valediction 1.0.0__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,357 +1,357 @@
1
- # valediction/dictionary/generation.py
2
- from __future__ import annotations
3
-
4
- from dataclasses import dataclass
5
- from datetime import timedelta
6
- from pathlib import Path
7
- from typing import Iterable
8
-
9
- import pandas as pd
10
- from pandas import DataFrame
11
-
12
- from valediction.data_types.data_types import DataType
13
- from valediction.data_types.type_inference import (
14
- COLUMN_STEPS,
15
- ColumnState,
16
- TypeInferer,
17
- )
18
- from valediction.datasets.datasets_helpers import DatasetItemLike
19
- from valediction.dictionary.model import Column, Dictionary, Table
20
- from valediction.io.csv_readers import (
21
- CsvReadConfig,
22
- iter_csv_chunks,
23
- read_csv_headers,
24
- read_csv_sample,
25
- )
26
- from valediction.progress import Progress
27
- from valediction.support import _normalise_name, calculate_runtime
28
-
29
- IMPORTING_DATA = "Importing data"
30
- CHUNK_STEPS = 1
31
- COLUMN_STEPS = COLUMN_STEPS
32
-
33
-
34
- @dataclass(slots=True)
35
- class GeneratorConfig:
36
- chunk_size: int = 10_000_000
37
- sample_rows: int | None = None
38
- dayfirst: bool = True
39
- infer_types: bool = True
40
- infer_max_length: bool = True
41
-
42
- def set_variables(
43
- self,
44
- chunk_size: int | None = None,
45
- sample_rows: int | None = None,
46
- ) -> None:
47
- # Set user variables
48
- self.chunk_size = chunk_size
49
- self.sample_rows = sample_rows
50
-
51
-
52
- class Generator:
53
- """
54
- Summary:
55
- Generator class for creating dictionaries from datasets.
56
-
57
- Arguments:
58
- feedback (bool): Provide user feedback on progress (default: True)
59
- debug (bool): Enable debug mode, providing full log of data type inference and
60
- reasoning (default: False)
61
- chunk_size (int | None): Size of chunks for reading data to optimise RAM usage,
62
- if reading from CSV (default: 10_000_000)
63
- sample_rows (int | None): Number of rows to sample for data type inference. Note:
64
- this overrides `chunk_size` and reads in a single chunk (default: None)
65
-
66
- Raises:
67
- DataDictionaryError: If there is an issue with the data dictionary
68
- """
69
-
70
- def __init__(
71
- self,
72
- feedback: bool = True,
73
- debug: bool = False,
74
- chunk_size: int | None = 10_000_000,
75
- sample_rows: int | None = None,
76
- ) -> None:
77
- # User Config
78
- self.config = GeneratorConfig()
79
- self.config.set_variables(sample_rows=sample_rows, chunk_size=chunk_size)
80
- self.feedback: bool = feedback
81
- self.debug: bool = debug
82
- self.csv_cfg: CsvReadConfig = CsvReadConfig()
83
-
84
- # Progress
85
- self.progress: Progress = None
86
-
87
- # Setup
88
- if sample_rows is not None:
89
- self.config.sample_rows = int(sample_rows)
90
- if chunk_size is not None:
91
- self.config.chunk_size = int(chunk_size)
92
-
93
- def __say(
94
- self,
95
- *values: object,
96
- sep: str | None = " ",
97
- end: str | None = "\n",
98
- ) -> None:
99
- if self.feedback:
100
- print(*values, sep=sep, end=end)
101
-
102
- def generate_dictionary(
103
- self,
104
- items: Iterable[DatasetItemLike],
105
- dictionary_name: str | None = None,
106
- primary_keys: dict[str, list[str]] | None = None,
107
- ) -> Dictionary:
108
- """
109
- Summary:
110
- Generate a dictionary from a Dataset.
111
-
112
- Arguments:
113
- items (Dataset): A list of DatasetItems to generate the dictionary from.
114
- dictionary_name (str | None): The name of the dictionary to generate.
115
- If None, will not be set.
116
- primary_keys (dict[str, list[str]] | None): A dictionary of primary keys
117
- to set on the generated dictionary. If None, will not be set.
