valetudo-map-parser 0.1.9b43__py3-none-any.whl → 0.1.9b45__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- valetudo_map_parser/config/colors.py +88 -8
- valetudo_map_parser/config/drawable.py +83 -5
- valetudo_map_parser/config/drawable_elements.py +591 -16
- valetudo_map_parser/config/enhanced_drawable.py +4 -9
- valetudo_map_parser/config/optimized_element_map.py +363 -0
- valetudo_map_parser/config/room_outline.py +148 -0
- valetudo_map_parser/config/shared.py +1 -0
- valetudo_map_parser/config/utils.py +82 -65
- valetudo_map_parser/hypfer_draw.py +30 -32
- valetudo_map_parser/hypfer_handler.py +88 -100
- valetudo_map_parser/map_data.py +0 -9
- valetudo_map_parser/rand25_handler.py +173 -132
- valetudo_map_parser/utils/__init__.py +5 -0
- valetudo_map_parser/utils/color_utils.py +62 -0
- {valetudo_map_parser-0.1.9b43.dist-info → valetudo_map_parser-0.1.9b45.dist-info}/METADATA +2 -1
- valetudo_map_parser-0.1.9b45.dist-info/RECORD +27 -0
- valetudo_map_parser-0.1.9b43.dist-info/RECORD +0 -23
- {valetudo_map_parser-0.1.9b43.dist-info → valetudo_map_parser-0.1.9b45.dist-info}/LICENSE +0 -0
- {valetudo_map_parser-0.1.9b43.dist-info → valetudo_map_parser-0.1.9b45.dist-info}/NOTICE.txt +0 -0
- {valetudo_map_parser-0.1.9b43.dist-info → valetudo_map_parser-0.1.9b45.dist-info}/WHEEL +0 -0
@@ -66,10 +66,10 @@ class EnhancedDrawable(Drawable):
|
|
66
66
|
|
67
67
|
# Convert back to 0-255 range and return as tuple
|
68
68
|
return (
|
69
|
-
int(max(0, min(255, r_out))),
|
70
|
-
int(max(0, min(255, g_out))),
|
71
|
-
int(max(0, min(255, b_out))),
|
72
|
-
int(max(0, min(255, a_out * 255))),
|
69
|
+
int(max(0, min(255, int(r_out)))),
|
70
|
+
int(max(0, min(255, int(g_out)))),
|
71
|
+
int(max(0, min(255, int(b_out)))),
|
72
|
+
int(max(0, min(255, int(a_out * 255)))),
|
73
73
|
)
|
74
74
|
|
75
75
|
def blend_pixel(
|
@@ -280,11 +280,6 @@ class EnhancedDrawable(Drawable):
|
|
280
280
|
DrawableElement.ROBOT,
|
281
281
|
element_map,
|
282
282
|
)
|
283
|
-
|
284
|
-
# TODO: Draw robot orientation indicator
|
285
|
-
# This would be a line or triangle showing the direction
|
286
|
-
# For now, we'll skip this part as it requires more complex drawing
|
287
|
-
|
288
283
|
return array, element_map
|
289
284
|
|
290
285
|
async def _draw_charger(
|
@@ -0,0 +1,363 @@
|
|
1
|
+
"""
|
2
|
+
Optimized Element Map Generator.
|
3
|
+
Uses scipy for efficient element map generation and processing.
|
4
|
+
Version: 0.1.9
|
5
|
+
"""
|
6
|
+
|
7
|
+
from __future__ import annotations
|
8
|
+
|
9
|
+
import logging
|
10
|
+
import numpy as np
|
11
|
+
from scipy import ndimage
|
12
|
+
|
13
|
+
from .drawable_elements import DrawableElement, DrawingConfig
|
14
|
+
from .types import LOGGER
|
15
|
+
|
16
|
+
|
17
|
+
class OptimizedElementMapGenerator:
|
18
|
+
"""Class for generating 2D element maps from JSON data with optimized performance.
|
19
|
+
|
20
|
+
This class creates a 2D array where each cell contains an integer code
|
21
|
+
representing the element at that position (floor, wall, room, etc.).
|
22
|
+
It uses scipy for efficient processing and supports sparse matrices for memory efficiency.
