valediction 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- valediction/__init__.py +8 -0
- valediction/convenience.py +50 -0
- valediction/data_types/__init__.py +0 -0
- valediction/data_types/data_type_helpers.py +75 -0
- valediction/data_types/data_types.py +58 -0
- valediction/data_types/type_inference.py +541 -0
- valediction/datasets/__init__.py +0 -0
- valediction/datasets/datasets.py +870 -0
- valediction/datasets/datasets_helpers.py +46 -0
- valediction/demo/DEMO - Data Dictionary.xlsx +0 -0
- valediction/demo/DEMOGRAPHICS.csv +101 -0
- valediction/demo/DIAGNOSES.csv +650 -0
- valediction/demo/LAB_TESTS.csv +1001 -0
- valediction/demo/VITALS.csv +1001 -0
- valediction/demo/__init__.py +6 -0
- valediction/demo/demo_dictionary.py +129 -0
- valediction/dictionary/__init__.py +0 -0
- valediction/dictionary/exporting.py +501 -0
- valediction/dictionary/exporting_helpers.py +371 -0
- valediction/dictionary/generation.py +357 -0
- valediction/dictionary/helpers.py +174 -0
- valediction/dictionary/importing.py +494 -0
- valediction/dictionary/integrity.py +37 -0
- valediction/dictionary/model.py +582 -0
- valediction/dictionary/template/PROJECT - Data Dictionary.xltx +0 -0
- valediction/exceptions.py +22 -0
- valediction/integrity.py +97 -0
- valediction/io/__init__.py +0 -0
- valediction/io/csv_readers.py +307 -0
- valediction/progress.py +206 -0
- valediction/support.py +72 -0
- valediction/validation/__init__.py +0 -0
- valediction/validation/helpers.py +315 -0
- valediction/validation/issues.py +280 -0
- valediction/validation/validation.py +598 -0
- valediction-1.0.0.dist-info/METADATA +15 -0
- valediction-1.0.0.dist-info/RECORD +38 -0
- valediction-1.0.0.dist-info/WHEEL +4 -0
|
@@ -0,0 +1,357 @@
|
|
|
1
|
+
# valediction/dictionary/generation.py
|
|
2
|
+
from __future__ import annotations
|
|
3
|
+
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from datetime import timedelta
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
from typing import Iterable
|
|
8
|
+
|
|
9
|
+
import pandas as pd
|
|
10
|
+
from pandas import DataFrame
|
|
11
|
+
|
|
12
|
+
from valediction.data_types.data_types import DataType
|
|
13
|
+
from valediction.data_types.type_inference import (
|
|
14
|
+
COLUMN_STEPS,
|
|
15
|
+
ColumnState,
|
|
16
|
+
TypeInferer,
|
|
17
|
+
)
|
|
18
|
+
from valediction.datasets.datasets_helpers import DatasetItemLike
|
|
19
|
+
from valediction.dictionary.model import Column, Dictionary, Table
|
|
20
|
+
from valediction.io.csv_readers import (
|
|
21
|
+
CsvReadConfig,
|
|
22
|
+
iter_csv_chunks,
|
|
23
|
+
read_csv_headers,
|
|
24
|
+
read_csv_sample,
|
|
25
|
+
)
|
|
26
|
+
from valediction.progress import Progress
|
|
27
|
+
from valediction.support import _normalise_name, calculate_runtime
|
|
28
|
+
|
|
29
|
+
IMPORTING_DATA = "Importing data"
|
|
30
|
+
CHUNK_STEPS = 1
|
|
31
|
+
COLUMN_STEPS = COLUMN_STEPS
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@dataclass(slots=True)
|
|
35
|
+
class GeneratorConfig:
|
|
36
|
+
chunk_size: int = 10_000_000
|
|
37
|
+
sample_rows: int | None = None
|
|
38
|
+
dayfirst: bool = True
|
|
39
|
+
infer_types: bool = True
|
|
40
|
+
infer_max_length: bool = True
|
|
41
|
+
|
|
42
|
+
def set_variables(
|
|
43
|
+
self,
|
|
44
|
+
chunk_size: int | None = None,
|
|
45
|
+
sample_rows: int | None = None,
|
|
46
|
+
) -> None:
|
|
47
|
+
# Set user variables
|
|
48
|
+
self.chunk_size = chunk_size
|
|
49
|
+
self.sample_rows = sample_rows
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class Generator:
|
|
53
|
+
"""
|
|
54
|
+
Summary:
|
|
55
|
+
Generator class for creating dictionaries from datasets.
