valetudo-map-parser 0.1.9b56__py3-none-any.whl → 0.1.9b57__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -21,11 +21,13 @@ from .config.types import (
21
21
  Colors,
22
22
  RoomsProperties,
23
23
  RoomStore,
24
+ WebPBytes,
24
25
  )
25
26
  from .config.utils import (
26
27
  BaseHandler,
27
28
  initialize_drawing_config,
28
29
  manage_drawable_elements,
30
+ numpy_to_webp_bytes,
29
31
  prepare_resize_params,
30
32
  )
31
33
  from .hypfer_draw import ImageDraw as ImDraw
@@ -81,7 +83,11 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
81
83
  self.rooms_pos = []
82
84
  for room_id, room_data in room_properties.items():
83
85
  self.rooms_pos.append(
84
- {"name": room_data["name"], "outline": room_data["outline"]}
86
+ {
87
+ "id": room_id,
88
+ "name": room_data["name"],
89
+ "outline": room_data["outline"],
90
+ }
85
91
  )
86
92
  else:
87
93
  LOGGER.debug("%s: Rooms data not available!", self.file_name)
@@ -92,12 +98,14 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
92
98
  async def async_get_image_from_json(
93
99
  self,
94
100
  m_json: json | None,
95
- ) -> Image.Image | None:
101
+ return_webp: bool = False,
102
+ ) -> WebPBytes | Image.Image | None:
96
103
  """Get the image from the JSON data.
97
104
  It uses the ImageDraw class to draw some of the elements of the image.
98
105
  The robot itself will be drawn in this function as per some of the values are needed for other tasks.
99
106
  @param m_json: The JSON data to use to draw the image.
100
- @return Image.Image: The image to display.
107
+ @param return_webp: If True, return WebP bytes; if False, return PIL Image (default).
108
+ @return WebPBytes | Image.Image: WebP bytes or PIL Image depending on return_webp parameter.
101
109
  """
102
110
  # Initialize the colors.
103
111
  colors: Colors = {
@@ -131,6 +139,8 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
131
139
  # Get the pixels size and layers from the JSON data
132
140
  pixel_size = int(m_json["pixelSize"])
133
141
  layers, active = self.data.find_layers(m_json["layers"], {}, [])
142
+ # Populate active_zones from the JSON data
143
+ self.active_zones = active
134
144
  new_frame_hash = await self.calculate_array_hash(layers, active)
135
145
  if self.frame_number == 0:
136
146
  self.img_hash = new_frame_hash
@@ -240,20 +250,30 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
240
250
 
241
251
  # Draw obstacles if enabled
242
252
  if self.drawing_config.is_enabled(DrawableElement.OBSTACLE):
243
- img_np_array = await self.imd.async_draw_obstacle(
244
- img_np_array, entity_dict, colors["no_go"]
245
- )
253
+ self.shared.obstacles_pos = self.data.get_obstacles(entity_dict)
254
+ if self.shared.obstacles_pos:
255
+ img_np_array = await self.imd.async_draw_obstacle(
256
+ img_np_array, self.shared.obstacles_pos, colors["no_go"]
257
+ )
246
258
  # Robot and rooms position
247
259
  if (room_id > 0) and not self.room_propriety:
248
260
  self.room_propriety = await self.async_extract_room_properties(
249
261
  self.json_data
250
262
  )
251
- if self.rooms_pos and robot_position and robot_position_angle:
252
- self.robot_pos = await self.imd.async_get_robot_in_room(
253
- robot_x=(robot_position[0]),
254
- robot_y=(robot_position[1]),
255
- angle=robot_position_angle,
256
- )
263
+
264
+ # Ensure room data is available for robot room detection (even if not extracted above)
265
+ if not self.rooms_pos and not self.room_propriety:
266
+ self.room_propriety = await self.async_extract_room_properties(
267
+ self.json_data
268
+ )
269
+
270
+ # Always check robot position for zooming (moved outside the condition)
271
+ if self.rooms_pos and robot_position and robot_position_angle:
272
+ self.robot_pos = await self.imd.async_get_robot_in_room(
273
+ robot_x=(robot_position[0]),
274
+ robot_y=(robot_position[1]),
275
+ angle=robot_position_angle,
276
+ )
257
277
  LOGGER.info("%s: Completed base Layers", self.file_name)
258
278
  # Copy the new array in base layer.
259
279
  self.img_base_layer = await self.async_copy_array(img_np_array)
@@ -332,6 +352,9 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
332
352
  robot_position,
333
353
  DrawableElement.ROBOT,
334
354
  )
355
+ # Synchronize zooming state from ImageDraw to handler before auto-crop
356
+ self.zooming = self.imd.img_h.zooming
357
+
335
358
  # Resize the image
336
359
  img_np_array = await self.async_auto_trim_and_zoom_image(
337
360
  img_np_array,
@@ -345,16 +368,43 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
345
368
  LOGGER.warning("%s: Image array is None.", self.file_name)
346
369
  return None
347
370
 
