valediction 1.1.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,10 +9,9 @@ from valediction.dictionary.helpers import (
9
9
  _check_name,
10
10
  _check_order,
11
11
  _check_primary_key,
12
- _normalise_name,
13
12
  )
14
13
  from valediction.exceptions import DataDictionaryError
15
- from valediction.support import list_as_bullets
14
+ from valediction.support import _normalise, _strip, list_as_bullets
16
15
 
17
16
 
18
17
  class Column:
@@ -44,7 +43,7 @@ class Column:
44
43
  description: str | None = None,
45
44
  datetime_format: str | None = None,
46
45
  ):
47
- self.name = _normalise_name(name)
46
+ self.name = _strip(name)
48
47
  self.order = int(order) if order is not None else None
49
48
  self.data_type: DataType = None
50
49
  self.length = int(length) if length is not None else None
@@ -127,7 +126,7 @@ class Table(list[Column]):
127
126
  columns: list[Column] | None = None,
128
127
  ):
129
128
  super().__init__()
130
- self.name = _normalise_name(name)
129
+ self.name = _strip(name)
131
130
  self.description = description
132
131
  for column in columns or []:
133
132
  self.add_column(column)
@@ -139,24 +138,28 @@ class Table(list[Column]):
139
138
  )
140
139
  return f"Table(name={self.name!r}, description={self.description!r}{cols_str})"
141
140
 
141
+ def __key(self, name: str) -> str:
142
+ return _normalise(name)
143
+
142
144
  def __getitem__(self, key: int | str) -> Column:
143
145
  if isinstance(key, int):
144
146
  return super().__getitem__(key)
145
- target = _normalise_name(key)
146
- found = next((c for c in self if c.name == target), None)
147
+
148
+ target_key = self.__key(key)
149
+ found = next((c for c in self if self.__key(c.name) == target_key), None)
147
150
  if not found:
148
151
  raise KeyError(f"Column {key!r} not found in table {self.name!r}.")
149
152
  return found
150
153
 
151
154
  def __get(self, name: str, default: Column | None = None) -> Column | None:
152
- target = _normalise_name(name)
153
- return next((c for c in self if c.name == target), default)
155
+ target_key = self.__key(name)
156
+ return next((c for c in self if self.__key(c.name) == target_key), default)
154
157
 
155
158
  # Getters
156
159
  def index_of(self, name: str) -> int | None:
157
- target = _normalise_name(name)
160
+ target_key = self.__key(name)
158
161
  for i, c in enumerate(self):
159
- if c.name == target:
162
+ if self.__key(c.name) == target_key:
160
163
  return i
161
164
  return None
162
165
 
@@ -303,16 +306,17 @@ class Table(list[Column]):
303
306
  if not isinstance(column, Column):
304
307
  raise DataDictionaryError("Only Column objects can be added to a Table.")
305
308
 
306
- if column.name in self.get_column_names():
307
- conflict = self.get_column(column.name)
309
+ incoming_key = self.__key(column.name)
310
+ conflict = next((c for c in self if self.__key(c.name) == incoming_key), None)
311
+ if conflict is not None:
308
312
  raise DataDictionaryError(
309
- f"Column {column.name!r} already exists (order={conflict.order!r})"
313
+ f"Column {column.name!r} already exists (order={conflict.order!r}, as {conflict.name!r})."
310
314
  )
311
315
 
312
316
  if column.order in self.get_column_orders():
313
- conflict = self.get_column(column.order)
317
+ conflict_by_order = self.get_column(column.order)
314
318
  raise DataDictionaryError(
315
- f"Order {column.order!r} already exists (name={conflict.name!r})"
319
+ f"Order {column.order!r} already exists (name={conflict_by_order.name!r})"
316
320
  )
317
321
 
318
322
  if column.primary_key is not None:
@@ -339,10 +343,7 @@ class Table(list[Column]):
339
343
  Raises:
340
344
  DataDictionaryError: if the column does not exist
341
345
  """
342
- if isinstance(column, str):
343
- name = self.get_column(column).name
344
- else:
345
- name = self.get_column(column).name # by order
346
+ name = self.get_column(column).name
346
347
  remaining = [c for c in self if c.name != name]
347
348
  self.clear()
348
349
  super().extend(remaining)
@@ -367,16 +368,17 @@ class Table(list[Column]):
367
368
  for col in self:
368
369
  col.primary_key = None
369
370
 