|
23
|
+
"""
|
24
|
+
|
25
|
+
def __init__(self, drawing_config: DrawingConfig = None, shared_data=None):
|
26
|
+
"""Initialize the optimized element map generator.
|
27
|
+
|
28
|
+
Args:
|
29
|
+
drawing_config: Optional drawing configuration for element properties
|
30
|
+
shared_data: Shared data object for accessing common resources
|
31
|
+
"""
|
32
|
+
self.drawing_config = drawing_config or DrawingConfig()
|
33
|
+
self.shared = shared_data
|
34
|
+
self.element_map = None
|
35
|
+
self.element_map_shape = None
|
36
|
+
self.scale_info = None
|
37
|
+
self.file_name = getattr(shared_data, 'file_name', 'ElementMap') if shared_data else 'ElementMap'
|
38
|
+
|
39
|
+
async def async_generate_from_json(self, json_data, existing_element_map=None):
|
40
|
+
"""Generate a 2D element map from JSON data with optimized performance.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
json_data: The JSON data from the vacuum
|
44
|
+
existing_element_map: Optional pre-created element map to populate
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
numpy.ndarray: The 2D element map
|
48
|
+
"""
|
49
|
+
if not self.shared:
|
50
|
+
LOGGER.warning("Shared data not provided, some features may not work.")
|
51
|
+
return None
|
52
|
+
|
53
|
+
# Use existing element map if provided
|
54
|
+
if existing_element_map is not None:
|
55
|
+
self.element_map = existing_element_map
|
56
|
+
return existing_element_map
|
57
|
+
|
58
|
+
# Detect JSON format
|
59
|
+
is_valetudo = "layers" in json_data and "pixelSize" in json_data
|
60
|
+
is_rand256 = "map_data" in json_data
|
61
|
+
|
62
|
+
if not (is_valetudo or is_rand256):
|
63
|
+
LOGGER.error("Unknown JSON format, cannot generate element map")
|
64
|
+
return None
|
65
|
+
|
66
|
+
if is_valetudo:
|
67
|
+
return await self._generate_valetudo_element_map(json_data)
|
68
|
+
elif is_rand256:
|
69
|
+
return await self._generate_rand256_element_map(json_data)
|
70
|
+
|
71
|
+
async def _generate_valetudo_element_map(self, json_data):
|
72
|
+
"""Generate an element map from Valetudo format JSON data."""
|
73
|
+
# Get map dimensions from the JSON data
|
74
|
+
size_x = json_data["size"]["x"]
|
75
|
+
size_y = json_data["size"]["y"]
|
76
|
+
pixel_size = json_data["pixelSize"]
|
77
|
+
|
78
|
+
# Calculate downscale factor based on pixel size
|
79
|
+
# Standard pixel size is 5mm, so adjust accordingly
|
80
|
+
downscale_factor = max(1, pixel_size // 5 * 2) # More aggressive downscaling
|
81
|
+
|
82
|
+
# Calculate dimensions for the downscaled map
|
83
|
+
map_width = max(100, size_x // (pixel_size * downscale_factor))
|
84
|
+
map_height = max(100, size_y // (pixel_size * downscale_factor))
|
85
|
+
|
86
|
+
LOGGER.info(
|
87
|
+
"%s: Creating optimized element map with dimensions: %dx%d (downscale factor: %d)",
|
88
|
+
self.file_name,
|
89
|
+
map_width, map_height, downscale_factor
|
90
|
+
)
|
91
|
+
|
92
|
+
# Create the element map at the reduced size
|
93
|
+
element_map = np.zeros((map_height, map_width), dtype=np.int32)
|
94
|
+
element_map[:] = DrawableElement.FLOOR
|
95
|
+
|
96
|
+
# Store scaling information for coordinate conversion
|
97
|
+
self.scale_info = {
|
98
|
+
"original_size": (size_x, size_y),
|
99
|
+
"map_size": (map_width, map_height),
|
100
|
+
"scale_factor": downscale_factor * pixel_size,
|
101
|
+
"pixel_size": pixel_size
|
102
|
+
}
|
103
|
+
|
104
|
+
# Process layers at the reduced resolution
|
105
|
+
for layer in json_data.get("layers", []):
|
106
|
+
layer_type = layer.get("type")
|
107
|
+
|
108
|
+
# Process rooms (segments)
|
109
|
+
if layer_type == "segment":
|
110
|
+
# Get room ID
|
111
|
+
meta_data = layer.get("metaData", {})
|
112
|
+
segment_id = meta_data.get("segmentId")
|
113
|
+
|
114
|
+