|
|
56
|
+
|
|
57
|
+
Arguments:
|
|
58
|
+
feedback (bool): Provide user feedback on progress (default: True)
|
|
59
|
+
debug (bool): Enable debug mode, providing full log of data type inference and
|
|
60
|
+
reasoning (default: False)
|
|
61
|
+
chunk_size (int | None): Size of chunks for reading data to optimise RAM usage,
|
|
62
|
+
if reading from CSV (default: 10_000_000)
|
|
63
|
+
sample_rows (int | None): Number of rows to sample for data type inference. Note:
|
|
64
|
+
this overrides `chunk_size` and reads in a single chunk (default: None)
|
|
65
|
+
|
|
66
|
+
Raises:
|
|
67
|
+
DataDictionaryError: If there is an issue with the data dictionary
|
|
68
|
+
"""
|
|
69
|
+
|
|
70
|
+
def __init__(
|
|
71
|
+
self,
|
|
72
|
+
feedback: bool = True,
|
|
73
|
+
debug: bool = False,
|
|
74
|
+
chunk_size: int | None = 10_000_000,
|
|
75
|
+
sample_rows: int | None = None,
|
|
76
|
+
) -> None:
|
|
77
|
+
# User Config
|
|
78
|
+
self.config = GeneratorConfig()
|
|
79
|
+
self.config.set_variables(sample_rows=sample_rows, chunk_size=chunk_size)
|
|
80
|
+
self.feedback: bool = feedback
|
|
81
|
+
self.debug: bool = debug
|
|
82
|
+
self.csv_cfg: CsvReadConfig = CsvReadConfig()
|
|
83
|
+
|
|
84
|
+
# Progress
|
|
85
|
+
self.progress: Progress = None
|
|
86
|
+
|
|
87
|
+
# Setup
|
|
88
|
+
if sample_rows is not None:
|
|
89
|
+
self.config.sample_rows = int(sample_rows)
|
|
90
|
+
if chunk_size is not None:
|
|
91
|
+
self.config.chunk_size = int(chunk_size)
|
|
92
|
+
|
|
93
|
+
def __say(
|
|
94
|
+
self,
|
|
95
|
+
*values: object,
|
|
96
|
+
sep: str | None = " ",
|
|
97
|
+
end: str | None = "\n",
|
|
98
|
+
) -> None:
|
|
99
|
+
if self.feedback:
|
|
100
|
+
print(*values, sep=sep, end=end)
|
|
101
|
+
|
|
102
|
+
def generate_dictionary(
|
|
103
|
+
self,
|
|
104
|
+
items: Iterable[DatasetItemLike],
|
|
105
|
+
dictionary_name: str | None = None,
|
|
106
|
+
primary_keys: dict[str, list[str]] | None = None,
|
|
107
|
+
) -> Dictionary:
|
|
108
|
+
"""
|
|
109
|
+
Summary:
|
|
110
|
+
Generate a dictionary from a Dataset.
|
|
111
|
+
|
|
112
|
+
Arguments:
|
|
113
|
+
items (Dataset): A list of DatasetItems to generate the dictionary from.
|
|
114
|
+
dictionary_name (str | None): The name of the dictionary to generate.
|
|
115
|
+
If None, will not be set.
|
|
116
|
+
primary_keys (dict[str, list[str]] | None): A dictionary of primary keys
|
|
117
|
+
to set on the generated dictionary. If None, will not be set.
|
|
118
|
+
|
|
119
|
+
Returns:
|
|
120
|
+
Dictionary: The generated dictionary.