348
- # Convert the numpy array to a PIL image
349
- pil_img = Image.fromarray(img_np_array, mode="RGBA")
350
- del img_np_array
351
- # reduce the image size if the zoomed image is bigger then the original.
371
+ # Handle resizing if needed, then return based on format preference
352
372
  if self.check_zoom_and_aspect_ratio():
373
+ # Convert to PIL for resizing
374
+ pil_img = Image.fromarray(img_np_array, mode="RGBA")
375
+ del img_np_array
353
376
  resize_params = prepare_resize_params(self, pil_img, False)
354
377
  resized_image = await self.async_resize_images(resize_params)
355
- return resized_image
356
- LOGGER.debug("%s: Frame Completed.", self.file_name)
357
- return pil_img
378
+
379
+ # Return WebP bytes or PIL Image based on parameter
380
+ if return_webp:
381
+ from .config.utils import pil_to_webp_bytes
382
+ webp_bytes = await pil_to_webp_bytes(
383
+ resized_image,
384
+ quality=90,
385
+ lossless=False
386
+ )
387
+ return webp_bytes
388
+ else:
389
+ return resized_image
390
+ else:
391
+ # Return WebP bytes or PIL Image based on parameter
392
+ if return_webp:
393
+ # Convert directly from NumPy to WebP for better performance
394
+ webp_bytes = await numpy_to_webp_bytes(
395
+ img_np_array,
396
+ quality=90,
397
+ lossless=False
398
+ )
399
+ del img_np_array
400
+ LOGGER.debug("%s: Frame Completed.", self.file_name)
401
+ return webp_bytes
402
+ else:
403
+ # Convert to PIL Image (original behavior)
404
+ pil_img = Image.fromarray(img_np_array, mode="RGBA")
405
+ del img_np_array
406
+ LOGGER.debug("%s: Frame Completed.", self.file_name)
407
+ return pil_img
358
408
  except (RuntimeError, RuntimeWarning) as e:
359
409
  LOGGER.warning(
360
410
  "%s: Error %s during image creation.",
@@ -10,7 +10,7 @@ from __future__ import annotations
10
10
 
11
11
  import numpy as np
12
12
 
13
- from .config.types import Colors, ImageSize, JsonType, NumpyArray
13
+ from .config.types import ImageSize, JsonType
14
14
 
15
15
 
16
16
  class ImageData:
@@ -34,6 +34,30 @@ class ImageData:
34
34
  # list the specific Layers, Paths, Zones and Pints in the
35
35
  # Vacuums Json in parallel.
36
36
 