370
- # Resolve and dedupe
371
+ # Resolve and deduplicate
371
372
  resolved: list[Column] = []
372
373
  seen: set[str] = set()
373
374
  for key in primary_keys:
374
375
  col = self.get_column(key)
375
- if col.name in seen:
376
+ col_key = self.__key(col.name)
377
+ if col_key in seen:
376
378
  raise DataDictionaryError(
377
379
  f"Duplicate column {col.name!r} provided for table {self.name!r}."
378
380
  )
379
- seen.add(col.name)
381
+ seen.add(col_key)
380
382
  resolved.append(col)
381
383
 
382
384
  # Assign ordinals 1..N
@@ -416,14 +418,20 @@ class Dictionary(list[Table]):
416
418
  ):
417
419
  super().__init__()
418
420
  self.name = name
421
+
422
+ if isinstance(tables, Table):
423
+ tables = [tables]
424
+
419
425
  for t in tables or []:
420
426
  self.add_table(t)
427
+
421
428
  self.organisations = organisations
422
429
  self.version = version
423
430
  self.version_notes = version_notes
424
431
  self.inclusion_criteria = inclusion_criteria
425
432
  self.exclusion_criteria = exclusion_criteria
426
433
  self.imported = imported
434
+ self.__check_variables()
427
435
 
428
436
  # Properties
429
437
  @property
@@ -439,24 +447,85 @@ class Dictionary(list[Table]):
439
447
  tables = list_as_bullets(elements=[str(t) for t in self], bullet="\n- ")
440
448
  return f"Dictionary(name={self.name!r}, imported={self.imported!r}, {tables})"
441
449
 
450
+ def __key(self, name: str) -> str:
451
+ return _normalise(name)
452
+
442
453
  def __getitem__(self, key: int | str) -> Table:
443
454
  if isinstance(key, int):
444
455
  return super().__getitem__(key)
445
- target = _normalise_name(key)
446
- found = next((t for t in self if t.name == target), None)
456
+
457
+ target_key = self.__key(key)
458
+ found = next((t for t in self if self.__key(t.name) == target_key), None)
447
459
  if not found:
448
460
  raise KeyError(f"Table {key!r} not found in Dictionary.")
449
461
  return found
450
462
 
451
- # Getters
452
463
  def __get(self, name: str, default: Table | None = None) -> Table | None:
453
- target = _normalise_name(name)
454
- return next((t for t in self if t.name == target), default)
464
+ target_key = self.__key(name)
465
+ return next((t for t in self if self.__key(t.name) == target_key), default)
466
+
467
+ # Checkers
468
+ def __check_variables(self) -> None:
469
+ self.__check_name()
470
+ self.__check_organisations()
471
+ self.__check_version()
472
+ self.__check_version_notes()
473
+ self.__check_criteria()
474
+
475
+ def __check_name(self) -> None:
476
+ # Check name
477
+ if self.name is not None:
478
+ if not isinstance(self.name, str):
479
+ raise DataDictionaryError("Dictionary `name` must be a string.")
480
+
481
+ def __check_organisations(self) -> None:
482
+ # Check organisations
483
+ if self.organisations is not None:
484
+ if not isinstance(self.organisations, str):
485
+ raise DataDictionaryError(
486
+ "Dictionary `organisations` must be a string."
487
+ )
488
+
489
+ def __check_version(self) -> None:
490
+ # Check version
491
+ if self.version is not None:
492
+ if not isinstance(self.version, (str, int, float)):
493
+ raise DataDictionaryError(
494
+ "Dictionary `version` must be a string, int, or float."
495
+ )
496
+
497
+ if isinstance(self.version, (int, float)):
498
+ self.version = str(self.version)
499
+
500
+ # Check version_notes
455
501
 