|
|
121
|
+
"""
|
|
122
|
+
dictionary = Dictionary(name=dictionary_name, imported=True)
|
|
123
|
+
|
|
124
|
+
self.__say(f"Generating dictionary for {len(items)} tables")
|
|
125
|
+
for item in items:
|
|
126
|
+
self.__progress_init(item)
|
|
127
|
+
table = Table(name=_normalise_name(item.name))
|
|
128
|
+
dictionary.add_table(table)
|
|
129
|
+
|
|
130
|
+
if item.is_path:
|
|
131
|
+
self._infer_from_csv_into_table(item, table)
|
|
132
|
+
else:
|
|
133
|
+
self._infer_from_dataframe_into_table(item.data, table)
|
|
134
|
+
|
|
135
|
+
item._dictionary_runtimes = self.__finish_generation_for_table()
|
|
136
|
+
|
|
137
|
+
dictionary.set_primary_keys(primary_keys or {})
|
|
138
|
+
self.__say("\n", end="")
|
|
139
|
+
return dictionary
|
|
140
|
+
|
|
141
|
+
# Generation Helpers
|
|
142
|
+
def _infer_from_csv_into_table(self, item: DatasetItemLike, table: Table) -> None:
|
|
143
|
+
self.__begin_step(step=IMPORTING_DATA)
|
|
144
|
+
csv_path = item.data
|
|
145
|
+
inferer = TypeInferer(
|
|
146
|
+
debug=self.debug,
|
|
147
|
+
dayfirst=self.config.dayfirst,
|
|
148
|
+
progress=self.progress,
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
# Read single sample
|
|
152
|
+
if self.config.sample_rows is not None:
|
|
153
|
+
self.__begin_step(step=IMPORTING_DATA)
|
|
154
|
+
df = read_csv_sample(
|
|
155
|
+
csv_path,
|
|
156
|
+
nrows=self.config.sample_rows,
|
|
157
|
+
cfg=self.csv_cfg,
|
|
158
|
+
).df
|
|
159
|
+
self.__complete_step()
|
|
160
|
+
|
|
161
|
+
inferer.update_with_chunk(df)
|
|
162
|
+
self._create_or_update_columns(table, inferer)
|
|
163
|
+
return
|
|
164
|
+
|
|
165
|
+
# Read in chunks
|
|
166
|
+
first_chunk = True
|
|
167
|
+
columns_by_name: dict[str, Column] = {}
|
|
168
|
+
column_count = item.column_count
|
|
169
|
+
iterator = iter_csv_chunks(
|
|
170
|
+
path=Path(csv_path), chunk_size=self.config.chunk_size, cfg=self.csv_cfg
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
while True:
|
|
174
|
+
# Import chunk
|
|
175
|
+
try:
|
|
176
|
+
chunk = next(iterator)
|
|
177
|
+
except StopIteration:
|
|
178
|
+
break
|
|
179
|
+
|
|
180
|
+
est_chunk_count = chunk.estimate_chunk_count()
|
|
181
|
+
self.__progress_retarget_total(
|
|
182
|
+
est_chunk_count=est_chunk_count, column_count=column_count
|
|
183
|
+
)
|
|
184
|
+
self.__complete_step()
|
|
185
|
+
|
|
186
|
+
inferer.update_with_chunk(chunk.df)
|
|
187
|
+
|
|
188
|
+
self.__begin_step(step="Saving chunk data types")
|
|
189
|
+
if first_chunk:
|
|
190
|
+
ordered = list(inferer.states.keys())
|
|
191
|
+
for idx, col_name in enumerate(ordered, start=1):
|
|
192
|
+
col_state = inferer.states[col_name]
|
|
193
|
+
data_type, length = col_state.final_data_type_and_length()
|
|
194
|
+
col = Column(
|
|
195
|
+
name=_normalise_name(col_name),
|
|
196
|
+
order=idx,
|
|
197
|
+
data_type=data_type,
|
|
198
|
+
length=length if data_type == DataType.TEXT else None,
|
|
199
|
+
vocabulary=None,
|
|
200
|
+
primary_key=None,
|
|
201
|
+
foreign_key=None,
|
|
202
|
+
description=None,
|
|
203
|
+
enumerations=None,
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
self._set_datetime_format(column_state=col_state, column=col)