37
+ @staticmethod
38
+ def get_obstacles(entity_dict: dict) -> list:
39
+ """Get the obstacles positions from the entity data."""
40
+ try:
41
+ obstacle_data = entity_dict.get("obstacle")
42
+ except KeyError:
43
+ return []
44
+ obstacle_positions = []
45
+ if obstacle_data:
46
+ for obstacle in obstacle_data:
47
+ label = obstacle.get("metaData", {}).get("label")
48
+ points = obstacle.get("points", [])
49
+ image_id = obstacle.get("metaData", {}).get("id")
50
+
51
+ if label and points:
52
+ obstacle_pos = {
53
+ "label": label,
54
+ "points": {"x": points[0], "y": points[1]},
55
+ "id": image_id,
56
+ }
57
+ obstacle_positions.append(obstacle_pos)
58
+ return obstacle_positions
59
+ return []
60
+
37
61
  @staticmethod
38
62
  def find_layers(
39
63
  json_obj: JsonType, layer_dict: dict, active_list: list
@@ -284,7 +308,7 @@ class RandImageData:
284
308
  Return the calculated angle and original angle.
285
309
  """
286
310
  angle_c = round(json_data.get("robot_angle", 0))
287
- angle = (360 - angle_c + 80) if angle_c < 0 else (180 - angle_c - 80)
311
+ angle = (360 - angle_c + 95) if angle_c < 0 else (180 - angle_c - 85)
288
312
  return angle % 360, json_data.get("robot_angle", 0)
289
313
 
290
314
  @staticmethod
@@ -2,7 +2,7 @@
2
2
  Image Handler Module for Valetudo Re Vacuums.
3
3
  It returns the PIL PNG image frame relative to the Map Data extrapolated from the vacuum json.
4
4
  It also returns calibration, rooms data to the card and other images information to the camera.
5
- Version: 0.1.9.b42
5
+ Version: 0.1.9.a6
6
6
  """
7
7
 
8
8
  from __future__ import annotations
@@ -26,11 +26,13 @@ from .config.types import (
26
26
  RobotPosition,
27
27
  RoomsProperties,
28
28
  RoomStore,
29
+ WebPBytes,
29
30
  )
30
31
  from .config.utils import (
31
32
  BaseHandler,
32
33
  initialize_drawing_config,
33
34
  manage_drawable_elements,
35
+ numpy_to_webp_bytes,
34
36
  prepare_resize_params,
35
37
  )
36
38
  from .map_data import RandImageData
@@ -68,7 +70,9 @@ class ReImageHandler(BaseHandler, AutoCrop):
68
70
  self.active_zones = None # Active zones
69
71
  self.file_name = self.shared.file_name # File name
70
72
  self.imd = ImageDraw(self) # Image Draw
71
- self.rooms_handler = RandRoomsHandler(self.file_name, self.drawing_config) # Room data handler
73
+ self.rooms_handler = RandRoomsHandler(
74
+ self.file_name, self.drawing_config
75
+ ) # Room data handler
72
76
 
73
77
  async def extract_room_properties(
74
78
  self, json_data: JsonType, destinations: JsonType
@@ -97,10 +101,17 @@ class ReImageHandler(BaseHandler, AutoCrop):
97
101
 
98
102
  # Update self.rooms_pos from room_properties for compatibility with other methods
99
103
  self.rooms_pos = []
104
+ room_ids = [] # Collect room IDs for shared.map_rooms
100
105
  for room_id, room_data in room_properties.items():
101
106
  self.rooms_pos.append(
102
107
  {"name": room_data["name"], "outline": room_data["outline"]}
103
108
  )
109
+ # Store the room number (segment ID) for MQTT active zone mapping
110
+ room_ids.append(room_data["number"])
111
+
112
+ # Update shared.map_rooms with the room IDs for MQTT active zone mapping
113
+ self.shared.map_rooms = room_ids
114
+ _LOGGER.debug("Updated shared.map_rooms with room IDs: %s", room_ids)
104
115
 
105
116
  # get the zones and points data
106
117
  zone_properties = await self.async_zone_propriety(zones_data)
@@ -116,9 +127,7 @@ class ReImageHandler(BaseHandler, AutoCrop):
116
127
  _LOGGER.debug("Extracted data: %s", extracted_data)
117
128
  else:
118
129
  self.rooms_pos = None
119
- _LOGGER.debug(
120
- "%s: Rooms and Zones data not available!", self.file_name
121
- )
130
+ _LOGGER.debug("%s: Rooms and Zones data not available!", self.file_name)
122
131
 
