valetudo-map-parser 0.1.9b53__py3-none-any.whl → 0.1.9b54__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,13 +15,13 @@ from .config.types import (
15
15
  TrimCropData,
16
16
  UserLanguageStore,
17
17
  )
18
- from .hypfer_rooms_handler import HypferRoomsHandler
19
18
  from .hypfer_handler import HypferMapImageHandler
20
19
  from .rand25_handler import ReImageHandler
20
+ from .rooms_handler import RoomsHandler
21
21
 
22
22
 
23
23
  __all__ = [
24
- "HypferRoomsHandler",
24
+ "RoomsHandler",
25
25
  "HypferMapImageHandler",
26
26
  "ReImageHandler",
27
27
  "RRMapParser",
@@ -125,7 +125,7 @@ class AutoCrop:
125
125
  if self.auto_crop:
126
126
  self.auto_crop_offset()
127
127
  else:
128
- self.handler.max_frames = 5
128
+ self.handler.max_frames = 1205
129
129
 
130
130
  # Fallback: Ensure auto_crop is valid
131
131
  if not self.auto_crop or any(v < 0 for v in self.auto_crop):
@@ -137,12 +137,32 @@ class AutoCrop:
137
137
  async def async_image_margins(
138
138
  self, image_array: NumpyArray, detect_colour: Color
139
139
  ) -> tuple[int, int, int, int]:
140
- """Crop the image based on the auto crop area."""
141
- nonzero_coords = np.column_stack(np.where(image_array != list(detect_colour)))
142
- # Calculate the trim box based on the first and last occurrences
143
- min_y, min_x, _ = NumpyArray.min(nonzero_coords, axis=0)
144
- max_y, max_x, _ = NumpyArray.max(nonzero_coords, axis=0)
145
- del nonzero_coords
140
+ """Crop the image based on the auto crop area using scipy.ndimage for better performance."""
141
+ # Import scipy.ndimage here to avoid import at module level
142
+ from scipy import ndimage
143
+
144
+ # Create a binary mask where True = non-background pixels
145
+ # This is much more memory efficient than storing coordinates
146
+ mask = ~np.all(image_array == list(detect_colour), axis=2)
147
+
148
+ # Use scipy.ndimage.find_objects to efficiently find the bounding box
149
+ # This returns a list of slice objects that define the bounding box
150
+ # Label the mask with a single label (1) and find its bounding box
151
+ labeled_mask = mask.astype(np.int8) # Convert to int8 (smallest integer type)
152
+ objects = ndimage.find_objects(labeled_mask)
153
+
154
+ if not objects: # No objects found
155
+ _LOGGER.warning(
156
+ "%s: No non-background pixels found in image", self.handler.file_name
157
+ )
158
+ # Return full image dimensions as fallback
159
+ return 0, 0, image_array.shape[1], image_array.shape[0]
160
+
161
+ # Extract the bounding box coordinates from the slice objects
162
+ y_slice, x_slice = objects[0]
163
+ min_y, max_y = y_slice.start, y_slice.stop - 1
164
+ min_x, max_x = x_slice.start, x_slice.stop - 1
165
+
146
166
  _LOGGER.debug(
147
167
  "%s: Found trims max and min values (y,x) (%s, %s) (%s, %s)...",
148
168
  self.handler.file_name,
@@ -1,9 +1,9 @@
1
1
  """Utility functions for color operations in the map parser."""
2
2
 
3
- from typing import Tuple, Optional
3
+ from typing import Optional, Tuple
4
4
 
5
5
  from .colors import ColorsManagement
6
- from .types import NumpyArray, Color
6
+ from .types import Color, NumpyArray
7
7
 
8
8
 
9
9
  def get_blended_color(
@@ -63,6 +63,7 @@ from .types import (
63
63
  Color,
64
64
  )
65
65
 
66
+
66
67
  color_transparent = (0, 0, 0, 0)
67
68
  color_charger = (0, 128, 0, 255)
68
69
  color_move = (238, 247, 255, 255)
@@ -10,15 +10,14 @@ Optimized with NumPy and SciPy for better performance.
10
10
 
11
11
  from __future__ import annotations
12
12
 
13
-
14
13
  import logging
15
14
  import math
16
15
 
17
16
  import numpy as np
18
17
  from PIL import ImageDraw, ImageFont
19
18
 
20
- from .colors import ColorsManagement
21
19
  from .color_utils import get_blended_color
20
+ from .colors import ColorsManagement
22
21
  from .types import Color, NumpyArray, PilPNG, Point, Tuple, Union
23
22
 
24
23
 
@@ -8,10 +8,12 @@ from __future__ import annotations
8
8
 
9
9
  from enum import IntEnum
10
10
  from typing import Dict, List, Tuple, Union
11
+
11
12
  import numpy as np
12
- from .types import LOGGER
13
13
 
14
14
  from .colors import DefaultColors, SupportedColor
15
+ from .types import LOGGER
16
+
15
17
 