118
-
119
- Returns:
120
- Dictionary: The generated dictionary.
121
- """
122
- dictionary = Dictionary(name=dictionary_name, imported=True)
123
-
124
- self.__say(f"Generating dictionary for {len(items)} tables")
125
- for item in items:
126
- self.__progress_init(item)
127
- table = Table(name=_normalise_name(item.name))
128
- dictionary.add_table(table)
129
-
130
- if item.is_path:
131
- self._infer_from_csv_into_table(item, table)
132
- else:
133
- self._infer_from_dataframe_into_table(item.data, table)
134
-
135
- item._dictionary_runtimes = self.__finish_generation_for_table()
136
-
137
- dictionary.set_primary_keys(primary_keys or {})
138
- self.__say("\n", end="")
139
- return dictionary
140
-
141
- # Generation Helpers
142
- def _infer_from_csv_into_table(self, item: DatasetItemLike, table: Table) -> None:
143
- self.__begin_step(step=IMPORTING_DATA)
144
- csv_path = item.data
145
- inferer = TypeInferer(
146
- debug=self.debug,
147
- dayfirst=self.config.dayfirst,
148
- progress=self.progress,
149
- )
150
-
151
- # Read single sample
152
- if self.config.sample_rows is not None:
153
- self.__begin_step(step=IMPORTING_DATA)
154
- df = read_csv_sample(
155
- csv_path,
156
- nrows=self.config.sample_rows,
157
- cfg=self.csv_cfg,
158
- ).df
159
- self.__complete_step()
160
-
161
- inferer.update_with_chunk(df)
162
- self._create_or_update_columns(table, inferer)
163
- return
164
-
165
- # Read in chunks
166
- first_chunk = True
167
- columns_by_name: dict[str, Column] = {}
168
- column_count = item.column_count
169
- iterator = iter_csv_chunks(
170
- path=Path(csv_path), chunk_size=self.config.chunk_size, cfg=self.csv_cfg
171
- )
172
-
173
- while True:
174
- # Import chunk
175
- try:
176
- chunk = next(iterator)
177
- except StopIteration:
178
- break
179
-
180
- est_chunk_count = chunk.estimate_chunk_count()
181
- self.__progress_retarget_total(
182
- est_chunk_count=est_chunk_count, column_count=column_count
183
- )
184
- self.__complete_step()
185
-
186
- inferer.update_with_chunk(chunk.df)
187
-
188
- self.__begin_step(step="Saving chunk data types")
189
- if first_chunk:
190
- ordered = list(inferer.states.keys())
191
- for idx, col_name in enumerate(ordered, start=1):
192
- col_state = inferer.states[col_name]
193
- data_type, length = col_state.final_data_type_and_length()
194
- col = Column(
195
- name=_normalise_name(col_name),
196
- order=idx,
197
- data_type=data_type,
198
- length=length if data_type == DataType.TEXT else None,
199
- vocabulary=None,
200
- primary_key=None,
201
- foreign_key=None,
202
- description=None,
203
- enumerations=None,
204
- )
205
-
206
- self._set_datetime_format(column_state=col_state, column=col)
207
- table.add_column(col)
208
- columns_by_name[col_name] = col
209
- first_chunk = False
210
-
211
- else:
212
- self._apply_state_to_existing_columns(table, inferer, columns_by_name)
213
-
214
- if first_chunk:
215
- empty = read_csv_headers(
216
- csv_path,
217
- cfg=self.csv_cfg,
218
- )
219
- inferer.update_with_chunk(empty)
220
- self._create_or_update_columns(table, inferer)
221
-
222
- def _infer_from_dataframe_into_table(self, df: pd.DataFrame, table: Table) -> None:
223
- self.__begin_step(step=IMPORTING_DATA)
224
- inferer = TypeInferer(
225
- debug=self.debug,
226
- dayfirst=self.config.dayfirst,
227
- progress=self.progress,
228
- )
229
- self.__complete_step()
230
-
231
- inferer.update_with_chunk(df)
232
- self._create_or_update_columns(table, inferer)
233
-
234
- # Emit/Update Helpers
235
- def _create_or_update_columns(self, table: Table, inferer: TypeInferer) -> None:
236
- if len(table):
237
- for existing in table:
238
- table.remove_column(existing.name)
239
-
240
- ordered = list(inferer.states.keys())
241
- for idx, col_name in enumerate(ordered, start=1):
242
- col_state = inferer.states[col_name]
243
- data_type, length = col_state.final_data_type_and_length()
244
- col = Column(
245
- name=_normalise_name(col_name),
246
- order=idx,
247
- data_type=data_type,
248
- length=length if data_type == DataType.TEXT else None,
249
- vocabulary=None,
250
- primary_key=None,
251
- foreign_key=None,
252
- description=None,
253
- enumerations=None,
254
- )
255
- self._set_datetime_format(column_state=col_state, column=col)
256
-
257
- table.add_column(col)
258
-
259
- def _set_datetime_format(self, column_state: ColumnState, column: Column) -> None:
260
- if column.data_type in (DataType.DATE, DataType.DATETIME):
261
- datetime_format = getattr(column_state, "cached_datetime_format", None)
262
- if datetime_format and hasattr(column, "datetime_format"):
263
- column.datetime_format = datetime_format
264
-
265
- else:
266
- if hasattr(column, "datetime_format"):
267
- column.datetime_format = None
268
-
269
- def _apply_state_to_existing_columns(
270
- self,
271
- table: Table,
272
- inferer: TypeInferer,
273
- columns_by_name: dict[str, Column],
274
- ) -> None:
275
- for col_name, col_state in inferer.states.items():
276
- if col_name not in columns_by_name:
277
- next_order = max((c.order or 0 for c in table), default=0) + 1
278
- data_type, length = col_state.final_data_type_and_length()
279
- new_col = Column(
280
- name=_normalise_name(col_name),
281
- order=next_order,
282
- data_type=data_type,
283
- length=length if data_type == DataType.TEXT else None,
284
- vocabulary=None,
285
- primary_key=None,
286
- foreign_key=None,
287
- description=None,
288
- enumerations=None,
289
- )
290
- self._set_datetime_format(column_state=col_state, column=new_col)
291
- table.add_column(new_col)
292
- columns_by_name[col_name] = new_col
293
- continue
294
-
295
- col = columns_by_name[col_name]
296
- data_type, length = col_state.final_data_type_and_length()
297
-
298
- if col.data_type != data_type:
299
- col.data_type = data_type
300
-
301
- if data_type == DataType.TEXT:
302
- if length is not None and (col.length or 0) < length:
303
- col.length = int(length)
304
- else:
305
- col.length = None
306
-
307
- self._set_datetime_format(column_state=col_state, column=col)
308
-
309
- # Progress
310
- def __progress_init(self, item: DatasetItemLike) -> None:
311
- # Switch to debug mode
312
- if self.debug:
313
- self.progress = Progress(enabled=False)
314
- return
315
-
316
- # Switch to silent mode
317
- if not self.feedback:
318
- self.progress = Progress(enabled=False)
319
- return
320
-
321
- # Progress bars on
322
- total_steps = (
323
- (CHUNK_STEPS + (COLUMN_STEPS * item.column_count))
324
- if (isinstance(item.data, DataFrame) or self.config.sample_rows)
325
- else None
326
- )
327
- pad = " " * item._padding if item._padding else ""
328
-
329
- self.progress = Progress(
330
- desc=f"Generating {item.name}: {pad}",
331
- starting_step=IMPORTING_DATA,
332
- est_total=total_steps,
333
- smoothing_steps=(COLUMN_STEPS * item.column_count),
334
- )
335
-
336
- def __progress_retarget_total(
337
- self, est_chunk_count: int, column_count: int
338
- ) -> None:
339
- new_total = (CHUNK_STEPS * est_chunk_count) + (
340
- COLUMN_STEPS * est_chunk_count * column_count
341
- )
342
- self.progress.retarget_total(new_total=new_total)
343
-
344
- def __begin_step(self, step: str | None = None) -> None:
345
- self.progress.begin_step(step=step)
346
-
347
- def __complete_step(self) -> None:
348