123
132
  rooms = RoomStore(self.file_name, room_properties)
124
133
  _LOGGER.debug("Rooms Data: %s", rooms.get_rooms())
@@ -135,8 +144,14 @@ class ReImageHandler(BaseHandler, AutoCrop):
135
144
  self,
136
145
  m_json: JsonType, # json data
137
146
  destinations: None = None, # MQTT destinations for labels
138
- ) -> PilPNG or None:
139
- """Generate Images from the json data."""
147
+ return_webp: bool = False,
148
+ ) -> WebPBytes | Image.Image | None:
149
+ """Generate Images from the json data.
150
+ @param m_json: The JSON data to use to draw the image.
151
+ @param destinations: MQTT destinations for labels (unused).
152
+ @param return_webp: If True, return WebP bytes; if False, return PIL Image (default).
153
+ @return WebPBytes | Image.Image: WebP bytes or PIL Image depending on return_webp parameter.
154
+ """
140
155
  colors: Colors = {
141
156
  name: self.shared.user_colors[idx] for idx, name in enumerate(COLORS)
142
157
  }
@@ -173,11 +188,21 @@ class ReImageHandler(BaseHandler, AutoCrop):
173
188
  img_np_array, m_json, colors, robot_position, robot_position_angle
174
189
  )
175
190
 
176
- # Final adjustments
177
- pil_img = Image.fromarray(img_np_array, mode="RGBA")
178
- del img_np_array # free memory
179
-
180
- return await self._finalize_image(pil_img)
191
+ # Return WebP bytes or PIL Image based on parameter
192
+ if return_webp:
193
+ # Convert directly to WebP bytes for better performance
194
+ webp_bytes = await numpy_to_webp_bytes(
195
+ img_np_array,
196
+ quality=90, # High quality for vacuum maps
197
+ lossless=False # Use lossy compression for smaller size
198
+ )
199
+ del img_np_array # free memory
200
+ return webp_bytes
201
+ else:
202
+ # Convert to PIL Image (original behavior)
203
+ pil_img = Image.fromarray(img_np_array, mode="RGBA")
204
+ del img_np_array # free memory
205
+ return await self._finalize_image(pil_img)
181
206
 
182
207
  except (RuntimeError, RuntimeWarning) as e:
183
208
  _LOGGER.warning(
@@ -226,12 +251,18 @@ class ReImageHandler(BaseHandler, AutoCrop):
226
251
 
227
252
  if room_id > 0 and not self.room_propriety:
228
253
  self.room_propriety = await self.get_rooms_attributes(destinations)
229
- if self.rooms_pos:
230
- self.robot_pos = await self.async_get_robot_in_room(
231
- (robot_position[0] * 10),
232
- (robot_position[1] * 10),
233
- robot_position_angle,
234
- )
254
+
255
+ # Ensure room data is available for robot room detection (even if not extracted above)
256
+ if not self.rooms_pos and not self.room_propriety:
257
+ self.room_propriety = await self.get_rooms_attributes(destinations)
258
+
259
+ # Always check robot position for zooming (fallback)
260
+ if self.rooms_pos and robot_position and not hasattr(self, "robot_pos"):
261
+ self.robot_pos = await self.async_get_robot_in_room(
262
+ (robot_position[0] * 10),
263
+ (robot_position[1] * 10),
264
+ robot_position_angle,
265
+ )
235
266
  self.img_base_layer = await self.async_copy_array(img_np_array)
236
267
  else:
237
268
  # If floor is disabled, create an empty image
@@ -242,6 +273,60 @@ class ReImageHandler(BaseHandler, AutoCrop):
242
273
  size_x, size_y, background_color
243
274
  )
244
275
  self.img_base_layer = await self.async_copy_array(img_np_array)
276
+
277
+ # Check active zones BEFORE auto-crop to enable proper zoom functionality
278
+ # This needs to run on every frame, not just frame 0
279
+ if (
280
+ self.shared.image_auto_zoom
281
+ and self.shared.vacuum_state == "cleaning"
282
+ and robot_position
283
+ and destinations # Check if we have destinations data for room extraction
284
+ ):
285
+ # Extract room data early if we have destinations
286
+ try:
287
+ temp_room_properties = (
288
+ await self.rooms_handler.async_extract_room_properties(
289
+ m_json, destinations
290
+ )
291
+ )
292
+ if temp_room_properties:
293
+ # Create temporary rooms_pos for robot room detection
294
+ temp_rooms_pos = []
295
+ for room_id, room_data in temp_room_properties.items():
296
+ temp_rooms_pos.append(
297
+ {"name": room_data["name"], "outline": room_data["outline"]}
298
+ )
299
+
300
+ # Store original rooms_pos and temporarily use the new one
301
+ original_rooms_pos = self.rooms_pos
302
+ self.rooms_pos = temp_rooms_pos
303
+
304
+ # Perform robot room detection to check active zones
305
+ robot_room_result = await self.async_get_robot_in_room(
306
+ robot_position[0], robot_position[1], robot_position_angle
307
+ )
308
+
309
+ # Restore original rooms_pos
310
+ self.rooms_pos = original_rooms_pos
311
+
312
+ except Exception as e:
313
+ _LOGGER.debug(
314
+ "%s: Early room extraction failed: %s, falling back to robot-position zoom",
315
+ self.file_name,
316
+ e,
317
+ )
318
+ # Fallback to robot-position-based zoom if room extraction fails
319
+ if (
320
+ self.shared.image_auto_zoom
321
+ and self.shared.vacuum_state == "cleaning"
322
+ and robot_position
323
+ ):
324
+ self.zooming = True
325
+ _LOGGER.debug(
326
+ "%s: Enabling fallback robot-position-based zoom",
327
+ self.file_name,
328
+ )
329
+
245
330
  return self.img_base_layer, robot_position, robot_position_angle
246
331
 
