ClassifierPerformance.py,sha256=bbZkuGEm_D_zZf3hBeqjw9DrDKeKoLQiwfg2Cjd7gZY,5945
|
@@ -178,20 +201,20 @@ validmind/tests/model_validation/sklearn/MinimumAccuracy.py,sha256=MAkVBawefPT_S
|
|
178
201
|
validmind/tests/model_validation/sklearn/MinimumF1Score.py,sha256=5QLwdsFkuT-k2QkVR6CZw3gPb6RFrgJe8VtZkqma1eg,4678
|
179
202
|
validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py,sha256=0KMdAHZOnY_PpoWSNZxmudClqQ469JV_V_vTM3FXAC8,4891
|
180
203
|
validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py,sha256=sUKPQCOrc8r5jCzWyU1n_Cuj9bY4uD8B8aoe-pUoGzY,6297
|
181
|
-
validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=
|
182
|
-
validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=
|
183
|
-
validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=
|
184
|
-
validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=
|
185
|
-
validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=
|
204
|
+
validmind/tests/model_validation/sklearn/OverfitDiagnosis.py,sha256=BLyDWAHd7dw17QLuwy9JrvsBNPXhM8yhXWu9EeSIVgg,14075
|
205
|
+
validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py,sha256=jBRGRFjWzC3MyhNyJ_5Mv21S_ippcy63lMIZ2MQ4588,4929
|
206
|
+
validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py,sha256=5cp3E78C1OjFomqVmtYOovdoNniLVVg-jmRb9HXQ3XQ,10132
|
207
|
+
validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py,sha256=Ay0Z3NDpP0w3Tz3nPSSUhA5WZGW4EZyNmCIJga2kixQ,4436
|
208
|
+
validmind/tests/model_validation/sklearn/ROCCurve.py,sha256=gXeUoJ8Gxd4sZ_VRDICEznk8iaNyZmDpgZk2M03lVdo,5822
|
186
209
|
validmind/tests/model_validation/sklearn/RegressionErrors.py,sha256=SBxFPZ1-C_ObpLeol7ghf5cdJBimNljYTlFsfohagtA,5980
|
187
210
|
validmind/tests/model_validation/sklearn/RegressionModelsPerformanceComparison.py,sha256=RIup0L4cXycyWfU4GY9J7BuX88OoJ9eSs6ruT4Ho1vU,5539
|
188
|
-
validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256
|
189
|
-
validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=
|
190
|
-
validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=
|
211
|
+
validmind/tests/model_validation/sklearn/RegressionR2Square.py,sha256=301jEnSZiNwsQDdo7q7RBkcNq2ILYoooYiag3Tep2-Y,4962
|
212
|
+
validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py,sha256=762ckUxewgv87Aix48gJQ532v7UEdwIUD_l5iMaQoGU,13738
|
213
|
+
validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py,sha256=FwY2n65uDBz4D4fFy-Ur7G2lb9W_LcOr-HPevmwTxZk,8951
|
191
214
|
validmind/tests/model_validation/sklearn/SilhouettePlot.py,sha256=TznxbLhwybNbht6hUg4MSKxX3TI7zJp75tQH0svWon0,6237
|
192
215
|
validmind/tests/model_validation/sklearn/TrainingTestDegradation.py,sha256=Gy2I67FFu1q_Ny92RAiXyZ_l6TZEY0_X_MMNHy7pqc4,7273
|
193
216
|
validmind/tests/model_validation/sklearn/VMeasure.py,sha256=x2cdcN_Wh_hnfAsF715QgWBPbhZMi533PO-No84iEJ4,2772
|
194
|
-
validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=
|
217
|
+
validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py,sha256=82HubT8NZluBYoLS_t3n6QW3lN6YvFkCeEMR0N43tOQ,14194
|
195
218
|
validmind/tests/model_validation/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
196
219
|