502
+ def __check_version_notes(self) -> None:
503
+ if self.version_notes is not None:
504
+ if not isinstance(self.version_notes, str):
505
+ raise DataDictionaryError(
506
+ "Dictionary `version_notes` must be a string."
507
+ )
508
+
509
+ def __check_criteria(self) -> None:
510
+ # Check inclusion_criteria
511
+ if self.inclusion_criteria is not None:
512
+ if not isinstance(self.inclusion_criteria, str):
513
+ raise DataDictionaryError(
514
+ "Dictionary `inclusion_criteria` must be a string."
515
+ )
516
+
517
+ # Check exclusion_criteria
518
+ if self.exclusion_criteria is not None:
519
+ if not isinstance(self.exclusion_criteria, str):
520
+ raise DataDictionaryError(
521
+ "Dictionary exclusion_criteria must be a string."
522
+ )
523
+
524
+ # Getters
456
525
  def index_of(self, name: str) -> int | None:
457
- target = _normalise_name(name)
526
+ target_key = self.__key(name)
458
527
  for i, t in enumerate(self):
459
- if t.name == target:
528
+ if self.__key(t.name) == target_key:
460
529
  return i
461
530
  return None
462
531
 
@@ -484,12 +553,9 @@ class Dictionary(list[Table]):
484
553
  Raises:
485
554
  KeyError: If the table is not found in the dictionary.
486
555
  """
487
- target = _normalise_name(table)
488
- found = next((t for t in self if t.name == target), None)
489
-
490
- if not found:
556
+ found = self.__get(table)
557
+ if found is None:
491
558
  raise KeyError(f"Table {table!r} not found in Dictionary.")
492
-
493
559
  return found
494
560
 
495
561
  # Manipulation
@@ -508,8 +574,14 @@ class Dictionary(list[Table]):
508
574
  raise DataDictionaryError(
509
575
  "Only Table objects can be added to a Dictionary."
510
576
  )
511
- if table.name in self.get_table_names():
512
- raise DataDictionaryError(f"Table {table.name!r} already exists.")
577
+
578
+ incoming_key = self.__key(table.name)
579
+ conflict = next((t for t in self if self.__key(t.name) == incoming_key), None)
580
+ if conflict is not None:
581
+ raise DataDictionaryError(
582
+ f"Table {table.name!r} already exists (as {conflict.name!r})."
583
+ )
584
+
513
585
  super().append(table)
514
586
 
515
587
  def remove_table(self, table: str) -> None:
valediction/integrity.py CHANGED
@@ -1,6 +1,10 @@
1
+ from __future__ import annotations
2
+
1
3
  import re
4
+ from copy import deepcopy
2
5
  from pathlib import Path
3
6
  from re import Pattern
7
+ from typing import Any
4
8
 
5
9
  from valediction.data_types.data_types import DataType
6
10
  from valediction.support import list_as_bullets
@@ -12,13 +16,58 @@ TEMPLATE_DATA_DICTIONARY_PATH = (
12
16
  )
13
17
 