if segment_id is not None:
|
115
|
+
# Convert segment_id to int if it's a string
|
116
|
+
segment_id_int = int(segment_id) if isinstance(segment_id, str) else segment_id
|
117
|
+
if 1 <= segment_id_int <= 15:
|
118
|
+
room_element = getattr(DrawableElement, f"ROOM_{segment_id_int}", None)
|
119
|
+
|
120
|
+
# Skip if room is disabled
|
121
|
+
if room_element is None or not self.drawing_config.is_enabled(room_element):
|
122
|
+
continue
|
123
|
+
|
124
|
+
# Create a temporary high-resolution mask for this room
|
125
|
+
temp_mask = np.zeros((size_y // pixel_size, size_x // pixel_size), dtype=np.uint8)
|
126
|
+
|
127
|
+
# Process pixels for this room
|
128
|
+
compressed_pixels = layer.get("compressedPixels", [])
|
129
|
+
if compressed_pixels:
|
130
|
+
# Process in chunks of 3 (x, y, count)
|
131
|
+
for i in range(0, len(compressed_pixels), 3):
|
132
|
+
if i + 2 < len(compressed_pixels):
|
133
|
+
x = compressed_pixels[i]
|
134
|
+
y = compressed_pixels[i+1]
|
135
|
+
count = compressed_pixels[i+2]
|
136
|
+
|
137
|
+
# Set pixels in the high-resolution mask
|
138
|
+
for j in range(count):
|
139
|
+
px = x + j
|
140
|
+
if 0 <= y < temp_mask.shape[0] and 0 <= px < temp_mask.shape[1]:
|
141
|
+
temp_mask[y, px] = 1
|
142
|
+
|
143
|
+
# Use scipy to downsample the mask efficiently
|
144
|
+
# This preserves the room shape better than simple decimation
|
145
|
+
downsampled_mask = ndimage.zoom(
|
146
|
+
temp_mask,
|
147
|
+
(map_height / temp_mask.shape[0], map_width / temp_mask.shape[1]),
|
148
|
+
order=0 # Nearest neighbor interpolation
|
149
|
+
)
|
150
|
+
|
151
|
+
# Apply the downsampled mask to the element map
|
152
|
+
element_map[downsampled_mask > 0] = room_element
|
153
|
+
|
154
|
+
# Clean up
|
155
|
+
del temp_mask, downsampled_mask
|
156
|
+
|
157
|
+
# Process walls similarly
|
158
|
+
elif layer_type == "wall" and self.drawing_config.is_enabled(DrawableElement.WALL):
|
159
|
+
# Create a temporary high-resolution mask for walls
|
160
|
+
temp_mask = np.zeros((size_y // pixel_size, size_x // pixel_size), dtype=np.uint8)
|
161
|
+
|
162
|
+
# Process compressed pixels for walls
|
163
|
+
compressed_pixels = layer.get("compressedPixels", [])
|
164
|
+
if compressed_pixels:
|
165
|
+
# Process in chunks of 3 (x, y, count)
|
166
|
+
for i in range(0, len(compressed_pixels), 3):
|
167
|
+
if i + 2 < len(compressed_pixels):
|
168
|
+
x = compressed_pixels[i]
|
169
|
+
y = compressed_pixels[i+1]
|
170
|
+
count = compressed_pixels[i+2]
|
171
|
+
|
172
|
+
# Set pixels in the high-resolution mask
|
173
|
+
for j in range(count):
|
174
|
+
px = x + j
|
175
|
+
if 0 <= y < temp_mask.shape[0] and 0 <= px < temp_mask.shape[1]:
|
176
|
+
temp_mask[y, px] = 1
|
177
|
+
|
178
|
+
# Use scipy to downsample the mask efficiently
|
179
|
+
downsampled_mask = ndimage.zoom(
|
180
|
+
temp_mask,
|
181
|
+
(map_height / temp_mask.shape[0], map_width / temp_mask.shape[1]),
|
182
|
+
order=0
|
183
|
+
)
|
184
|
+
|
185
|
+
# Apply the downsampled mask to the element map
|
186
|
+
# Only overwrite floor pixels, not room pixels
|
187
|
+
wall_mask = (downsampled_mask > 0) & (element_map == DrawableElement.FLOOR)
|
188
|
+
element_map[wall_mask] = DrawableElement.WALL
|
189
|
+
|
190
|
+
# Clean up
|
191
|
+
del temp_mask, downsampled_mask
|
192
|
+
|
193
|
+
# Store the element map
|
194
|
+
self.element_map = element_map
|
195
|
+
self.element_map_shape = element_map.shape
|
196
|
+
|
197
|
+
LOGGER.info(
|
198
|
+
"%s: Element map generation complete with shape: %s",
|
199
|
+
self.file_name,
|
200
|
+
element_map.shape
|
201
|
+
)
|
202
|
+
return element_map
|
203
|
+
|
204
|
+
async def _generate_rand256_element_map(self, json_data):
|
205
|
+
"""Generate an element map from Rand256 format JSON data."""