validmind/tests/model_validation/statsmodels/ADF.py,sha256=97lutdezxrdsFB1rkTESx2uSp8RHPRhEhucrs2ZyR04,4042
|
197
220
|
validmind/tests/model_validation/statsmodels/ADFTest.py,sha256=pNuH0699hyI7533iuMMf2C3FiVb-TM3fSEsZuGdSGJA,4039
|
@@ -212,18 +235,18 @@ validmind/tests/model_validation/statsmodels/PhillipsPerronArch.py,sha256=Z1wogf
|
|
212
235
|
validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py,sha256=6HSzbV9oSPZg7olFtnpheTxAD7hFdPISbhOKtmU0QbY,6394
|
213
236
|
validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py,sha256=zWOzmEcdsQMzGzT4nCpSSQLQcdc0BERju-xgLBBGC4Y,5657
|
214
237
|
validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py,sha256=TGz8ei7pG31tLKjzqNiBNO-UbzGWCabv2rWX-DjiJ4Y,5494
|
215
|
-
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256
|
216
|
-
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=
|
217
|
-
validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=
|
218
|
-
validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=
|
238
|
+
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py,sha256=-RU-HMcSWAZQKYAptVTDerkH03K2ruO-vco0DS8vSJM,6573
|
239
|
+
validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py,sha256=GfEOF5OyxQ2tMLhZutp9O4m9MzFl8xDH0IsIQBtPGTs,8321
|
240
|
+
validmind/tests/model_validation/statsmodels/RegressionModelInsampleComparison.py,sha256=un-7t9pRN4RGv4HYyUH2gVCm7EsjSi7fiotOXEFwJXA,6467
|
241
|
+
validmind/tests/model_validation/statsmodels/RegressionModelOutsampleComparison.py,sha256=3QPYMVJg2EEAWhrh6Cj2jHiqORJpHVC3DfdRze2Vw8s,6276
|
219
242
|
validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py,sha256=q30wFH7QRZKriVMXBmZVE2K30kjcb6zX4IVl1NHT2kA,7320
|
220
|
-
validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=
|
221
|
-
validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256
|
222
|
-
validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=
|
243
|
+
validmind/tests/model_validation/statsmodels/RegressionModelSummary.py,sha256=i4jgUn3Q-GHHXQ3RzjMt5k-scafyNoUuedk_XsuDC5E,4343
|
244
|
+
validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py,sha256=-52QU5EgidZBffs9jcX2oO1BswIUw81y6Zy43DQ6Prg,4578
|
245
|
+
validmind/tests/model_validation/statsmodels/RegressionModelsPerformance.py,sha256=qECEzP1G1SfQA3EiBBCgDJxzMHgU5bWAIFH6hO59EbY,5436
|
223
246
|
validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py,sha256=hrWFViq7poX_G2-AwGffRQnwN9Vr42e4DfZKP-_gsRo,5044
|
224
247
|
validmind/tests/model_validation/statsmodels/ResidualsVisualInspection.py,sha256=ROF3y_akn0cxo6sA38aWElkleg0bcvQfttPc1pjJaHc,5771
|
225
248
|
validmind/tests/model_validation/statsmodels/RunsTest.py,sha256=TJdixri2vrrA4HUUpTYveoVzr7V9lcH6CJnPTLxSqms,3684
|
226
|
-
validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=
|
249
|
+
validmind/tests/model_validation/statsmodels/ScorecardHistogram.py,sha256=p1ab5K553oxMYVNe3R53Rh4IOJ9G7EgKmjvZY7LO2Dg,6192
|
227
250
|
validmind/tests/model_validation/statsmodels/ShapiroWilk.py,sha256=W8_EARepPA0CpApy0w7cLcbnP7ZegBjntGSUOcuyrqQ,3243
|
228
251
|
validmind/tests/model_validation/statsmodels/ZivotAndrewsArch.py,sha256=4QrZImKZYVLKrmUgjnBTldtIqXf8-tyz9CiNqMYtj_w,3291
|
229
252
|