|
|
207
|
+
table.add_column(col)
|
|
208
|
+
columns_by_name[col_name] = col
|
|
209
|
+
first_chunk = False
|
|
210
|
+
|
|
211
|
+
else:
|
|
212
|
+
self._apply_state_to_existing_columns(table, inferer, columns_by_name)
|
|
213
|
+
|
|
214
|
+
if first_chunk:
|
|
215
|
+
empty = read_csv_headers(
|
|
216
|
+
csv_path,
|
|
217
|
+
cfg=self.csv_cfg,
|
|
218
|
+
)
|
|
219
|
+
inferer.update_with_chunk(empty)
|
|
220
|
+
self._create_or_update_columns(table, inferer)
|
|
221
|
+
|
|
222
|
+
def _infer_from_dataframe_into_table(self, df: pd.DataFrame, table: Table) -> None:
|
|
223
|
+
self.__begin_step(step=IMPORTING_DATA)
|
|
224
|
+
inferer = TypeInferer(
|
|
225
|
+
debug=self.debug,
|
|
226
|
+
dayfirst=self.config.dayfirst,
|
|
227
|
+
progress=self.progress,
|
|
228
|
+
)
|
|
229
|
+
self.__complete_step()
|
|
230
|
+
|
|
231
|
+
inferer.update_with_chunk(df)
|
|
232
|
+
self._create_or_update_columns(table, inferer)
|
|
233
|
+
|
|
234
|
+
# Emit/Update Helpers
|
|
235
|
+
def _create_or_update_columns(self, table: Table, inferer: TypeInferer) -> None:
|
|
236
|
+
if len(table):
|
|
237
|
+
for existing in table:
|
|
238
|
+
table.remove_column(existing.name)
|
|
239
|
+
|
|
240
|
+
ordered = list(inferer.states.keys())
|
|
241
|
+
for idx, col_name in enumerate(ordered, start=1):
|
|
242
|
+
col_state = inferer.states[col_name]
|
|
243
|
+
data_type, length = col_state.final_data_type_and_length()
|
|
244
|
+
col = Column(
|
|
245
|
+
name=_normalise_name(col_name),
|
|
246
|
+
order=idx,
|
|
247
|
+
data_type=data_type,
|
|
248
|
+
length=length if data_type == DataType.TEXT else None,
|
|
249
|
+
vocabulary=None,
|
|
250
|
+
primary_key=None,
|
|
251
|
+
foreign_key=None,
|
|
252
|
+
description=None,
|
|
253
|
+
enumerations=None,
|
|
254
|
+
)
|
|
255
|
+
self._set_datetime_format(column_state=col_state, column=col)
|
|
256
|
+
|
|
257
|
+
table.add_column(col)
|
|
258
|
+
|
|
259
|
+
def _set_datetime_format(self, column_state: ColumnState, column: Column) -> None:
|
|
260
|
+
if column.data_type in (DataType.DATE, DataType.DATETIME):
|
|
261
|
+
datetime_format = getattr(column_state, "cached_datetime_format", None)
|
|
262
|
+
if datetime_format and hasattr(column, "datetime_format"):
|
|
263
|
+
column.datetime_format = datetime_format
|
|
264
|
+
|
|
265
|
+
else:
|
|
266
|
+
if hasattr(column, "datetime_format"):
|
|
267
|
+
column.datetime_format = None
|
|
268
|
+
|
|
269
|
+
def _apply_state_to_existing_columns(
|
|
270
|
+
self,
|
|
271
|
+
table: Table,
|
|
272
|
+
inferer: TypeInferer,
|
|
273
|
+
columns_by_name: dict[str, Column],
|
|
274
|
+
) -> None:
|
|
275
|
+
for col_name, col_state in inferer.states.items():
|
|
276
|
+
if col_name not in columns_by_name:
|
|
277
|
+
next_order = max((c.order or 0 for c in table), default=0) + 1
|
|
278
|
+
data_type, length = col_state.final_data_type_and_length()
|
|
279
|
+
new_col = Column(
|
|
280
|
+
name=_normalise_name(col_name),
|
|
281
|
+
order=next_order,
|
|
282
|
+
data_type=data_type,
|
|
283
|
+
length=length if data_type == DataType.TEXT else None,
|
|
284
|
+
vocabulary=None,
|
|
285
|
+
primary_key=None,
|
|
286
|
+
foreign_key=None,
|
|
287
|