247
332
  async def _draw_map_elements(
@@ -288,6 +373,33 @@ class ReImageHandler(BaseHandler, AutoCrop):
288
373
  img_np_array, robot_position, robot_position_angle, robot_color
289
374
  )
290
375
 
376
+ # Store robot position for potential zoom function use
377
+ if robot_position:
378
+ self.robot_position = robot_position
379
+
380
+ # Check if Zoom should be enabled based on active zones
381
+ if (
382
+ self.shared.image_auto_zoom
383
+ and self.shared.vacuum_state == "cleaning"
384
+ and robot_position
385
+ ):
386
+ # For Rand256, we need to check active zones differently since room data is not available yet
387
+ # Use a simplified approach: enable zoom if any active zones are set
388
+ active_zones = self.shared.rand256_active_zone
389
+ if active_zones and any(zone for zone in active_zones):
390
+ self.zooming = True
391
+ _LOGGER.debug(
392
+ "%s: Enabling zoom for Rand256 - active zones detected: %s",
393
+ self.file_name,
394
+ active_zones,
395
+ )
396
+ else:
397
+ self.zooming = False
398
+ _LOGGER.debug(
399
+ "%s: Zoom disabled for Rand256 - no active zones set",
400
+ self.file_name,
401
+ )
402
+
291
403
  img_np_array = await self.async_auto_trim_and_zoom_image(
292
404
  img_np_array,
293
405
  detect_colour=colors["background"],
@@ -390,22 +502,22 @@ class ReImageHandler(BaseHandler, AutoCrop):
390
502
  self.active_zones = self.shared.rand256_active_zone
391
503
  self.zooming = False
392
504
  if self.active_zones and (
393
- self.robot_in_room["id"]
394
- in range(len(self.active_zones))
505
+ self.robot_in_room["id"] in range(len(self.active_zones))
395
506
  ):
396
- self.zooming = bool(
397
- self.active_zones[self.robot_in_room["id"]]
398
- )
507
+ self.zooming = bool(self.active_zones[self.robot_in_room["id"]])
399
508
  else:
400
509
  self.zooming = False
401
510
  return temp
402
511
  # Fallback to bounding box check if no outline data
403
- elif all(
404
- k in self.robot_in_room for k in ["left", "right", "up", "down"]
405
- ):
512
+ elif all(k in self.robot_in_room for k in ["left", "right", "up", "down"]):
406
513
  if (
407
- (self.robot_in_room["right"] <= int(robot_x) <= self.robot_in_room["left"])
408
- and (self.robot_in_room["up"] <= int(robot_y) <= self.robot_in_room["down"])
514
+ self.robot_in_room["right"]
515
+ <= int(robot_x)
516
+ <= self.robot_in_room["left"]
517
+ ) and (
518
+ self.robot_in_room["up"]
519
+ <= int(robot_y)
520
+ <= self.robot_in_room["down"]
409
521
  ):
410
522
  temp = {
411
523
  "x": robot_x,
@@ -417,12 +529,9 @@ class ReImageHandler(BaseHandler, AutoCrop):
417
529
  self.active_zones = self.shared.rand256_active_zone
418
530
  self.zooming = False
419
531
  if self.active_zones and (
420
- self.robot_in_room["id"]
421
- in range(len(self.active_zones))
532
+ self.robot_in_room["id"] in range(len(self.active_zones))
422
533
  ):
423
- self.zooming = bool(
424
- self.active_zones[self.robot_in_room["id"]]
425
- )
534
+ self.zooming = bool(self.active_zones[self.robot_in_room["id"]])
426
535
  else:
427
536
  self.zooming = False
428
537
  return temp
@@ -488,6 +597,16 @@ class ReImageHandler(BaseHandler, AutoCrop):
488
597
  "angle": angle,
489
598
  "in_room": self.robot_in_room["room"],
490
599
  }
600
+
601
+ # Handle active zones - Set zooming based on active zones
602
+ self.active_zones = self.shared.rand256_active_zone
603
+ if self.active_zones and (
604
+ self.robot_in_room["id"] in range(len(self.active_zones))
605
+ ):
606
+ self.zooming = bool(self.active_zones[self.robot_in_room["id"]])
607
+ else:
608
+ self.zooming = False
609
+
491
610
  _LOGGER.debug(
492
611
  "%s is in %s room (polygon detection).",
493
612
  self.file_name,
@@ -19,6 +19,7 @@ from .config.types import LOGGER, RoomsProperties
19
19
 