validmind/tests/model_validation/statsmodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -238,44 +261,46 @@ validmind/tests/prompt_validation/Specificity.py,sha256=v823rZAr9a810Q_RlgH7FqPP
|
|
238
261
|
validmind/tests/prompt_validation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
239
262
|
validmind/tests/prompt_validation/ai_powered_test.py,sha256=pogmrOR2fTY34Tx5TXIs5Smjz09mdh5Kp4NifrmPrFY,2975
|
240
263
|
validmind/tests/test_providers.py,sha256=1tYn_sWNqifFpOp8eNvcVyJzxBjhHV5Py4FxO8opPZA,4944
|
241
|
-
validmind/unit_metrics/__init__.py,sha256=
|
264
|
+
validmind/unit_metrics/__init__.py,sha256=a7oV8YRC-O6dF7ePz4E8Fqrh4ax6AWT26Y996VPView,7084
|
242
265
|
validmind/unit_metrics/classification/sklearn/Accuracy.py,sha256=2Ra_OpKceY01h1dAFCqRFAwe--K2oVbCUiYjM5AH_nQ,480
|
243
266
|
validmind/unit_metrics/classification/sklearn/F1.py,sha256=Uiq5sPyNpALhApTkmLUhh76mF91bLCABB5OVHOlbmGo,437
|
244
267
|
validmind/unit_metrics/classification/sklearn/Precision.py,sha256=8zO5VDZhfT8R2VFYiV-CzsZwhsTwVAKca4nhD-qALLw,458
|
245
268
|
validmind/unit_metrics/classification/sklearn/ROC_AUC.py,sha256=5-i1xhrLg7Ix4sk7pBKDBtlqBCNRD365LnTvsekSVYs,452
|
246
269
|
validmind/unit_metrics/classification/sklearn/Recall.py,sha256=0WG3A6K9M1UmbWQKoS_wwLfq-cXVDDTIA1ZpaJNyKp8,449
|
247
|
-
validmind/unit_metrics/composite.py,sha256=
|
270
|
+
validmind/unit_metrics/composite.py,sha256=sMdfjFEEIrMas3GGYzTZ7gCiEb3BB8O_cWX-GngtPDs,7851
|
248
271
|
validmind/unit_metrics/regression/GiniCoefficient.py,sha256=ebh1rOob8mEmQp0EpXcneAXjc4AIfm6O3Y0_mnTahKA,984
|
249
272
|
validmind/unit_metrics/regression/HuberLoss.py,sha256=JAUxKFpXp1NtQKEJMZlGgxDlk8pFT1tY3ZcxNQPDhHM,680
|
250
273
|
validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py,sha256=DRHuFH3DqDMy56tzkN8ETwt36FCu1m-nGxK0OJCPMDk,981
|
251
274
|
validmind/unit_metrics/regression/MeanAbsolutePercentageError.py,sha256=u7dOSwSnxYsszp-0uyYwVVvMDTh9jKbWUh1gi8pbczM,471
|
252
275
|
validmind/unit_metrics/regression/MeanBiasDeviation.py,sha256=TCjnGGOSqgPYcOU8MpMZgYkYQbXKXekQNzOVIFEQ5ZA,395
|
253
276
|
validmind/unit_metrics/regression/QuantileLoss.py,sha256=9WITHNHCy-RFVZiUp-bSDrKsePKYbb0a7o13Ohvhvas,470
|
254
|
-
validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py,sha256=
|
277
|
+
validmind/unit_metrics/regression/sklearn/AdjustedRSquaredScore.py,sha256=YJY4bwjMTHbpwWnXaTY20fhd4Lo0qIsgJnkOMWLP0Vo,629
|
255
278
|
validmind/unit_metrics/regression/sklearn/MeanAbsoluteError.py,sha256=LCNgpDw6FBHUuMZfDkJj0VEI7g3miH8xucrMQQ0Qgio,491
|
256
279
|
validmind/unit_metrics/regression/sklearn/MeanSquaredError.py,sha256=7UQnDTTO7yRRyMe3Zac9ZyjEbbD8pW_8WnZwHdVB_8U,463
|
257
280
|
validmind/unit_metrics/regression/sklearn/RSquaredScore.py,sha256=h9U5ndtnJfNNtKPZIo5n3KRp-m4akQcEo0t1iSwjVzY,420
|
258
281
|
validmind/unit_metrics/regression/sklearn/RootMeanSquaredError.py,sha256=_5IQIU9jNfmTE4NLJvaRWXbudRGV2PS7nYF5e4fkSMY,556
|
259
|
-
validmind/utils.py,sha256=
|
260
|
-
validmind/vm_models/__init__.py,sha256=
|
261
|
-
validmind/vm_models/dataset.py,sha256=
|
282
|
+
validmind/utils.py,sha256=ZvTJEV5MwO9pt0CmebmXORnJxU0f5WiL-fpRHhsHFBg,14602
|
283
|
+