14
18
 
19
+ externally_injected_variables: dict[
20
+ str, Any
21
+ ] = {} # External injection store for package wrapping (any keys, always included)
22
+
23
+
24
+ def reset_injected_config_variables() -> None:
25
+ global externally_injected_variables
26
+ externally_injected_variables = {}
27
+
28
+
29
+ def inject_config_variables(variables: dict[str, Any]) -> None:
30
+ """Injects variables into the Valediction Config, which will always be incorporated
31
+ as overrides, regardless of Config calling method (default, session-scoped, or
32
+ contextual).
33
+
34
+ Args:
35
+ variables (dict[str, Any]): Dictionary of config variables.
36
+ """
37
+ global externally_injected_variables, session_config
38
+
39
+ # check type allows
40
+ if not isinstance(variables, dict):
41
+ raise TypeError(
42
+ f"Config injection variables must be a dictionary, not {type(variables)}"
43
+ )
44
+ problematic_keys = []
45
+ for variable_name in variables.keys():
46
+ if not isinstance(variable_name, str):
47
+ problematic_keys.append(variable_name)
48
+
49
+ if problematic_keys:
50
+ raise TypeError("Config injection variables accepts only string keys.")
51
+
52
+ externally_injected_variables = dict(variables or {})
53
+
54
+ # Apply immediately to the current session config (if it exists)
55
+ if session_config is not None:
56
+ _apply_external_injections(session_config)
57
+
58
+
59
+ def _apply_external_injections(config: Config) -> None:
60
+ for variable_name, variable_value in externally_injected_variables.items():
61
+ setattr(config, variable_name, deepcopy(variable_value))
62
+
63
+
15
64
  class Config:
16
65
  def __init__(self):
17
66
  self.template_data_dictionary_path: Path = TEMPLATE_DATA_DICTIONARY_PATH
18
67
  self.max_table_name_length: int = 63
19
68
  self.max_column_name_length: int = 30
20
69
  self.max_primary_keys: int = 7
21
- self.invalid_name_pattern: str | Pattern = re.compile(r"[^A-Z0-9_]")
70
+ self.invalid_name_pattern: str | Pattern = re.compile(r"[^A-Za-z0-9_]")
22
71
  self.null_values: list[str] = ["", "null", "none"]
23
72
  self.forbidden_characters: list[str] = []
24
73
  self.date_formats: dict[str, DataType] = {
@@ -28,20 +77,22 @@ class Config:
28
77
  "%d-%m-%Y": DataType.DATE,
29
78
  "%m/%d/%Y": DataType.DATE,
30
79
  "%m-%d-%Y": DataType.DATE,
31
- "%Y-%m-%d %H:%M:%S": DataType.DATETIME,
32
- "%Y-%m-%d %H:%M": DataType.DATETIME,
33
- "%d/%m/%Y %H:%M:%S": DataType.DATETIME,
34
- "%d/%m/%Y %H:%M": DataType.DATETIME,
35
- "%m/%d/%Y %H:%M:%S": DataType.DATETIME,
36
- "%Y-%m-%dT%H:%M:%S": DataType.DATETIME,
37
- "%Y-%m-%dT%H:%M:%S.%f": DataType.DATETIME,
38
- "%Y-%m-%dT%H:%M:%S%z": DataType.DATETIME,
39
- "%Y-%m-%dT%H:%M:%S.%f%z": DataType.DATETIME,
40
- "%Y-%m-%dT%H:%M:%SZ": DataType.DATETIME,
41
- "%Y-%m-%dT%H:%M:%S.%fZ": DataType.DATETIME,
80
+ "%Y-%m-%d %H:%M:%S": DataType.TIMESTAMP,
81
+ "%Y-%m-%d %H:%M": DataType.TIMESTAMP,
82
+ "%d/%m/%Y %H:%M:%S": DataType.TIMESTAMP,
83
+ "%d/%m/%Y %H:%M": DataType.TIMESTAMP,
84
+ "%m/%d/%Y %H:%M:%S": DataType.TIMESTAMP,
85
+ "%Y-%m-%dT%H:%M:%S": DataType.TIMESTAMP,
86
+ "%Y-%m-%dT%H:%M:%S.%f": DataType.TIMESTAMP,
87
+ "%Y-%m-%dT%H:%M:%S%z": DataType.TIMESTAMP,
88
+ "%Y-%m-%dT%H:%M:%S.%f%z": DataType.TIMESTAMP,
89
+ "%Y-%m-%dT%H:%M:%SZ": DataType.TIMESTAMP,
90
+ "%Y-%m-%dT%H:%M:%S.%fZ": DataType.TIMESTAMP,
42
91
  }
43
92
  self.enforce_no_null_columns: bool = True
44
93
  self.enforce_primary_keys: bool = True
94
+ self.allow_bigint: bool = True
95
+ _apply_external_injections(self)
45
96
 
46
97
  def __repr__(self):
47
98
  date_list = list_as_bullets(
@@ -60,38 +111,43 @@ class Config:
60
111
  f" - default_null_values={self.null_values}\n"
61
112
  f" - forbidden_characters={self.forbidden_characters}\n"
62
113
  f" - date_formats=[{date_list}\n ]\n"
114
+ f" - allow_bigint={self.allow_bigint}\n"
63
115
  ")"
64
116
  )
65
117
 
66
118
  # Context Wrapper With Reset
67
119
  def __enter__(self):
68
- global default_config
69
- default_config = self
120
+ global session_config
121
+
122
+ _apply_external_injections(self)
123
+
124
+ session_config = self
70
125
  return self
71
126
 
72
127
  def __exit__(self, exc_type, exc_value, traceback):
73
- global default_config
74
- default_config = Config()
128
+ global session_config
129
+ session_config = Config()
75
130
 