20
20
  from .map_data import RandImageData, ImageData
21
21
 
22
+
22
23
  class RoomsHandler:
23
24
  """
24
25
  Handler for extracting and managing room data from Hipfer vacuum maps.
@@ -225,6 +226,7 @@ class RoomsHandler:
225
226
  LOGGER.debug("Room extraction Total time: %.3fs", total_time)
226
227
  return room_properties
227
228
 
229
+
228
230
  class RandRoomsHandler:
229
231
  """
230
232
  Handler for extracting and managing room data from Rand25 vacuum maps.
@@ -247,7 +249,9 @@ class RandRoomsHandler:
247
249
  """
248
250
  self.vacuum_id = vacuum_id
249
251
  self.drawing_config = drawing_config
250
- self.current_json_data = None # Will store the current JSON data being processed
252
+ self.current_json_data = (
253
+ None # Will store the current JSON data being processed
254
+ )
251
255
  self.segment_data = None # Segment data
252
256
  self.outlines = None # Outlines data
253
257
 
@@ -467,4 +471,4 @@ class RandRoomsHandler:
467
471
  total_time = time.time() - start_total
468
472
  LOGGER.debug("Room extraction Total time: %.3fs", total_time)
469
473
 
470
- return room_properties
474
+ return room_properties
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: valetudo-map-parser
3
- Version: 0.1.9b56
3
+ Version: 0.1.9b57
4
4
  Summary: A Python library to parse Valetudo map data returning a PIL Image object.
5
5
  License: Apache-2.0
6
6
  Author: Sandro Cantarella
@@ -0,0 +1,26 @@
1
+ valetudo_map_parser/__init__.py,sha256=XO_eJwFDyU7hXJ4tAa2zY-n-SM2_kmIGMWDKY3GcauY,1163
2
+ valetudo_map_parser/config/__init__.py,sha256=DQ9plV3ZF_K25Dp5ZQHPDoG-40dQoJNdNi-dfNeR3Zc,48
3
+ valetudo_map_parser/config/auto_crop.py,sha256=1TGjUSbVHV15_sx1iFsEBWwD5BnWHPjgGIuPAJB6aiY,19142
4
+ valetudo_map_parser/config/color_utils.py,sha256=nXD6WeNmdFdoMxPDW-JFpjnxJSaZR1jX-ouNfrx6zvE,4502
5
+ valetudo_map_parser/config/colors.py,sha256=DG-oPQoN5gsnwDbEsuFr8a0hRCxmbFHObWa4_5pr-70,29910
6
+ valetudo_map_parser/config/drawable.py,sha256=2MeVHXqZuVuJk3eerMJYGwo25rVetHx3xB_vxecEFOQ,34168