validmind/vm_models/__init__.py,sha256=lmWCD2u4tW6_AH39UnJ24sCcMUcsHbUttz7SaZfrh3s,1168
|
284
|
+
validmind/vm_models/dataset/__init__.py,sha256=U4CxZjdoc0dd9u2AqBl5PJh1UVbzXWNrmundmjLF-qE,346
|
285
|
+
validmind/vm_models/dataset/dataset.py,sha256=mVv9mMhSsUZP-mI5e0xzoS2miW-PXOS21zWzQ3_WqAM,21783
|
286
|
+
validmind/vm_models/dataset/utils.py,sha256=IZDCM_FNaaMAWm9Vrvmf_h8ZzhkOffxa6SHLnHPP1TA,5157
|
262
287
|
validmind/vm_models/figure.py,sha256=iSrvPcCG5sQrMkX1Fh6c5utRzaroh3bc6IlnGDOK_Eg,6651
|
263
|
-
validmind/vm_models/model.py,sha256=
|
288
|
+
validmind/vm_models/model.py,sha256=n3XgTPHO4qeHiSxUq4Y8ajPYnxCe2Y_6X-02Ehb4s7M,6074
|
264
289
|
validmind/vm_models/test/metric.py,sha256=C2AjlSOC0N72ucAaMdH3EMHXnvZ8jXlGSQwEs3S1N1g,3911
|
265
290
|
validmind/vm_models/test/metric_result.py,sha256=Bak4GDrMlNq5NtgP5exwlPsKZgz3tWgtC6jZqtHjvqM,1987
|
266
291
|
validmind/vm_models/test/output_template.py,sha256=njqCAMyLxwadkCWhACVskyL9-psTgmUysaeeirTVAX4,1500
|
267
292
|
validmind/vm_models/test/result_summary.py,sha256=QJcIKJUeBf5wW3lyue6ctsi1jKSyoiAIfmjudGJiJtc,2028
|
268
|
-
validmind/vm_models/test/result_wrapper.py,sha256=
|
293
|
+
validmind/vm_models/test/result_wrapper.py,sha256=PMcmnsBsjTldmv0zI_quRah4Cv0kk00rVaNZEv4Nbxk,15340
|
269
294
|
validmind/vm_models/test/test.py,sha256=434PqhPcbwfCmNjYVwHGMG-rViIatb9-1nmxkdZF8Xo,3104
|
270
295
|
validmind/vm_models/test/threshold_test.py,sha256=Iy84PLsuabhZSPlxVQZ_kAo_FTqxmZ8AeN9yQDO5wMI,4270
|
271
296
|
validmind/vm_models/test/threshold_test_result.py,sha256=EXP-g_e3NsnpkvNgYew030qVUoY6ZTHyuuFUXaq-BuM,1954
|
272
|
-
validmind/vm_models/test_context.py,sha256=
|
297
|
+
validmind/vm_models/test_context.py,sha256=AN7-atBgOcD04MLVitCFJYooxF6_iNmvI2H4nkv32iw,9035
|
273
298
|
validmind/vm_models/test_suite/runner.py,sha256=U93TauwLNEbAgJIzBZ9k9ip9NnlTt0gACHVgfO7J9BI,6754
|
274
|
-
validmind/vm_models/test_suite/summary.py,sha256=
|
299
|
+
validmind/vm_models/test_suite/summary.py,sha256=GpqabqN_RcI5vbv4-A9YCLTpUOTKockp6oL1hi8IwVs,4541
|
275
300
|
validmind/vm_models/test_suite/test.py,sha256=cIa-6_YkFp7Io4wBkr09aFNmljmUFSagV4JreLd1Q6Y,5285
|
276
301
|
validmind/vm_models/test_suite/test_suite.py,sha256=Cns2wL54v0T5Mv5_HJb3kMeaa4rtycdqT8KxK9_rWEU,6279
|
277
|
-
validmind-2.
|
278
|
-
validmind-2.
|
279
|
-
validmind-2.
|
280
|
-
validmind-2.
|
281
|
-
validmind-2.
|
302
|
+
validmind-2.2.2.dist-info/LICENSE,sha256=XonPUfwjvrC5Ombl3y-ko0Wubb1xdG_7nzvIbkZRKHw,35772
|
303
|
+
validmind-2.2.2.dist-info/METADATA,sha256=rTVJeIpNhMGnFm6p1kq9V0egZZgxRb4IsUM9IAxvjFY,3911
|
304
|
+
validmind-2.2.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
305
|
+
validmind-2.2.2.dist-info/entry_points.txt,sha256=HuW7YyOv9u_OEWpViQXtv0nfoI67uieJHawKWA4Hv9A,76
|
306
|
+
validmind-2.2.2.dist-info/RECORD,,
|
validmind/models/catboost.py
DELETED
@@ -1,33 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
from validmind.vm_models.model import ModelAttributes
|
6
|
-
|
7
|
-
from .sklearn import SKlearnModel
|
8
|
-
|
9
|
-
|
10
|
-
class CatBoostModel(SKlearnModel):
|
11
|
-
"""
|
12
|
-
An CatBoost model class that wraps a trained model instance and its associated data.