16
18
  # Type aliases
17
19
  Color = Tuple[int, int, int, int] # RGBA color
@@ -170,13 +172,7 @@ class DrawingConfig:
170
172
 
171
173
  def is_enabled(self, element_code: DrawableElement) -> bool:
172
174
  """Check if an element is enabled for drawing."""
173
- enabled = self._enabled_elements.get(element_code, False)
174
- LOGGER.debug(
175
- "Checking if element %s is enabled: %s",
176
- element_code.name if hasattr(element_code, "name") else element_code,
177
- enabled,
178
- )
179
- return enabled
175
+ return self._enabled_elements.get(element_code, False)
180
176
 
181
177
  def set_property(
182
178
  self, element_code: DrawableElement, property_name: str, value
@@ -238,10 +234,6 @@ class DrawingConfig:
238
234
  self.set_property(room_element, "color", rgba)
239
235
  self.set_property(room_element, "opacity", alpha / 255.0)
240
236
 
241
- LOGGER.debug(
242
- "Updated room %d color to %s with alpha %s", room_id, rgb, alpha
243
- )
244
-
245
237
  # Update other element colors
246
238
  for element, color_key in element_color_mapping.items():
247
239
  if color_key in device_info:
@@ -265,13 +257,6 @@ class DrawingConfig:
265
257
  self.set_property(element, "color", rgba)
266
258
  self.set_property(element, "opacity", alpha / 255.0)
267
259
 
268
- LOGGER.debug(
269
- "Updated element %s color to %s with alpha %s",
270
- element.name,
271
- rgb,
272
- alpha,
273
- )
274
-
275
260
  # Check for disabled elements using specific boolean flags
276
261
  # Map element disable flags to DrawableElement enum values
277
262
  element_disable_mapping = {
@@ -13,12 +13,12 @@ from typing import Optional, Tuple
13
13
 
14
14
  import numpy as np
15
15
 
16
+ from .colors import ColorsManagement
16
17
  from .drawable import Drawable
17
18
  from .drawable_elements import (
18
19
  DrawableElement,
19
20
  DrawingConfig,
20
21
  )
21
- from .colors import ColorsManagement
22
22
 
23
23
 
24
24
  # Type aliases
@@ -247,26 +247,6 @@ class CameraSharedManager:
247
247
  )
248
248
  instance.trims = TrimsData.from_dict(trim_data)
249
249
 
250
- # Log disable_obstacles and disable_path settings
251
- if "disable_obstacles" in device_info:
252
- _LOGGER.info(
253
- "%s: device_info contains disable_obstacles: %s",
254
- instance.file_name,
255
- device_info["disable_obstacles"],
256
- )
257
- if "disable_path" in device_info:
258
- _LOGGER.info(
259
- "%s: device_info contains disable_path: %s",
260
- instance.file_name,
261
- device_info["disable_path"],
262
- )
263
- if "disable_elements" in device_info:
264
- _LOGGER.info(
265
- "%s: device_info contains disable_elements: %s",
266
- instance.file_name,
267
- device_info["disable_elements"],
268
- )
269
-
270
250
  except TypeError as ex:
271
251
  _LOGGER.error("Shared data can't be initialized due to a TypeError! %s", ex)
272
252
  except AttributeError as ex:
@@ -8,7 +8,7 @@ import json
8
8
  import logging
9
9
  import threading
10
10
  from dataclasses import asdict, dataclass
11
- from typing import Any, Dict, Optional, Tuple, Union, TypedDict
11
+ from typing import Any, Dict, Optional, Tuple, TypedDict, Union
12
12
 
13
13
  import numpy as np
14
14
  from PIL import Image
@@ -639,7 +639,3 @@ class TrimsData:
639
639
  self.trim_down = 0
640
640
  self.trim_right = 0
641
641
  return asdict(self)
642
-
643
- def self_instance(self):
644
- """Return self instance."""
645
- return self.self_instance()
@@ -550,58 +550,8 @@ def initialize_drawing_config(handler):
550
550
  hasattr(handler.shared, "device_info")
551
551
  and handler.shared.device_info is not None
552
552
  ):
553
- LOGGER.info(
554
- "%s: Initializing drawing config from device_info", handler.file_name
555
- )
556
- LOGGER.info(
557
- "%s: device_info contains disable_obstacles: %s",
558
- handler.file_name,
559
- "disable_obstacles" in handler.shared.device_info,
560
- )
561
- LOGGER.info(
562
- "%s: device_info contains disable_path: %s",
563
- handler.file_name,
564
- "disable_path" in handler.shared.device_info,
565
- )
566
- LOGGER.info(
567
- "%s: device_info contains disable_elements: %s",
568
- handler.file_name,
569
- "disable_elements" in handler.shared.device_info,
570
- )
571
-
572
- if "disable_obstacles" in handler.shared.device_info:
573
- LOGGER.info(
574
- "%s: disable_obstacles value: %s",
575
- handler.file_name,
576
- handler.shared.device_info["disable_obstacles"],
577
- )
578
- if "disable_path" in handler.shared.device_info:
579
- LOGGER.info(
580
- "%s: disable_path value: %s",
581
- handler.file_name,
582
- handler.shared.device_info["disable_path"],
583
- )
584
- if "disable_elements" in handler.shared.device_info:
585
- LOGGER.info(
586
- "%s: disable_elements value: %s",
587
- handler.file_name,
588
- handler.shared.device_info["disable_elements"],
589
- )
590
-
591
553
  drawing_config.update_from_device_info(handler.shared.device_info)
592
554
 