76
131
 
77
- default_config: Config = None
132
+ session_config: Config = None
78
133
 
79
134
 
80
135
  def get_config() -> Config:
81
- """Gets the current `default_config` instance. Changing attributes will set them
82
- globally.
136
+ """Gets the current `session_config` instance. Changing attributes will set them
137
+ globally for the python session. Use `reset_default_config()` to reset to original
138
+ defaults.
83
139
 
84
140
  Returns:
85
- Config: The current default configuration.
141
+ Config: The current session configuration.
86
142
  """
87
- global default_config
88
- return default_config
143
+ global session_config
144
+ return session_config
89
145
 
90
146
 
91
147
  def reset_default_config() -> None:
92
148
  """Resets `default_config` settings globally to original defaults."""
93
- global default_config
94
- default_config = Config()
149
+ global session_config
150
+ session_config = Config()
95
151
 
96
152
 
97
153
  reset_default_config()
@@ -11,7 +11,7 @@ import pandas as pd
11
11
  from pandas import DataFrame
12
12
  from pandas.errors import ParserError
13
13
 
14
- from valediction.support import _normalise_name
14
+ from valediction.support import _strip
15
15
 
16
16
 
17
17
  class FrameChunk(NamedTuple):
@@ -34,7 +34,7 @@ class FrameChunk(NamedTuple):
34
34
  total_chunks_seen: int | None
35
35
 
36
36
  def estimate_chunk_count(self) -> int:
37
- # Buffers (accounting for CSV tails/bytes innacuracy)
37
+ # Buffers (accounting for CSV tails/bytes inaccuracy)
38
38
  EPS_ABS = 4096 # Fixed
39
39
  EPS_REL = 0.05 # 5% tail buffer
40
40
 
@@ -93,7 +93,7 @@ def _post_read_processing(df: DataFrame, cfg: CsvReadConfig) -> DataFrame:
93
93
  """Apply header normalisation and vectorised value stripping after reading."""
94
94
  cfg = cfg or CsvReadConfig()
95
95
  if cfg.normalise_headers:
96
- df = df.rename(columns={c: _normalise_name(c) for c in df.columns})
96
+ df = df.rename(columns={c: _strip(c) for c in df.columns})
97
97
  if cfg.strip_values:
98
98
  str_cols = df.select_dtypes(include=["string"]).columns
99
99
  if len(str_cols) > 0:
valediction/support.py CHANGED
@@ -35,10 +35,14 @@ def list_as_bullets(elements: list, bullet: str = "\n - ") -> str:
35
35
  return bullet + bullet.join(elements)
36
36
 
37
37
 
38
- def _normalise_name(name: str) -> str:
38
+ def _normalise(name: str) -> str:
39
39
  return name.strip().upper()
40
40
 
41
41
 
42
+ def _strip(name: str) -> str:
43
+ return name.strip()
44
+
45
+
42
46
  def _get_runtime_string(runtime: timedelta) -> str:
43
47
  total_seconds = runtime.total_seconds()
44
48
  hours = trunc(total_seconds / 3600)
@@ -10,6 +10,7 @@ from pandas.util import hash_pandas_object
10
10
  from valediction.data_types.data_types import DataType
11
11
  from valediction.dictionary.model import Table
12
12
  from valediction.integrity import get_config
13
+ from valediction.support import _normalise
13
14
  from valediction.validation.issues import Range
14
15
 
15
16
 
@@ -17,11 +18,14 @@ from valediction.validation.issues import Range
17
18
  def _set_nulls(df: DataFrame) -> DataFrame:
18
19
  null_values = get_config().null_values
19
20
  token_set = {str(t).strip().casefold() for t in null_values}
20
- columns = df.select_dtypes(include=["string", "object"]).columns
21
+ columns = df.select_dtypes(include=["string", "object", "category"]).columns
21
22
  for column in columns:
22
23
  series = df[column]
23
- mask = series.notna() & series.str.casefold().isin(token_set)
24
- df[column] = series.mask(mask, NA)
24
+
25
+ s_txt = series.astype("string", copy=False) # dtype safe
26
+ mask = s_txt.notna() & s_txt.str.strip().str.casefold().isin(token_set)
27
+ if mask.any():
28
+ df[column] = series.mask(mask, NA)
25
29
 