+
description=None,
|
|
288
|
+
enumerations=None,
|
|
289
|
+
)
|
|
290
|
+
self._set_datetime_format(column_state=col_state, column=new_col)
|
|
291
|
+
table.add_column(new_col)
|
|
292
|
+
columns_by_name[col_name] = new_col
|
|
293
|
+
continue
|
|
294
|
+
|
|
295
|
+
col = columns_by_name[col_name]
|
|
296
|
+
data_type, length = col_state.final_data_type_and_length()
|
|
297
|
+
|
|
298
|
+
if col.data_type != data_type:
|
|
299
|
+
col.data_type = data_type
|
|
300
|
+
|
|
301
|
+
if data_type == DataType.TEXT:
|
|
302
|
+
if length is not None and (col.length or 0) < length:
|
|
303
|
+
col.length = int(length)
|
|
304
|
+
else:
|
|
305
|
+
col.length = None
|
|
306
|
+
|
|
307
|
+
self._set_datetime_format(column_state=col_state, column=col)
|
|
308
|
+
|
|
309
|
+
# Progress
|
|
310
|
+
def __progress_init(self, item: DatasetItemLike) -> None:
|
|
311
|
+
# Switch to debug mode
|
|
312
|
+
if self.debug:
|
|
313
|
+
self.progress = Progress(enabled=False)
|
|
314
|
+
return
|
|
315
|
+
|
|
316
|
+
# Switch to silent mode
|
|
317
|
+
if not self.feedback:
|
|
318
|
+
self.progress = Progress(enabled=False)
|
|
319
|
+
return
|
|
320
|
+
|
|
321
|
+
# Progress bars on
|
|
322
|
+
total_steps = (
|
|
323
|
+
(CHUNK_STEPS + (COLUMN_STEPS * item.column_count))
|
|
324
|
+
if (isinstance(item.data, DataFrame) or self.config.sample_rows)
|
|
325
|
+
else None
|
|
326
|
+
)
|
|
327
|
+
pad = " " * item._padding if item._padding else ""
|
|
328
|
+
|
|
329
|
+
self.progress = Progress(
|
|
330
|
+
desc=f"Generating {item.name}: {pad}",
|
|
331
|
+
starting_step=IMPORTING_DATA,
|
|
332
|
+
est_total=total_steps,
|
|
333
|
+
smoothing_steps=(COLUMN_STEPS * item.column_count),
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
def __progress_retarget_total(
|
|
337
|
+
self, est_chunk_count: int, column_count: int
|
|
338
|
+
) -> None:
|
|
339
|
+
new_total = (CHUNK_STEPS * est_chunk_count) + (
|
|
340
|
+
COLUMN_STEPS * est_chunk_count * column_count
|
|
341
|
+
)
|
|
342
|
+
self.progress.retarget_total(new_total=new_total)
|
|
343
|
+
|
|
344
|
+
def __begin_step(self, step: str | None = None) -> None:
|
|
345
|
+
self.progress.begin_step(step=step)
|
|
346
|
+
|
|
347
|
+
def __complete_step(self) -> None:
|
|
348
|
+
self.progress.complete_step()
|
|
349
|
+
|
|
350
|
+
def __finish_generation_for_table(self) -> dict[str, timedelta]:
|
|
351
|
+
step = (
|
|
352
|
+
f"Completed ({calculate_runtime(start=self.progress.full_start).message})"
|
|
353
|
+
)
|
|
354
|
+
save_as = "Total"
|
|
355
|
+
self.progress.finish(postfix=step, save_as=save_as, good=True)
|
|
356
|
+
self.progress.close()
|
|
357
|
+
return self.progress.runtimes
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from typing import Any, Literal
|
|
3
|
+
|
|
4
|
+
from pandas import Series
|
|
5
|
+
from pandas import isna as _pd_isna
|
|
6
|
+
|
|
7
|
+
from valediction.data_types.data_types import DataType
|
|
8
|
+
from valediction.exceptions import DataDictionaryImportError
|
|
9
|
+
from valediction.integrity import get_config
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def _check_name(name: str, entity: Literal["table", "column"]) -> list[str]:
|
|
13
|
+
if entity not in ["table", "column"]:
|
|
14
|
+
raise ValueError("entity must be either 'table' or 'column'")
|
|
15
|
+
|
|
16
|
+
errors: list = []
|
|
17
|
+
config = get_config()
|
|
18
|
+
invalid_chars = (
|
|
19
|
+
config.invalid_name_pattern
|
|
20
|
+
if isinstance(config.invalid_name_pattern, re.Pattern)
|
|
21
|
+
else re.compile(config.invalid_name_pattern)
|
|
22
|
+
)
|
|
23
|
+
max_name_length = (
|
|
24
|
+
config.max_table_name_length
|
|
25
|
+
if entity == "table"
|
|
26
|
+
else config.max_column_name_length
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
if name != name.upper(): # name must be uppercase
|
|
30
|
+
errors.append("must be uppercase")
|
|
31
|
+
|
|
32
|
+
if invalid_chars.search(name): # check invalid characters
|
|
33
|
+
bad = set(invalid_chars.findall(name))
|
|
34
|
+
errors.append(
|
|
35
|
+
f"invalid characters: '{''.join(sorted(bad))}'; "
|
|
36
|
+
"only A-Z, 0-9, and underscores are allowed with no whitespace"
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
if len(name) > max_name_length: # max length 30
|
|
40
|
+
errors.append(f"exceeds max length of {max_name_length}")
|
|
41
|
+
|
|
42
|
+
if not name[0].isalpha(): # column starts with a letter
|
|
43
|
+
errors.append("must start with a letter")
|
|
44
|
+
|
|
45
|
+
if name.endswith("_"): # column cannot end with an underscore
|
|
46
|
+
errors.append("cannot end with '_'")
|
|
47
|
+
|
|
48
|
+
if "__" in name: # column cannot contain double underscores
|
|
49
|
+
errors.append("cannot contain double underscores '__'")
|
|
50
|
+
|
|
51
|
+
return errors
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def _check_order(order: int | None) -> list[str]:
|
|
55
|
+
errors: list = []
|
|
56
|
+
if order is None: # presence
|
|
57
|
+
errors.append("order is required and must be an integer ≥ 1")
|
|
58
|
+
return errors
|
|
59
|
+
|
|
60
|
+
if not isinstance(order, int): # type integer
|
|
61
|
+
errors.append("order must be an integer ≥ 1")
|
|
62
|
+
return errors
|
|
63
|
+
|
|
64
|
+
if order < 1: # must be ≥ 1
|
|
65
|
+
errors.append("order must be ≥ 1")
|
|
66
|
+
return errors
|
|
67
|
+
|
|
68
|
+
return errors
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def _check_data_type(data_type: DataType, length: int | None) -> list[str]:
|
|
72
|
+
errors: list = []
|
|
73
|
+
if not isinstance(data_type, DataType): # Ensure is a DataType
|
|
74
|
+
errors.append("data type is invalid; must be a DataType object")
|
|
75
|
+
|
|
76
|
+
if length is not None: # length rules
|
|
77
|
+
if not isinstance(length, int):
|
|
78
|
+
errors.append("length must be an positive integer if provided")
|
|
79
|
+
if length <= 0: # must be positive
|
|
80
|
+
errors.append("length must be an positive integer if provided")
|
|
81
|
+
|
|
82
|
+
if data_type == DataType.TEXT: # required for DataType.TEXT
|
|
83
|
+
if length is None:
|
|
84
|
+
errors.append("length is required for TEXT columns")
|
|
85
|
+
else:
|
|
86
|
+
if length is not None: # length not applicable
|
|
87
|
+
errors.append(f"length is not applicable to {data_type.value} columns")
|
|
88
|
+
|
|
89
|
+
return errors