7
+ valetudo_map_parser/config/drawable_elements.py,sha256=o-5oiXmfqPwNQLzKIhkEcZD_A47rIU9E0CqKgWipxgc,11516
8
+ valetudo_map_parser/config/enhanced_drawable.py,sha256=QlGxlUMVgECUXPtFwIslyjubWxQuhIixsRymWV3lEvk,12586
9
+ valetudo_map_parser/config/optimized_element_map.py,sha256=52BCnkvVv9bre52LeVIfT8nhnEIpc0TuWTv1xcNu0Rk,15744
10
+ valetudo_map_parser/config/rand25_parser.py,sha256=kIayyqVZBfQfAMkiArzqrrj9vqZB3pkgT0Y5ufrQmGA,16448
11
+ valetudo_map_parser/config/shared.py,sha256=ogXR5qC2HuLJ3KgYc9KDozXzDQptd8nhvNc-CepN6S0,12301
12
+ valetudo_map_parser/config/types.py,sha256=HO5fowAjbGmS2rEOFbFe7eFljvpfBr0fsvhcVRTByhI,17540
13
+ valetudo_map_parser/config/utils.py,sha256=w8r53KcCgYNq7CoIziQ3ktJu8ESFit5TYza-7g8ndhE,31203
14
+ valetudo_map_parser/hypfer_draw.py,sha256=Bi03FiYdxw2Kp8BwkggAkdKABNoNf-j7v7J-rER8tnQ,28953
15
+ valetudo_map_parser/hypfer_handler.py,sha256=-tMYd1lMH6_l8ufQH1A95uAgbt2P-1YYTfNkl9NXAc8,22269
16
+ valetudo_map_parser/hypfer_rooms_handler.py,sha256=NkpOA6Gdq-2D3lLAxvtNuuWMvPXHxeMY2TO5RZLSHlU,22652
17
+ valetudo_map_parser/map_data.py,sha256=5DDT5ABJCMSaWd8YrMY9SG4uhD3Rga_F0DEBNNNPipc,18618
18
+ valetudo_map_parser/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ valetudo_map_parser/rand256_handler.py,sha256=kLurqSQvmrweCrOpLT9oIuVKkQ_SmCXcRuSL4dDddO8,27893
20
+ valetudo_map_parser/reimg_draw.py,sha256=1q8LkNTPHEA9Tsapc_JnVw51kpPYNhaBU-KmHkefCQY,12507
21
+ valetudo_map_parser/rooms_handler.py,sha256=ovqQtAjauAqwUNPR0aX27P2zhheQmqfaFhDE3_AwYWk,17821
22
+ valetudo_map_parser-0.1.9b57.dist-info/LICENSE,sha256=Lh-qBbuRV0-jiCIBhfV7NgdwFxQFOXH3BKOzK865hRs,10480
23
+ valetudo_map_parser-0.1.9b57.dist-info/METADATA,sha256=f2DJy0uFpMdGp1e0gsdG2OdpGzkB1A429ZKf2c49MOE,3321
24
+ valetudo_map_parser-0.1.9b57.dist-info/NOTICE.txt,sha256=5lTOuWiU9aiEnJ2go8sc7lTJ7ntMBx0g0GFnNrswCY4,2533
25
+ valetudo_map_parser-0.1.9b57.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
26
+ valetudo_map_parser-0.1.9b57.dist-info/RECORD,,