|
206
|
+
# Get map dimensions from the Rand256 JSON data
|
207
|
+
map_data = json_data["map_data"]
|
208
|
+
size_x = map_data["dimensions"]["width"]
|
209
|
+
size_y = map_data["dimensions"]["height"]
|
210
|
+
|
211
|
+
# Calculate downscale factor
|
212
|
+
downscale_factor = max(1, min(size_x, size_y) // 500) # Target ~500px in smallest dimension
|
213
|
+
|
214
|
+
# Calculate dimensions for the downscaled map
|
215
|
+
map_width = max(100, size_x // downscale_factor)
|
216
|
+
map_height = max(100, size_y // downscale_factor)
|
217
|
+
|
218
|
+
LOGGER.info(
|
219
|
+
"%s: Creating optimized Rand256 element map with dimensions: %dx%d (downscale factor: %d)",
|
220
|
+
self.file_name,
|
221
|
+
map_width, map_height, downscale_factor
|
222
|
+
)
|
223
|
+
|
224
|
+
# Create the element map at the reduced size
|
225
|
+
element_map = np.zeros((map_height, map_width), dtype=np.int32)
|
226
|
+
element_map[:] = DrawableElement.FLOOR
|
227
|
+
|
228
|
+
# Store scaling information for coordinate conversion
|
229
|
+
self.scale_info = {
|
230
|
+
"original_size": (size_x, size_y),
|
231
|
+
"map_size": (map_width, map_height),
|
232
|
+
"scale_factor": downscale_factor,
|
233
|
+
"pixel_size": 1 # Rand256 uses 1:1 pixel mapping
|
234
|
+
}
|
235
|
+
|
236
|
+
# Process rooms
|
237
|
+
if "rooms" in map_data and map_data["rooms"]:
|
238
|
+
for room in map_data["rooms"]:
|
239
|
+
# Get room ID and check if it's enabled
|
240
|
+
room_id_int = room["id"]