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def _check_primary_key(primary_key: int | None, data_type: DataType) -> list[str]:
|
|
93
|
+
errors: list = []
|
|
94
|
+
if primary_key is None:
|
|
95
|
+
return errors
|
|
96
|
+
|
|
97
|
+
if (
|
|
98
|
+
not isinstance(primary_key, int)
|
|
99
|
+
or primary_key < 1
|
|
100
|
+
or primary_key > get_config().max_primary_keys
|
|
101
|
+
):
|
|
102
|
+
errors.append(
|
|
103
|
+
"primary key order must be an integer between 1 and 7 if provided"
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
if (
|
|
107
|
+
hasattr(data_type, "valid_for_primary_key")
|
|
108
|
+
and not data_type.valid_for_primary_key()
|
|
109
|
+
):
|
|
110
|
+
errors.append(
|
|
111
|
+
f"invalid data type '{data_type.value}' for primary key column; "
|
|
112
|
+
"primary keys must be Text, Integer, Date, or Datetime"
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
return errors
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def _normalise_name(name: str) -> str:
|
|
119
|
+
return name.upper().strip()
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
def _norm_header_map(columns: list) -> dict:
|
|
123
|
+
mapping, _ = {}, set()
|
|
124
|
+
for c in columns:
|
|
125
|
+
k = str(c).strip().lower().replace(" ", "_").replace("-", "_")
|
|
126
|
+
if k in mapping: # collision
|
|
127
|
+
raise DataDictionaryImportError(
|
|
128
|
+
f"Ambiguous headers after normalisation: {mapping[k]!r} and {c!r} both map to {k!r}"
|
|
129
|
+
)
|
|
130
|
+
mapping[k] = c
|
|
131
|
+
return mapping
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def _get_required_header(header_map: dict[str, str], key: str) -> str:
|
|
135
|
+
if key not in header_map:
|
|
136
|
+
raise DataDictionaryImportError(
|
|
137
|
+
f"Required Data Dictionary column '{key}' not found. Available: {list(header_map.keys())}"
|
|
138
|
+
)
|
|
139
|
+
return header_map[key]
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def _is_missing(val: Any) -> bool:
|
|
143
|
+
return _pd_isna(val) or (isinstance(val, str) and val.strip() == "")
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def _parse_truthy(val: Any) -> bool:
|
|
147
|
+
if isinstance(val, str):
|
|
148
|
+
return val.strip().lower() in {"y", "yes", "true", "1"}
|
|
149
|
+
if isinstance(val, (int, float)):
|
|
150
|
+
try:
|
|
151
|
+
return int(val) == 1
|
|
152
|
+
except Exception:
|
|
153
|
+
return False
|
|
154
|
+
return False
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def _row_is_blank(row: Series, keys: tuple[str, str]) -> bool:
|
|
158
|
+
a, b = keys
|
|
159
|
+
return _is_missing(row[a]) and _is_missing(row[b])
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def _parse_int(
|
|
163
|
+
value: Any, label: str, row_ctx: str, *, required: bool = True
|
|
164
|
+
) -> int | None:
|
|
165
|
+
if _is_missing(value):
|
|
166
|
+
if required:
|
|
167
|
+
raise DataDictionaryImportError(f"{row_ctx}: {label} is required.")
|
|
168
|
+
return None
|
|
169
|
+
try:
|
|
170
|
+
return int(value)
|
|
171
|
+
except Exception as e:
|
|
172
|
+
raise DataDictionaryImportError(
|
|
173
|
+
f"{row_ctx}: {label} must be integer (got {value!r})."
|
|
174
|
+
) from e
|