|
13
|
-
|
14
|
-
Attributes:
|
15
|
-
attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
|
16
|
-
model (object, optional): The trained model instance. Defaults to None.
|
17
|
-
device_type(str, optional) The device where model is trained
|
18
|
-
"""
|
19
|
-
|
20
|
-
def __init__(
|
21
|
-
self,
|
22
|
-
input_id: str = None,
|
23
|
-
model: object = None, # Trained model instance
|
24
|
-
attributes: ModelAttributes = None,
|
25
|
-
):
|
26
|
-
"""
|
27
|
-
Initialize CatBoostModel
|
28
|
-
"""
|
29
|
-
super().__init__(
|
30
|
-
input_id=input_id,
|
31
|
-
model=model,
|
32
|
-
attributes=attributes,
|
33
|
-
)
|
validmind/models/statsmodels.py
DELETED
@@ -1,50 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
import pandas as pd
|
6
|
-
|
7
|
-
from validmind.vm_models.model import ModelAttributes
|
8
|
-
|
9
|
-
from .sklearn import SKlearnModel
|
10
|
-
|
11
|
-
|
12
|
-
class StatsModelsModel(SKlearnModel):
|
13
|
-
"""
|
14
|
-
An Statsmodels model class that wraps a trained model instance and its associated data.
|
15
|
-
|
16
|
-
Attributes:
|
17
|
-
attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
|
18
|
-
model (object, optional): The trained model instance. Defaults to None.
|
19
|
-
device_type(str, optional) The device where model is trained
|
20
|
-
"""
|
21
|
-
|
22
|
-
def __init__(
|
23
|
-
self,
|
24
|
-
model: object = None, # Trained model instance
|
25
|
-
input_id: str = None,
|
26
|
-
attributes: ModelAttributes = None,
|
27
|
-
):
|
28
|
-
super().__init__(
|
29
|
-
model=model,
|
30
|
-
input_id=input_id,
|
31
|
-
attributes=attributes,
|
32
|
-
)
|
33
|
-
|
34
|
-
def model_class(self):
|
35
|
-
"""
|
36
|
-
Returns the model class name
|
37
|
-
"""
|
38
|
-
return "statsmodels"
|
39
|
-
|
40
|
-
def regression_coefficients(self):
|
41
|
-
"""
|
42
|
-
Returns the regression coefficients summary of the model
|
43
|
-
"""
|
44
|
-
raw_summary = self.model.summary()
|
45
|
-
|
46
|
-
table = raw_summary.tables[1].data
|
47
|
-
headers = table.pop(0)
|
48
|
-
headers[0] = "Feature"
|
49
|
-
|
50
|
-
return pd.DataFrame(table, columns=headers)
|
validmind/models/xgboost.py
DELETED
@@ -1,30 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
from validmind.vm_models.model import ModelAttributes
|
6
|
-
|
7
|
-
from .sklearn import SKlearnModel
|
8
|
-
|
9
|
-
|
10
|
-
class XGBoostModel(SKlearnModel):
|
11
|
-
"""
|
12
|
-
An XGBoost model class that wraps a trained model instance and its associated data.
|
13
|
-
|
14
|
-
Attributes:
|
15
|
-
attributes (ModelAttributes, optional): The attributes of the model. Defaults to None.
|
16
|
-
model (object, optional): The trained model instance. Defaults to None.
|
17
|
-
device_type(str, optional) The device where model is trained
|
18
|
-
"""
|
19
|
-
|
20
|
-
def __init__(
|
21
|
-
self,
|
22
|
-
model: object = None,
|
23
|
-
input_id: str = None,
|
24
|
-
attributes: ModelAttributes = None,
|
25
|
-
):
|
26
|
-
super().__init__(
|
27
|
-
model=model,
|
28
|
-
input_id=input_id,
|
29
|
-
attributes=attributes,
|
30
|
-
)
|
@@ -1,90 +0,0 @@
|
|
1
|
-
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
-
# See the LICENSE file in the root of this repository for details.
|
3
|
-
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
-
|
5
|
-
import itertools
|
6
|
-
from dataclasses import dataclass
|
7
|
-
|
8
|
-
import evaluate
|
9
|
-
import pandas as pd
|
10
|
-
import plotly.graph_objects as go
|
11
|
-
|
12
|
-
from validmind.vm_models import Figure, Metric
|
13
|
-
|
14
|
-
|
15
|
-
@dataclass
|
16
|
-
class BertScoreAggregate(Metric):
|
17
|
-
"""
|
18
|
-
Evaluates the aggregate performance of text generation models by computing the average precision, recall,
|
19
|
-
and F1 score based on BERT contextual embeddings.