593
- # Verify elements are disabled
594
- LOGGER.info(
595
- "%s: After initialization, PATH enabled: %s",
596
- handler.file_name,
597
- drawing_config.is_enabled(DrawableElement.PATH),
598
- )
599
- LOGGER.info(
600
- "%s: After initialization, OBSTACLE enabled: %s",
601
- handler.file_name,
602
- drawing_config.is_enabled(DrawableElement.OBSTACLE),
603
- )
604
-
605
555
  # Initialize both drawable systems for backward compatibility
606
556
  draw = Drawable() # Legacy drawing utilities
607
557
  enhanced_draw = EnhancedDrawable(drawing_config) # New enhanced drawing system
@@ -632,7 +582,7 @@ def blend_colors(base_color, overlay_color):
632
582
 
633
583
  # Avoid division by zero
634
584
  if a_out < 0.0001:
635
- return (0, 0, 0, 0)
585
+ return [0, 0, 0, 0]
636
586
 
637
587
  # Calculate blended RGB components
638
588
  r_out = (r1 * a1 + r2 * a2 * (1 - a1)) / a_out
@@ -142,12 +142,6 @@ class ImageDraw:
142
142
  room_element = getattr(DrawableElement, f"ROOM_{current_room_id}", None)
143
143
  if room_element and hasattr(self.img_h.drawing_config, "is_enabled"):
144
144
  draw_room = self.img_h.drawing_config.is_enabled(room_element)
145
- _LOGGER.debug(
146
- "%s: Room %d is %s",
147
- self.file_name,
148
- current_room_id,
149
- "enabled" if draw_room else "disabled",
150
- )
151
145
 
152
146
  # Get the room color
153
147
  room_color = self.img_h.shared.rooms_colors[room_id]
@@ -170,13 +164,6 @@ class ImageDraw:
170
164
  except IndexError as e:
171
165
  _LOGGER.warning("%s: Image Draw Error: %s", self.file_name, str(e))
172
166
 
173
- _LOGGER.debug(
174
- "%s Active Zones: %s and Room ID: %s",
175
- self.file_name,
176
- str(self.img_h.active_zones),
177
- str(room_id),
178
- )
179
-
180
167
  return img_np_array, room_id
181
168
 
182
169
  def _get_active_room_color(self, room_id, room_color, color_zone_clean):
@@ -20,6 +20,7 @@ from .config.types import (
20
20
  CalibrationPoints,
21
21
  Colors,
22
22
  RoomsProperties,
23
+ RoomStore,
23
24
  )
24
25
  from .config.utils import (
25
26
  BaseHandler,
@@ -28,8 +29,8 @@ from .config.utils import (
28
29
  prepare_resize_params,
29
30
  )
30
31
  from .hypfer_draw import ImageDraw as ImDraw
31
- from .hypfer_rooms_handler import HypferRoomsHandler
32
32
  from .map_data import ImageData
33
+ from .rooms_handler import RoomsHandler
33
34
 
34
35
 
35
36
  class HypferMapImageHandler(BaseHandler, AutoCrop):
@@ -57,7 +58,7 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
57
58
  self.imd = ImDraw(self) # Image Draw class.
58
59
  self.color_grey = (128, 128, 128, 255)
59
60
  self.file_name = self.shared.file_name # file name of the vacuum.
60
- self.rooms_handler = HypferRoomsHandler(
61
+ self.rooms_handler = RoomsHandler(
61
62
  self.file_name, self.drawing_config
62
63
  ) # Room data handler
63
64
 