|
241
|
+
|
242
|
+
# Get room element code (ROOM_1, ROOM_2, etc.)
|
243
|
+
room_element = None
|
244
|
+
if 0 < room_id_int <= 15:
|
245
|
+
room_element = getattr(DrawableElement, f"ROOM_{room_id_int}", None)
|
246
|
+
|
247
|
+
# Skip if room is disabled
|
248
|
+
if room_element is None or not self.drawing_config.is_enabled(room_element):
|
249
|
+
continue
|
250
|
+
|
251
|
+
if "coordinates" in room:
|
252
|
+
# Create a high-resolution mask for this room
|
253
|
+
temp_mask = np.zeros((size_y, size_x), dtype=np.uint8)
|
254
|
+
|
255
|
+
# Fill the mask with room coordinates
|
256
|
+
for coord in room["coordinates"]:
|
257
|
+
x, y = coord
|
258
|
+
if 0 <= y < size_y and 0 <= x < size_x:
|
259
|
+
temp_mask[y, x] = 1
|
260
|
+
|
261
|
+
# Use scipy to downsample the mask efficiently
|
262
|
+
downsampled_mask = ndimage.zoom(
|
263
|
+
temp_mask,
|
264
|
+
(map_height / size_y, map_width / size_x),
|
265
|
+
order=0 # Nearest neighbor interpolation
|
266
|
+
)
|
267
|
+
|
268
|
+
# Apply the downsampled mask to the element map
|
269
|
+
element_map[downsampled_mask > 0] = room_element
|
270
|
+
|
271
|
+
# Clean up
|
272
|
+
del temp_mask, downsampled_mask
|
273
|
+
|
274
|
+
# Process walls
|
275
|
+
if "walls" in map_data and map_data["walls"] and self.drawing_config.is_enabled(DrawableElement.WALL):
|
276
|
+
# Create a high-resolution mask for walls
|
277
|
+
temp_mask = np.zeros((size_y, size_x), dtype=np.uint8)
|
278
|
+
|
279
|
+
# Fill the mask with wall coordinates
|
280
|
+
for coord in map_data["walls"]:
|
281
|
+
x, y = coord
|
282
|
+
if 0 <= y < size_y and 0 <= x < size_x:
|
283
|
+
temp_mask[y, x] = 1
|
284
|
+
|
285
|
+
# Use scipy to downsample the mask efficiently
|
286
|
+
downsampled_mask = ndimage.zoom(
|
287
|
+
temp_mask,
|
288
|
+
(map_height / size_y, map_width / size_x),
|
289
|
+
order=0
|
290
|
+
)
|
291
|
+
|
292
|
+
# Apply the downsampled mask to the element map
|
293
|
+
# Only overwrite floor pixels, not room pixels
|
294
|
+
wall_mask = (downsampled_mask > 0) & (element_map == DrawableElement.FLOOR)
|
295
|
+
element_map[wall_mask] = DrawableElement.WALL
|
296
|
+
|
297
|
+
# Clean up
|
298
|
+
del temp_mask, downsampled_mask
|
299
|
+
|
300
|
+
# Store the element map
|
301
|
+
self.element_map = element_map
|
302
|
+
self.element_map_shape = element_map.shape
|
303
|
+
|
304
|
+
LOGGER.info(
|
305
|
+
"%s: Rand256 element map generation complete with shape: %s",
|
306
|
+
self.file_name,
|
307
|
+
element_map.shape
|
308
|
+
)
|
309
|
+
return element_map
|
310
|
+
|
311
|
+
def map_to_element_coordinates(self, x, y):
|
312
|
+
"""Convert map coordinates to element map coordinates."""
|
313
|
+
if not hasattr(self, 'scale_info'):
|
314
|
+
return x, y
|
315
|
+
|
316
|
+
scale = self.scale_info["scale_factor"]
|
317
|
+
return int(x / scale), int(y / scale)
|
318
|
+
|
319
|
+
def element_to_map_coordinates(self, x, y):
|
320
|
+
"""Convert element map coordinates to map coordinates."""
|
321
|
+
if not hasattr(self, 'scale_info'):
|
322
|
+
return x, y
|
323
|
+
|
324
|
+
scale = self.scale_info["scale_factor"]
|
325
|
+
return int(x * scale), int(y * scale)
|
326
|
+
|
327
|
+
def get_element_at_position(self, x, y):
|
328
|
+
"""Get the element at the specified position."""
|
329
|
+
if not hasattr(self, 'element_map') or self.element_map is None:
|
330
|
+
return None
|
331
|
+
|
332
|
+
if not (0 <= y < self.element_map.shape[0] and 0 <= x < self.element_map.shape[1]):
|
333
|
+
return None
|
334
|
+
|
335
|
+
return self.element_map[y, x]
|
336
|
+
|
337
|
+
def get_room_at_position(self, x, y):
|
338
|
+
"""Get the room ID at a specific position, or None if not a room."""
|
339
|
+
element_code = self.get_element_at_position(x, y)
|
340
|
+
if element_code is None:
|
341
|
+
return None
|
342
|
+
|
343
|
+
# Check if it's a room (codes 101-115)
|
344
|
+
if 101 <= element_code <= 115:
|
345
|
+
return element_code
|
346
|
+
return None
|
347
|
+
|
348
|
+
def get_element_name(self, element_code):
|
349
|
+
"""Get the name of the element from its code."""