- self.progress.complete_step()
349
-
350
- def __finish_generation_for_table(self) -> dict[str, timedelta]:
351
- step = (
352
- f"Completed ({calculate_runtime(start=self.progress.full_start).message})"
353
- )
354
- save_as = "Total"
355
- self.progress.finish(postfix=step, save_as=save_as, good=True)
356
- self.progress.close()
357
- return self.progress.runtimes
1
+ # valediction/dictionary/generation.py
2
+ from __future__ import annotations
3
+
4
+ from dataclasses import dataclass
5
+ from datetime import timedelta
6
+ from pathlib import Path
7
+ from typing import Iterable
8
+
9
+ import pandas as pd
10
+ from pandas import DataFrame
11
+
12
+ from valediction.data_types.data_types import DataType
13
+ from valediction.data_types.type_inference import (
14
+ COLUMN_STEPS,
15
+ ColumnState,
16
+ TypeInferer,
17
+ )
18
+ from valediction.datasets.datasets_helpers import DatasetItemLike
19
+ from valediction.dictionary.model import Column, Dictionary, Table
20
+ from valediction.io.csv_readers import (
21
+ CsvReadConfig,
22
+ iter_csv_chunks,
23
+ read_csv_headers,
24
+ read_csv_sample,
25
+ )
26
+ from valediction.progress import Progress
27
+ from valediction.support import _normalise_name, calculate_runtime
28
+
29
+ IMPORTING_DATA = "Importing data"
30
+ CHUNK_STEPS = 1
31
+ COLUMN_STEPS = COLUMN_STEPS
32
+
33
+
34
+ @dataclass(slots=True)
35
+ class GeneratorConfig:
36
+ chunk_size: int = 10_000_000
37
+ sample_rows: int | None = None
38
+ dayfirst: bool = True
39
+ infer_types: bool = True
40
+ infer_max_length: bool = True
41
+
42
+ def set_variables(
43
+ self,
44
+ chunk_size: int | None = None,
45
+ sample_rows: int | None = None,
46
+ ) -> None:
47
+ # Set user variables
48
+ self.chunk_size = chunk_size
49
+ self.sample_rows = sample_rows
50
+
51
+
52
+ class Generator:
53
+ """
54
+ Summary:
55
+ Generator class for creating dictionaries from datasets.
56
+
57
+ Arguments:
58
+ feedback (bool): Provide user feedback on progress (default: True)
59
+ debug (bool): Enable debug mode, providing full log of data type inference and
60
+ reasoning (default: False)
61
+ chunk_size (int | None): Size of chunks for reading data to optimise RAM usage,
62
+ if reading from CSV (default: 10_000_000)
63
+ sample_rows (int | None): Number of rows to sample for data type inference. Note:
64
+ this overrides `chunk_size` and reads in a single chunk (default: None)
65
+
66
+ Raises:
67
+ DataDictionaryError: If there is an issue with the data dictionary
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ feedback: bool = True,
73
+ debug: bool = False,
74
+ chunk_size: int | None = 10_000_000,
75
+ sample_rows: int | None = None,
76
+ ) -> None:
77
+ # User Config
78
+ self.config = GeneratorConfig()
79
+ self.config.set_variables(sample_rows=sample_rows, chunk_size=chunk_size)
80
+ self.feedback: bool = feedback
81
+ self.debug: bool = debug
82
+ self.csv_cfg: CsvReadConfig = CsvReadConfig()
83
+
84
+ # Progress
85
+ self.progress: Progress = None
86
+
87
+ # Setup
88
+ if sample_rows is not None:
89
+ self.config.sample_rows = int(sample_rows)
90
+ if chunk_size is not None:
91
+ self.config.chunk_size = int(chunk_size)
92
+
93
+ def __say(
94
+ self,
95
+ *values: object,
96
+ sep: str | None = " ",
97
+ end: str | None = "\n",
98
+ ) -> None:
99
+ if self.feedback:
100
+ print(*values, sep=sep, end=end)
101
+
102
+ def generate_dictionary(
103
+ self,
104
+ items: Iterable[DatasetItemLike],
105
+ dictionary_name: str | None = None,
106
+ primary_keys: dict[str, list[str]] | None = None,
107
+ ) -> Dictionary:
108
+ """
109
+ Summary:
110
+ Generate a dictionary from a Dataset.