@@ -68,51 +69,24 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
68
69
 
69
70
  async def async_extract_room_properties(self, json_data) -> RoomsProperties:
70
71
  """Extract room properties from the JSON data."""
71
-
72
- return await self.rooms_handler.async_extract_room_properties(json_data)
73
- # room_properties = {}
74
- # self.rooms_pos = []
75
- # pixel_size = json_data.get("pixelSize", [])
76
- #
77
- # for layer in json_data.get("layers", []):
78
- # if layer["__class"] == "MapLayer":
79
- # meta_data = layer.get("metaData", {})
80
- # segment_id = meta_data.get("segmentId")
81
- # if segment_id is not None:
82
- # name = meta_data.get("name")
83
- # compressed_pixels = layer.get("compressedPixels", [])
84
- # pixels = self.data.sublist(compressed_pixels, 3)
85
- # # Calculate x and y min/max from compressed pixels
86
- # (
87
- # x_min,
88
- # y_min,
89
- # x_max,
90
- # y_max,
91
- # ) = await self.data.async_get_rooms_coordinates(pixels, pixel_size)
92
- # corners = self.get_corners(x_max, x_min, y_max, y_min)
93
- # room_id = str(segment_id)
94
- # self.rooms_pos.append(
95
- # {
96
- # "name": name,
97
- # "corners": corners,
98
- # }
99
- # )
100
- # room_properties[room_id] = {
101
- # "number": segment_id,
102
- # "outline": corners,
103
- # "name": name,
104
- # "x": ((x_min + x_max) // 2),
105
- # "y": ((y_min + y_max) // 2),
106
- # }
107
- # if room_properties:
108
- # rooms = RoomStore(self.file_name, room_properties)
109
- # LOGGER.debug(
110
- # "%s: Rooms data extracted! %s", self.file_name, rooms.get_rooms()
111
- # )
112
- # else:
113
- # LOGGER.debug("%s: Rooms data not available!", self.file_name)
114
- # self.rooms_pos = None
115
- # return room_properties
72
+ room_properties = await self.rooms_handler.async_extract_room_properties(
73
+ json_data
74
+ )
75
+ if room_properties:
76
+ rooms = RoomStore(self.file_name, room_properties)
77
+ LOGGER.debug(
78
+ "%s: Rooms data extracted! %s", self.file_name, rooms.get_rooms()
79
+ )
80
+ # Convert room_properties to the format expected by async_get_robot_in_room
81
+ self.rooms_pos = []
82
+ for room_id, room_data in room_properties.items():
83
+ self.rooms_pos.append(
84
+ {"name": room_data["name"], "outline": room_data["outline"]}
85
+ )
86
+ else:
87
+ LOGGER.debug("%s: Rooms data not available!", self.file_name)
88
+ self.rooms_pos = None
89
+ return room_properties
116
90
 
117
91
  # noinspection PyUnresolvedReferences,PyUnboundLocalVariable
118
92
  async def async_get_image_from_json(
@@ -164,9 +138,6 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
164
138
  img_np_array = await self.draw.create_empty_image(
165
139
  size_x, size_y, colors["background"]
166
140
  )
167
-
168
- LOGGER.info("%s: Drawing map with color blending", self.file_name)
169
-
170
141
  # Draw layers and segments if enabled
171
142
  room_id = 0
172
143
  # Keep track of disabled rooms to skip their walls later
@@ -218,25 +189,13 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
218
189
  room_element = getattr(
219
190
  DrawableElement, f"ROOM_{current_room_id}", None
220
191
  )
221
- if room_element:
222
- # Log the room check for debugging
223
- LOGGER.debug(
224
- "%s: Checking if room %d is enabled: %s",
225
- self.file_name,
226
- current_room_id,
227
- self.drawing_config.is_enabled(
228
- room_element
229
- ),
230
- )
231
192
 
232
- # Skip this room if it's disabled
233
- if not self.drawing_config.is_enabled(
234
- room_element
235
- ):
236
- room_id = (
237
- room_id + 1
238
- ) % 16 # Increment room_id even if we skip
239
- continue
193
+ # Skip this room if it's disabled
194
+ if not self.drawing_config.is_enabled(room_element):
195
+ room_id = (
196
+ room_id + 1
197
+ ) % 16 # Increment room_id even if we skip
198
+ continue
240
199
 
241
200
  # Check if this is a wall layer and if walls are enabled
242
201
  is_wall_layer = layer_type == "wall"
@@ -244,22 +203,7 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
244
203
  if not self.drawing_config.is_enabled(
245
204
  DrawableElement.WALL
246
205
  ):
247
- LOGGER.info(
248
- "%s: Skipping wall layer because WALL element is disabled",
249
- self.file_name,
250
- )
251
- continue
252
-
253
- # Filter out walls for disabled rooms
254
- if disabled_rooms:
255
- # Need to modify compressed_pixels_list to exclude walls of disabled rooms
256
- # This requires knowledge of which walls belong to which rooms
257
- # For now, we'll just log that we're drawing walls for all rooms
258
- LOGGER.debug(
259
- "%s: Drawing walls for all rooms (including disabled ones)",
260
- self.file_name,
261
- )
262
- # In a real implementation, we would filter the walls here
206
+ pass
263
207
 
264
208
  # Draw the layer
265
209
  (
@@ -281,10 +225,6 @@ class HypferMapImageHandler(BaseHandler, AutoCrop):
281
225
  room_element = getattr(
282
226
  DrawableElement, f"ROOM_{room_id}", None
283
227
  )
284
- if room_element:
285
- # This is a simplification - in a real implementation we would
286
- # need to identify the exact pixels that belong to this room
287
- pass
288
228
 