|
20
|
-
|
21
|
-
**Purpose**: The BERTScore Aggregate metric provides an overall assessment of text generation models by
|
22
|
-
averaging the similarity scores between the reference and the generated text over the entire dataset.
|
23
|
-
Using contextual embeddings from BERT models, it gives a high-level view of the contextual relevance
|
24
|
-
of the model's outputs.
|
25
|
-
|
26
|
-
**Test Mechanism**: This metric takes the true values from the model's test dataset and the model's
|
27
|
-
predictions to compute the average BERTScore. It showcases the aggregate precision, recall, and F1 score
|
28
|
-
for the entire test set, providing an overview of the model's overall contextual accuracy.
|
29
|
-
|
30
|
-
**Signs of High Risk**:
|
31
|
-
- Average Precision, Recall, or F1 Score that is significantly low.
|
32
|
-
- A low Precision average suggests the model's tendency to include irrelevant contexts.
|
33
|
-
- A low Recall average indicates the model's propensity to miss relevant contexts.
|
34
|
-
- A low F1 score average denotes a general deficiency in both precision and recall.
|
35
|
-
|
36
|
-
**Strengths**:
|
37
|
-
- Provides a holistic view of the model's performance in terms of contextual similarity.
|
38
|
-
- Factors in the semantic similarity in context, advancing beyond basic n-gram matching.
|
39
|
-
- The single aggregate score for each metric simplifies the evaluation process and aids in quick insights.
|
40
|
-
|
41
|
-
**Limitations**:
|
42
|
-
- As an average, it might obscure individual instances where the model performed exceptionally well or poorly.
|
43
|
-
- Relies on BERT model embeddings, so the quality of the base BERT model can affect results.
|
44
|
-
- May miss nuances in text similarity that detailed metrics or other evaluations like BLEU or ROUGE might catch.
|
45
|
-
- Computationally demanding due to the use of BERT embeddings.
|
46
|
-
"""
|
47
|
-
|
48
|
-
name = "bert_score_aggregate"
|
49
|
-
required_inputs = ["model", "dataset"]
|
50
|
-
|
51
|
-
def run(self):
|
52
|
-
y_true = list(itertools.chain.from_iterable(self.inputs.dataset.y))
|
53
|
-
y_pred = self.inputs.dataset.y_pred(self.inputs.model)
|
54
|
-
|
55
|
-
bert = evaluate.load("bertscore")
|
56
|
-
bert_s = bert.compute(predictions=y_pred, references=y_true, lang="en")
|
57
|
-
metrics_df = pd.DataFrame(bert_s)
|
58
|
-
|
59
|
-
mean_precision = metrics_df["precision"].mean()
|
60
|
-
mean_recall = metrics_df["recall"].mean()
|
61
|
-
mean_f1 = metrics_df["f1"].mean()
|
62
|
-
|
63
|
-
fig = go.Figure(
|
64
|
-
data=[
|
65
|
-
go.Bar(
|
66
|
-
name="Precision",
|
67
|
-
x=["Precision"],
|
68
|
-
y=[mean_precision],
|
69
|
-
marker_color="blue",
|
70
|
-
),
|
71
|
-
go.Bar(
|
72
|
-
name="Recall", x=["Recall"], y=[mean_recall], marker_color="green"
|
73
|
-
),
|
74
|
-
go.Bar(
|
75
|
-
name="F1 Score", x=["F1 Score"], y=[mean_f1], marker_color="red"
|
76
|
-
),
|
77
|
-
]
|
78
|
-
)
|
79
|
-
|
80
|
-
fig.update_layout(
|
81
|
-
title="Aggregated Bert Scores",
|
82
|
-
xaxis_title="Metric",
|
83
|
-
yaxis_title="Score",
|
84
|
-
showlegend=False,
|
85
|
-
width=600,
|
86
|
-
height=600,
|
87
|
-
)
|
88
|
-
|
89
|
-
figures = [Figure(for_object=self, key=self.key, figure=fig)]
|
90
|
-
return self.cache_results(figures=figures)
|