26
30
  return df
27
31
 
@@ -68,37 +72,24 @@ def create_pk_hashes(
68
72
  Returns:
69
73
  Series: Pandas Series with hashes or Nulls.
70
74
  """
71
- hash_col_name = "PK_HASH"
75
+ HASH_COL_NAME = "PK_HASH"
72
76
  if df_primaries.empty or df_primaries.shape[1] == 0:
73
- return Series([], dtype=object, name=hash_col_name)
77
+ return Series([], dtype=object, name=HASH_COL_NAME)
74
78
 
75
- # Any NA in row => invalid PK -> None
79
+ # Check Nulls
76
80
  null_rows = df_primaries.isna().any(axis=1)
77
81
 
78
- # First Hash
79
- hash_1 = hash_pandas_object(df_primaries, index=False) # uint64
80
-
81
- # Second Hash (rows backwards if single row, else salt)
82
- if df_primaries.shape[1] > 1:
83
- df_primaries_backwards = df_primaries.iloc[:, ::-1]
84
- else:
85
- s = df_primaries.iloc[:, 0]
86
- salt = Series(["§"] * len(s), index=s.index, dtype="string")
87
- df_primaries_backwards = DataFrame(
88
- {
89
- "_a": s,
90
- "_b": s.str.cat(salt),
91
- }
92
- )
93
-
94
- hash_2 = hash_pandas_object(df_primaries_backwards, index=False) # uint64
82
+ # Two independent 64-bit hashes with 16 byte keys
83
+ hash_1 = hash_pandas_object(df_primaries, index=False, hash_key="valediction_pk1!")
84
+ hash_2 = hash_pandas_object(df_primaries, index=False, hash_key="valediction_pk2!")
95
85
 
86
+ # Combine into 128-bit integer keys
96
87
  a1 = hash_1.to_numpy(dtype="uint64", copy=False).astype(object)
97
88
  a2 = hash_2.to_numpy(dtype="uint64", copy=False).astype(object)
98
-
99
89
  combined = (a1 << 64) | a2
90
+
100
91
  hashes = Series(
101
- combined, index=df_primaries.index, name=hash_col_name, dtype=object
92
+ combined, index=df_primaries.index, name=HASH_COL_NAME, dtype=object
102
93
  )
103
94
  hashes[null_rows] = None
104
95
  return hashes
@@ -167,8 +158,9 @@ def pk_contains_whitespace_mask(df_primaries: DataFrame) -> Series:
167
158
  if df_primaries.empty or df_primaries.shape[1] == 0:
168
159
  return Series(False, index=df_primaries.index)
169
160
 
170
- col_masks = df_primaries.apply(lambda s: s.str.contains(r"\s", na=False))
171
-
161
+ col_masks = df_primaries.apply(
162
+ lambda s: s.astype("string", copy=False).str.contains(r"\s", na=False)
163
+ )
172
164
  return col_masks.any(axis=1)
173
165
 
174
166
 
@@ -249,7 +241,7 @@ def invalid_mask_datetime(column: Series, fmt: str | None) -> Series:
249
241
  ok = parsed.notna()
250
242
  return notnull & (~ok)
251
243
 
252
- allowed = _allowed_formats_for(DataType.DATETIME)
244
+ allowed = _allowed_formats_for(DataType.TIMESTAMP)
253
245
  ok_any = _parse_ok_any(column, allowed)
254
246
  return notnull & (~ok_any)
255
247
 
@@ -261,7 +253,9 @@ def invalid_mask_text_too_long(column: Series, max_len: int) -> Series:
261
253
  return Series(False, index=column.index)
262
254
 
263
255
  notnull = column.notna()
264
- lens = column.str.len()
256
+ s_txt = column.astype("string", copy=False)
257
+ lens = s_txt.str.len()
258
+
265
259
  return notnull & (lens > max_len)
266
260
 
267
261
 
@@ -270,20 +264,23 @@ def invalid_mask_text_forbidden_characters(column: Series) -> Series:
270
264
  if not forbidden:
271
265
  return column.notna() & False
272
266
 
273
- pattern = "[" + re.escape("".join(forbidden)) + "]"
267
+ pattern = "[" + re.escape("".join([str(s) for s in forbidden])) + "]"
274
268
  notnull = column.notna()
275
- has_forbidden = column.str.contains(pattern, regex=True, na=False)
269
+
270
+ s_txt = column.astype("string", copy=False)
271
+ has_forbidden = s_txt.str.contains(pattern, regex=True, na=False)
272
+
276
273
  return notnull & has_forbidden
277
274
 