289
229
  # Draw the virtual walls if enabled
290
230
  if self.drawing_config.is_enabled(DrawableElement.VIRTUAL_WALL):
@@ -29,10 +29,10 @@ from .config.types import (
29
29
  )
30
30
  from .config.utils import (
31
31
  BaseHandler,
32
+ async_extract_room_outline,
32
33
  initialize_drawing_config,
33
34
  manage_drawable_elements,
34
35
  prepare_resize_params,
35
- async_extract_room_outline,
36
36
  )
37
37
  from .map_data import RandImageData
38
38
  from .reimg_draw import ImageDraw
@@ -0,0 +1,225 @@
1
+ """
2
+ Hipfer Rooms Handler Module.
3
+ Handles room data extraction and processing for Valetudo Hipfer vacuum maps.
4
+ Provides async methods for room outline extraction and properties management.
5
+ Version: 0.1.9
6
+ """
7
+
8
+ from __future__ import annotations
9
+
10
+ import time
11
+ from typing import Any, Dict, Optional, Tuple
12
+
13
+ import numpy as np
14
+ from scipy.ndimage import binary_dilation, binary_erosion
15
+ from scipy.spatial import ConvexHull
16
+
17
+ from .config.drawable_elements import DrawableElement, DrawingConfig
18
+ from .config.types import LOGGER, RoomsProperties
19
+
20
+
21
+ class RoomsHandler:
22
+ """
23
+ Handler for extracting and managing room data from Hipfer vacuum maps.
24
+
25
+ This class provides methods to:
26
+ - Extract room outlines using the Ramer-Douglas-Peucker algorithm
27
+ - Process room properties from JSON data
28
+ - Generate room masks and extract contours
29
+
30
+ All methods are async for better integration with the rest of the codebase.
31
+ """
32
+
33
+ def __init__(self, vacuum_id: str, drawing_config: Optional[DrawingConfig] = None):
34
+ """
35
+ Initialize the HipferRoomsHandler.
36
+
37
+ Args:
38
+ vacuum_id: Identifier for the vacuum
39
+ drawing_config: Configuration for which elements to draw (optional)
40
+ """
41
+ self.vacuum_id = vacuum_id
42
+ self.drawing_config = drawing_config
43
+ self.current_json_data = (
44
+ None # Will store the current JSON data being processed
45
+ )
46
+
47
+ @staticmethod
48
+ def sublist(data: list, chunk_size: int) -> list:
49
+ return [data[i : i + chunk_size] for i in range(0, len(data), chunk_size)]
50
+
51
+ @staticmethod
52
+ def convex_hull_outline(mask: np.ndarray) -> list[tuple[int, int]]:
53
+ y_indices, x_indices = np.where(mask > 0)
54
+ if len(x_indices) == 0 or len(y_indices) == 0:
55
+ return []
56
+
57
+ points = np.column_stack((x_indices, y_indices))
58
+ if len(points) < 3:
59
+ return [(int(x), int(y)) for x, y in points]
60
+
61
+ hull = ConvexHull(points)
62
+ # Convert numpy.int64 values to regular Python integers
63
+ hull_points = [
64
+ (int(points[vertex][0]), int(points[vertex][1])) for vertex in hull.vertices
65
+ ]
66
+ if hull_points[0] != hull_points[-1]:
67
+ hull_points.append(hull_points[0])
68
+ return hull_points
69
+
70
+ async def _process_room_layer(
71
+ self, layer: Dict[str, Any], width: int, height: int, pixel_size: int
72
+ ) -> Tuple[Optional[str], Optional[Dict[str, Any]]]:
73
+ """Process a single room layer and extract its outline.
74
+
75
+ Args:
76
+ layer: The layer data from the JSON
77
+ width: The width of the map
78
+ height: The height of the map
79
+ pixel_size: The size of each pixel
80
+
81
+ Returns:
82
+ Tuple of (room_id, room_data) or (None, None) if processing failed
83
+ """
84
+ meta_data = layer.get("metaData", {})
85
+ segment_id = meta_data.get("segmentId")
86
+ name = meta_data.get("name", "Room {}".format(segment_id))
87
+ compressed_pixels = layer.get("compressedPixels", [])
88