|
350
|
+
if element_code is None:
|
351
|
+
return 'NONE'
|
352
|
+
|
353
|
+
# Check if it's a room
|
354
|
+
if element_code >= 100:
|
355
|
+
room_number = element_code - 100
|
356
|
+
return f'ROOM_{room_number}'
|
357
|
+
|
358
|
+
# Check standard elements
|
359
|
+
for name, code in vars(DrawableElement).items():
|
360
|
+
if not name.startswith('_') and isinstance(code, int) and code == element_code:
|
361
|
+
return name
|
362
|
+
|
363
|
+
return f'UNKNOWN_{element_code}'
|
@@ -0,0 +1,148 @@
|
|
1
|
+
"""
|
2
|
+
Room Outline Extraction Utilities.
|
3
|
+
Uses scipy for efficient room outline extraction.
|
4
|
+
Version: 0.1.9
|
5
|
+
"""
|
6
|
+
|
7
|
+
from __future__ import annotations
|
8
|
+
|
9
|
+
import numpy as np
|
10
|
+
from scipy import ndimage
|
11
|
+
|
12
|
+
from .types import LOGGER
|
13
|
+
|
14
|
+
|
15
|
+
async def extract_room_outline_with_scipy(
|
16
|
+
room_mask, min_x, min_y, max_x, max_y, file_name=None, room_id=None
|
17
|
+
):
|
18
|
+
"""Extract a room outline using scipy for contour finding.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
room_mask: Binary mask of the room (1 for room, 0 for non-room)
|
22
|
+
min_x, min_y, max_x, max_y: Bounding box coordinates
|
23
|
+
file_name: Optional file name for logging
|
24
|
+
room_id: Optional room ID for logging
|
25
|
+
|
26
|
+
Returns:
|
27
|
+
List of points forming the outline of the room
|
28
|
+
"""
|
29
|
+
# If the mask is empty, return a rectangular outline
|
30
|
+
if np.sum(room_mask) == 0:
|
31
|
+
LOGGER.warning(
|
32
|
+
"%s: Empty room mask for room %s, using rectangular outline",
|
33
|
+
file_name or "RoomOutline",
|
34
|
+
str(room_id) if room_id is not None else "unknown",
|
35
|
+
)
|
36
|
+
return [(min_x, min_y), (max_x, min_y), (max_x, max_y), (min_x, max_y)]
|
37
|
+
|
38
|
+
# Use scipy to clean up the mask (remove noise, fill holes)
|
39
|
+
# Fill small holes
|
40
|
+
room_mask = ndimage.binary_fill_holes(room_mask).astype(np.uint8)
|
41
|
+
|
42
|
+
# Remove small objects
|
43
|
+
labeled_array, num_features = ndimage.label(room_mask)
|
44
|
+
if num_features > 1:
|
45
|
+
# Find the largest connected component
|
46
|
+
component_sizes = np.bincount(labeled_array.ravel())[1:]
|
47
|
+
largest_component = np.argmax(component_sizes) + 1
|
48
|
+
room_mask = (labeled_array == largest_component).astype(np.uint8)
|
49
|
+
|
50
|
+
# Find the boundary points by tracing the perimeter
|
51
|
+
boundary_points = []
|
52
|
+
height, width = room_mask.shape
|
53
|
+
|
54
|
+
# Scan horizontally (top and bottom edges)
|
55
|
+
for x in range(width):
|
56
|
+
# Top edge
|
57
|
+
for y in range(height):
|
58
|
+
if room_mask[y, x] == 1:
|
59
|
+
boundary_points.append((x + min_x, y + min_y))
|
60
|
+
break
|
61
|
+
|
62
|
+
# Bottom edge
|
63
|
+
for y in range(height-1, -1, -1):
|
64
|
+
if room_mask[y, x] == 1:
|
65
|
+
boundary_points.append((x + min_x, y + min_y))
|
66
|
+
break
|
67
|
+
|
68
|
+
# Scan vertically (left and right edges)
|
69
|
+
for y in range(height):
|
70
|
+
# Left edge
|
71
|
+
for x in range(width):
|
72
|
+
if room_mask[y, x] == 1:
|
73