278
275
 
279
276
  # Apply Data Types #
280
277
  def apply_data_types(df: DataFrame, table_dictionary: Table) -> DataFrame:
281
278
  # name -> column object
282
- column_dictionary = {column.name: column for column in table_dictionary}
279
+ column_dictionary = {_normalise(column.name): column for column in table_dictionary}
283
280
 
284
281
  for col in df.columns:
285
- data_type = column_dictionary.get(col).data_type
286
- datetime_format = column_dictionary.get(col).datetime_format
282
+ data_type = column_dictionary.get(_normalise(col)).data_type
283
+ datetime_format = column_dictionary.get(_normalise(col)).datetime_format
287
284
 
288
285
  if data_type in (DataType.TEXT, DataType.FILE):
289
286
  df[col] = df[col].astype("string")
@@ -303,7 +300,7 @@ def apply_data_types(df: DataFrame, table_dictionary: Table) -> DataFrame:
303
300
  )
304
301
  df[col] = dtv.dt.normalize() # midnight
305
302
 
306
- elif data_type == DataType.DATETIME:
303
+ elif data_type == DataType.TIMESTAMP:
307
304
  df[col] = to_datetime(
308
305
  df[col], format=datetime_format, errors="raise", utc=False
309
306
  )
@@ -313,3 +310,62 @@ def apply_data_types(df: DataFrame, table_dictionary: Table) -> DataFrame:
313
310
  df[col] = df[col].astype("string")
314
311
 
315
312
  return df
313
+
314
+
315
+ # Bigint Checks
316
+ _PG_INT4_MIN_STR_ABS = "2147483648" # abs(-2147483648)
317
+ _PG_INT4_MAX_STR_ABS = "2147483647"
318
+ _PG_INT4_MIN_LEN = len(_PG_INT4_MIN_STR_ABS)
319
+ _PG_INT4_MAX_LEN = len(_PG_INT4_MAX_STR_ABS)
320
+
321
+
322
+ def invalid_mask_integer_out_of_range(
323
+ series: Series,
324
+ invalid_integer_mask: Series | None = None,
325
+ ) -> Series:
326
+ """
327
+ Returns a boolean mask for values that:
328
+ - are integer-like under Valediction's integer rules, AND
329
+ - fall outside PostgreSQL INTEGER (int4) range.
330
+ """
331
+
332
+ # Start with all-False mask
333
+ out = series.isna() & False
334
+
335
+ # Use caller-provided invalid mask to avoid recomputing if available
336
+ if invalid_integer_mask is None:
337
+ from valediction.validation.helpers import invalid_mask_integer # avoid cycles
338
+
339
+ invalid_integer_mask = invalid_mask_integer(series)
340
+
341
+ # We only check range for values that already pass integer validation
342
+ valid = (~invalid_integer_mask) & series.notna()
343
+ if not valid.any():
344
+ return out
345
+
346
+ # String-normalise for safe compare (works for object/int dtype)
347
+ s = series[valid].astype("string", copy=False).str.strip()
348
+
349
+ # Sign handling
350
+ neg = s.str.startswith("-")
351
+ abs_str = s.str.lstrip("+-")
352
+
353
+ # Lengths
354
+ abs_len = abs_str.str.len()
355
+
356
+ # Positive overflow:
357
+ # abs_len > 10 OR (abs_len == 10 AND abs_str > 2147483647)
358
+ pos = ~neg
359
+ pos_over = (abs_len > _PG_INT4_MAX_LEN) | (
360
+ (abs_len == _PG_INT4_MAX_LEN) & (abs_str > _PG_INT4_MAX_STR_ABS)
361
+ )
362
+
363
+ # Negative overflow (too small):
364
+ # abs_len > 10 OR (abs_len == 10 AND abs_str > 2147483648)
365
+ neg_over = (abs_len > _PG_INT4_MIN_LEN) | (
366
+ (abs_len == _PG_INT4_MIN_LEN) & (abs_str > _PG_INT4_MIN_STR_ABS)
367
+ )
368
+
369
+ # Combine back into the full index
370
+ out.loc[valid] = (pos & pos_over) | (neg & neg_over)
371
+ return out