+ pixels = self.sublist(compressed_pixels, 3)
89
+
90
+ # Check if this room is enabled in the drawing configuration
91
+ if self.drawing_config is not None:
92
+ # Convert segment_id to room element (ROOM_1 to ROOM_15)
93
+ try:
94
+ # Segment IDs might not be sequential, so we need to map them to room elements
95
+ # We'll use a simple approach: if segment_id is an integer, use it directly
96
+ room_element_id = int(segment_id)
97
+ if 1 <= room_element_id <= 15:
98
+ room_element = getattr(
99
+ DrawableElement, f"ROOM_{room_element_id}", None
100
+ )
101
+ if room_element:
102
+ is_enabled = self.drawing_config.is_enabled(room_element)
103
+ if not is_enabled:
104
+ # Skip this room if it's disabled
105
+ LOGGER.debug("Skipping disabled room %s", segment_id)
106
+ return None, None
107
+ except (ValueError, TypeError):
108
+ # If segment_id is not a valid integer, we can't map it to a room element
109
+ # In this case, we'll include the room (fail open)
110
+ LOGGER.debug(
111
+ "Could not convert segment_id %s to room element", segment_id
112
+ )
113
+
114
+ # Optimization: Create a smaller mask for just the room area
115
+ if not pixels:
116
+ # Skip if no pixels
117
+ return None, None
118
+
119
+ # Convert to numpy arrays for vectorized operations
120
+ pixel_data = np.array(pixels)
121
+
122
+ if pixel_data.size == 0:
123
+ return None, None
124
+
125
+ # Find the actual bounds of the room to create a smaller mask
126
+ # Add padding to ensure we don't lose edge details
127
+ padding = 10 # Add padding pixels around the room
128
+ min_x = max(0, int(np.min(pixel_data[:, 0])) - padding)
129
+ max_x = min(
130
+ width, int(np.max(pixel_data[:, 0]) + np.max(pixel_data[:, 2])) + padding
131
+ )
132
+ min_y = max(0, int(np.min(pixel_data[:, 1])) - padding)
133
+ max_y = min(height, int(np.max(pixel_data[:, 1]) + 1) + padding)
134
+
135
+ # Create a smaller mask for just the room area (much faster)
136
+ local_width = max_x - min_x
137
+ local_height = max_y - min_y
138
+
139
+ # Skip if dimensions are invalid
140
+ if local_width <= 0 or local_height <= 0:
141
+ return None, None
142
+
143
+ # Create a smaller mask
144
+ local_mask = np.zeros((local_height, local_width), dtype=np.uint8)
145
+
146
+ # Fill the mask efficiently
147
+ for x, y, length in pixel_data:
148
+ x, y, length = int(x), int(y), int(length)
149
+ # Adjust coordinates to local mask
150
+ local_x = x - min_x
151
+ local_y = y - min_y
152
+
153
+ # Ensure we're within bounds
154
+ if 0 <= local_y < local_height and 0 <= local_x < local_width:
155
+ # Calculate the end point, clamping to mask width
156
+ end_x = min(local_x + length, local_width)
157
+ if end_x > local_x: # Only process if there's a valid segment
158
+ local_mask[local_y, local_x:end_x] = 1
159
+
160
+ # Apply morphological operations
161
+ struct_elem = np.ones((3, 3), dtype=np.uint8)
162
+ eroded = binary_erosion(local_mask, structure=struct_elem, iterations=1)
163
+ mask = binary_dilation(eroded, structure=struct_elem, iterations=1).astype(
164
+ np.uint8
165
+ )
166
+
167
+ # Extract contour from the mask
168
+ outline = self.convex_hull_outline(mask)
169
+ if not outline:
170
+ return None, None
171
+
172
+ # Adjust coordinates back to global space
173
+ outline = [(x + min_x, y + min_y) for (x, y) in outline]
174
+
175
+ # Use coordinates as-is without flipping Y coordinates
176
+ xs, ys = zip(*outline)
177
+ x_min, x_max = min(xs), max(xs)
178
+ y_min, y_max = min(ys), max(ys)
179
+
180
+ room_id = str(segment_id)
181
+
182