|
+
boundary_points.append((x + min_x, y + min_y))
|
74
|
+
break
|
75
|
+
|
76
|
+
# Right edge
|
77
|
+
for x in range(width-1, -1, -1):
|
78
|
+
if room_mask[y, x] == 1:
|
79
|
+
boundary_points.append((x + min_x, y + min_y))
|
80
|
+
break
|
81
|
+
|
82
|
+
# Remove duplicates while preserving order
|
83
|
+
unique_points = []
|
84
|
+
for point in boundary_points:
|
85
|
+
if point not in unique_points:
|
86
|
+
unique_points.append(point)
|
87
|
+
|
88
|
+
# If we have too few points, return a simple rectangle
|
89
|
+
if len(unique_points) < 4:
|
90
|
+
LOGGER.warning(
|
91
|
+
"%s: Too few boundary points for room %s, using rectangular outline",
|
92
|
+
file_name or "RoomOutline",
|
93
|
+
str(room_id) if room_id is not None else "unknown",
|
94
|
+
)
|
95
|
+
return [(min_x, min_y), (max_x, min_y), (max_x, max_y), (min_x, max_y)]
|
96
|
+
|
97
|
+
# Simplify the outline by keeping only significant points
|
98
|
+
simplified = simplify_outline(unique_points, tolerance=5)
|
99
|
+
|
100
|
+
LOGGER.debug(
|
101
|
+
"%s: Extracted outline for room %s with %d points",
|
102
|
+
file_name or "RoomOutline",
|
103
|
+
str(room_id) if room_id is not None else "unknown",
|
104
|
+
len(simplified),
|
105
|
+
)
|
106
|
+
|
107
|
+
return simplified
|
108
|
+
|
109
|
+
|
110
|
+
def simplify_outline(points, tolerance=5):
|
111
|
+
"""Simplify an outline by removing points that don't contribute much to the shape."""
|
112
|
+
if len(points) <= 4:
|
113
|
+
return points
|
114
|
+
|
115
|
+
# Start with the first point
|
116
|
+
simplified = [points[0]]
|
117
|
+
|
118
|
+
# Process remaining points
|
119
|
+
for i in range(1, len(points) - 1):
|
120
|
+
# Get previous and next points
|
121
|
+
prev = simplified[-1]
|
122
|
+
current = points[i]
|
123
|
+
next_point = points[i + 1]
|
124
|
+
|
125
|
+
# Calculate vectors
|
126
|
+
v1 = (current[0] - prev[0], current[1] - prev[1])
|
127
|
+
v2 = (next_point[0] - current[0], next_point[1] - current[1])
|
128
|
+
|
129
|
+
# Calculate change in direction
|
130
|
+
dot_product = v1[0] * v2[0] + v1[1] * v2[1]
|
131
|
+
len_v1 = (v1[0]**2 + v1[1]**2)**0.5
|
132
|
+
len_v2 = (v2[0]**2 + v2[1]**2)**0.5
|
133
|
+
|
134
|
+
# Avoid division by zero
|
135
|
+
if len_v1 == 0 or len_v2 == 0:
|
136
|
+
continue
|
137
|
+
|
138
|
+
# Calculate cosine of angle between vectors
|
139
|
+
cos_angle = dot_product / (len_v1 * len_v2)
|
140
|
+
|
141
|
+
# If angle is significant or distance is large, keep the point
|
142
|
+
if abs(cos_angle) < 0.95 or len_v1 > tolerance or len_v2 > tolerance:
|
143
|
+
simplified.append(current)
|
144
|
+
|
145
|
+
# Add the last point
|
146
|
+
simplified.append(points[-1])
|
147
|
+
|
148
|
+
return simplified
|
@@ -107,6 +107,7 @@ class CameraShared:
|
|
107
107
|
self.trims = TrimsData.from_dict(DEFAULT_VALUES["trims_data"]) # Trims data
|
108
108
|
self.skip_room_ids: List[str] = []
|
109
109
|
self.device_info = None # Store the device_info
|
110
|
+
self.element_map = None # Map of element codes
|
110
111
|
|
111
112
|
def update_user_colors(self, user_colors):
|
112
113
|
"""Update the user colors."""
|