+ # Scale coordinates by pixel_size and convert to regular Python integers
183
+ scaled_outline = [
184
+ (int(x * pixel_size), int(y * pixel_size)) for x, y in outline
185
+ ]
186
+ room_data = {
187
+ "number": segment_id,
188
+ "outline": scaled_outline,
189
+ "name": name,
190
+ "x": int(((x_min + x_max) * pixel_size) // 2),
191
+ "y": int(((y_min + y_max) * pixel_size) // 2),
192
+ }
193
+
194
+ return room_id, room_data
195
+
196
+ async def async_extract_room_properties(self, json_data) -> RoomsProperties:
197
+ """Extract room properties from the JSON data.
198
+
199
+ This method processes all room layers in the JSON data and extracts their outlines.
200
+ It respects the drawing configuration, skipping rooms that are disabled.
201
+
202
+ Args:
203
+ json_data: The JSON data from the vacuum
204
+
205
+ Returns:
206
+ Dictionary of room properties
207
+ """
208
+ start_total = time.time()
209
+ room_properties = {}
210
+ pixel_size = json_data.get("pixelSize", 5)
211
+ height = json_data["size"]["y"]
212
+ width = json_data["size"]["x"]
213
+
214
+ for layer in json_data.get("layers", []):
215
+ if layer.get("__class") == "MapLayer" and layer.get("type") == "segment":
216
+ room_id, room_data = await self._process_room_layer(
217
+ layer, width, height, pixel_size
218
+ )
219
+ if room_id is not None and room_data is not None:
220
+ room_properties[room_id] = room_data
221
+
222
+ # Log timing information
223
+ total_time = time.time() - start_total
224
+ LOGGER.debug("Room extraction Total time: %.3fs", total_time)
225
+ return room_properties
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: valetudo-map-parser
3
- Version: 0.1.9b53
3
+ Version: 0.1.9b54
4
4
  Summary: A Python library to parse Valetudo map data returning a PIL Image object.
5
5
  License: Apache-2.0
6
6
  Author: Sandro Cantarella
@@ -0,0 +1,27 @@
1
+ valetudo_map_parser/__init__.py,sha256=A_rCyIP5ll-ovzHMEsGMgbNmB39vDtqgL5hpZQkNbPQ,1018
2
+ valetudo_map_parser/config/__init__.py,sha256=DQ9plV3ZF_K25Dp5ZQHPDoG-40dQoJNdNi-dfNeR3Zc,48
3
+ valetudo_map_parser/config/auto_crop.py,sha256=6xt_wJQqphddWhlrr7MNUkodCi8ZYdRk42qvAaxlYCM,13546
4
+ valetudo_map_parser/config/color_utils.py,sha256=nXD6WeNmdFdoMxPDW-JFpjnxJSaZR1jX-ouNfrx6zvE,4502
5
+ valetudo_map_parser/config/colors.py,sha256=DG-oPQoN5gsnwDbEsuFr8a0hRCxmbFHObWa4_5pr-70,29910
6
+ valetudo_map_parser/config/drawable.py,sha256=2MeVHXqZuVuJk3eerMJYGwo25rVetHx3xB_vxecEFOQ,34168
7
+ valetudo_map_parser/config/drawable_elements.py,sha256=o-5oiXmfqPwNQLzKIhkEcZD_A47rIU9E0CqKgWipxgc,11516
8
+ valetudo_map_parser/config/enhanced_drawable.py,sha256=QlGxlUMVgECUXPtFwIslyjubWxQuhIixsRymWV3lEvk,12586
9
+ valetudo_map_parser/config/optimized_element_map.py,sha256=52BCnkvVv9bre52LeVIfT8nhnEIpc0TuWTv1xcNu0Rk,15744
10
+ valetudo_map_parser/config/rand25_parser.py,sha256=kIayyqVZBfQfAMkiArzqrrj9vqZB3pkgT0Y5ufrQmGA,16448
11
+ valetudo_map_parser/config/room_outline.py,sha256=D20D-yeyKnlmVbW9lI7bsPtQGn2XkcWow6YNOEPnWVg,4800
12
+ valetudo_map_parser/config/shared.py,sha256=LJPDE8MhmbY0CXXMbtDff-JVtmLKGjoWE6c4mpsaEc4,10419
13
+ valetudo_map_parser/config/types.py,sha256=TaRKoo7G7WIUw7ljOz2Vn5oYzKaLyQH-7Eb8ZYql8Ls,17464
14
+ valetudo_map_parser/config/utils.py,sha256=CFuuiS5IufEu9aeaZwi7xa1jEF1z6yDZB0mcyVX79Xo,29261
15
+ valetudo_map_parser/hypfer_draw.py,sha256=afFJ9woTVYOfETbxFLU74r4H2PUW_eTfEvhKuYKH8h0,26226
16
+ valetudo_map_parser/hypfer_handler.py,sha256=wvkZt6MsUF0gkHZDAwiUgOOawkdvakRzYBV3NtjxuJQ,19938
17
+ valetudo_map_parser/hypfer_rooms_handler.py,sha256=NkpOA6Gdq-2D3lLAxvtNuuWMvPXHxeMY2TO5RZLSHlU,22652
18
+ valetudo_map_parser/map_data.py,sha256=zQKE8EzWxR0r0qyfD1QQq51T1wFrpcIeXtnpm92-LXQ,17743
19
+ valetudo_map_parser/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
+ valetudo_map_parser/rand25_handler.py,sha256=vK4lF7RYKKeh_6IyvUWDmwFqULHdDa3pz_Wb00KAsXs,19988
21
+ valetudo_map_parser/reimg_draw.py,sha256=1q8LkNTPHEA9Tsapc_JnVw51kpPYNhaBU-KmHkefCQY,12507
22
+ valetudo_map_parser/rooms_handler.py,sha256=GKqDji8LWAowQMDAbSk-MYwzAHVj25rcF60GyTWeSpY,8687
23
+ valetudo_map_parser-0.1.9b54.dist-info/LICENSE,sha256=Lh-qBbuRV0-jiCIBhfV7NgdwFxQFOXH3BKOzK865hRs,10480
24
+ valetudo_map_parser-0.1.9b54.dist-info/METADATA,sha256=B7aiLJ5yxR6ye5YI6VlOKVTJCfZ2oU1YHdkYloViZA0,3321
25
+ valetudo_map_parser-0.1.9b54.dist-info/NOTICE.txt,sha256=5lTOuWiU9aiEnJ2go8sc7lTJ7ntMBx0g0GFnNrswCY4,2533
26
+ valetudo_map_parser-0.1.9b54.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
27
+ valetudo_map_parser-0.1.9b54.dist-info/RECORD,,
@@ -1,26 +0,0 @@
1
- valetudo_map_parser/__init__.py,sha256=cewtLadNSOg3X2Ts2SuG8mTJqo0ncsFRg_sQ4VkM4ow,1037
2
- valetudo_map_parser/config/__init__.py,sha256=DQ9plV3ZF_K25Dp5ZQHPDoG-40dQoJNdNi-dfNeR3Zc,48
3
- valetudo_map_parser/config/auto_crop.py,sha256=6OvRsWzXMXBaSEvgwpaaisNdozDKiDyTmPjknFxoUMc,12624
4
- valetudo_map_parser/config/color_utils.py,sha256=D4NXRhuPdQ7UDKM3vLNYR0HnACl9AB75EnfCp5tGliI,4502
5
- valetudo_map_parser/config/colors.py,sha256=LE7sl4Qy0TkxbkjgB3dotYIfXqhc-fllkFQxexVvUvg,29909
6
- valetudo_map_parser/config/drawable.py,sha256=qenuxD1-Vvyus9o8alJFYRqL54aO3pakMqPSYNGvpe8,34169
7
- valetudo_map_parser/config/drawable_elements.py,sha256=bkEwdbx1upt9vaPaqE_VR1rtwRsaiH-IVKc3mHNa8IY,12065
8
- valetudo_map_parser/config/enhanced_drawable.py,sha256=6yGoOq_dLf2VCghO_URSyGfLAshFyzS3iEPeHw1PeDo,12586
9
- valetudo_map_parser/config/optimized_element_map.py,sha256=52BCnkvVv9bre52LeVIfT8nhnEIpc0TuWTv1xcNu0Rk,15744
10
- valetudo_map_parser/config/rand25_parser.py,sha256=kIayyqVZBfQfAMkiArzqrrj9vqZB3pkgT0Y5ufrQmGA,16448
11
- valetudo_map_parser/config/room_outline.py,sha256=D20D-yeyKnlmVbW9lI7bsPtQGn2XkcWow6YNOEPnWVg,4800
12
- valetudo_map_parser/config/shared.py,sha256=GIEMF-M6BVA6SFBrql7chV7TciWNMLJ8geqwHB0NrW8,11253
13
- valetudo_map_parser/config/types.py,sha256=e-eZSwbPm3m5JfCDaKhnUFspmcRFSv74huxegkSBDXM,17566
14
- valetudo_map_parser/config/utils.py,sha256=RsMjpjVqNbkI502yhLiRaB0GjCADqmRRcz-TkC6zklQ,31073
15
- valetudo_map_parser/hypfer_draw.py,sha256=P8CrKysLaBb63ZArfqxN2Og6JCU6sPHPFHOte5noCGg,26654
16
- valetudo_map_parser/hypfer_handler.py,sha256=WYFrp-q5wBsy0cTcVQUCXXVGTtW30z2W2dYvjKz2el8,23292
17
- valetudo_map_parser/hypfer_rooms_handler.py,sha256=NkpOA6Gdq-2D3lLAxvtNuuWMvPXHxeMY2TO5RZLSHlU,22652
18
- valetudo_map_parser/map_data.py,sha256=zQKE8EzWxR0r0qyfD1QQq51T1wFrpcIeXtnpm92-LXQ,17743
19
- valetudo_map_parser/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- valetudo_map_parser/rand25_handler.py,sha256=eLFX_gmGLaWQwvp8hVj8CgcNOfLsYNIdE1OLRcQy_yM,19988
21
- valetudo_map_parser/reimg_draw.py,sha256=1q8LkNTPHEA9Tsapc_JnVw51kpPYNhaBU-KmHkefCQY,12507
22
- valetudo_map_parser-0.1.9b53.dist-info/LICENSE,sha256=Lh-qBbuRV0-jiCIBhfV7NgdwFxQFOXH3BKOzK865hRs,10480
23
- valetudo_map_parser-0.1.9b53.dist-info/METADATA,sha256=i8nDujD2s2Qs62WwEv-3AIO23XJTvxvSZXY5QcswEtc,3321
24
- valetudo_map_parser-0.1.9b53.dist-info/NOTICE.txt,sha256=5lTOuWiU9aiEnJ2go8sc7lTJ7ntMBx0g0GFnNrswCY4,2533
25
- valetudo_map_parser-0.1.9b53.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
26
- valetudo_map_parser-0.1.9b53.dist-info/RECORD,,