111
+
112
+ Arguments:
113
+ items (Dataset): A list of DatasetItems to generate the dictionary from.
114
+ dictionary_name (str | None): The name of the dictionary to generate.
115
+ If None, will not be set.
116
+ primary_keys (dict[str, list[str]] | None): A dictionary of primary keys
117
+ to set on the generated dictionary. If None, will not be set.
118
+
119
+ Returns:
120
+ Dictionary: The generated dictionary.
121
+ """
122
+ dictionary = Dictionary(name=dictionary_name, imported=True)
123
+
124
+ self.__say(f"Generating dictionary for {len(items)} tables")
125
+ for item in items:
126
+ self.__progress_init(item)
127
+ table = Table(name=_normalise_name(item.name))
128
+ dictionary.add_table(table)
129
+
130
+ if item.is_path:
131
+ self._infer_from_csv_into_table(item, table)
132
+ else:
133
+ self._infer_from_dataframe_into_table(item.data, table)
134
+
135
+ item._dictionary_runtimes = self.__finish_generation_for_table()
136
+
137
+ dictionary.set_primary_keys(primary_keys or {})
138
+ self.__say("\n", end="")
139
+ return dictionary
140
+
141
+ # Generation Helpers
142
+ def _infer_from_csv_into_table(self, item: DatasetItemLike, table: Table) -> None:
143
+ self.__begin_step(step=IMPORTING_DATA)
144
+ csv_path = item.data
145
+ inferer = TypeInferer(
146
+ debug=self.debug,
147
+ dayfirst=self.config.dayfirst,
148
+ progress=self.progress,
149
+ )
150
+
151
+ # Read single sample
152
+ if self.config.sample_rows is not None:
153
+ self.__begin_step(step=IMPORTING_DATA)
154
+ df = read_csv_sample(
155
+ csv_path,
156
+ nrows=self.config.sample_rows,
157
+ cfg=self.csv_cfg,
158
+ ).df
159
+ self.__complete_step()
160
+
161
+ inferer.update_with_chunk(df)
162
+ self._create_or_update_columns(table, inferer)
163
+ return
164
+
165
+ # Read in chunks
166
+ first_chunk = True
167
+ columns_by_name: dict[str, Column] = {}
168
+ column_count = item.column_count
169
+ iterator = iter_csv_chunks(
170
+ path=Path(csv_path), chunk_size=self.config.chunk_size, cfg=self.csv_cfg
171
+ )
172
+
173
+ while True:
174
+ # Import chunk
175
+ try:
176
+ chunk = next(iterator)
177
+ except StopIteration:
178
+ break
179
+
180
+ est_chunk_count = chunk.estimate_chunk_count()
181
+ self.__progress_retarget_total(
182
+ est_chunk_count=est_chunk_count, column_count=column_count
183
+ )
184
+ self.__complete_step()
185
+
186
+ inferer.update_with_chunk(chunk.df)
187
+
188
+ self.__begin_step(step="Saving chunk data types")
189
+ if first_chunk:
190
+ ordered = list(inferer.states.keys())
191
+ for idx, col_name in enumerate(ordered, start=1):
192
+ col_state = inferer.states[col_name]
193
+ data_type, length = col_state.final_data_type_and_length()
194
+ col = Column(
195
+ name=_normalise_name(col_name),
196
+ order=idx,
197
+ data_type=data_type,
198
+ length=length if data_type == DataType.TEXT else None,
199
+ vocabulary=None,
200
+ primary_key=None,
201
+ foreign_key=None,
202
+ description=None,
203
+ enumerations=None,
204
+ )
205
+
206
+ self._set_datetime_format(column_state=col_state, column=col)
207
+ table.add_column(col)
208
+ columns_by_name[col_name] = col
209
+ first_chunk = False
210
+
211
+ else:
212
+ self._apply_state_to_existing_columns(table, inferer, columns_by_name)
213
+
214
+ if first_chunk:
215
+ empty = read_csv_headers(
216
+ csv_path,
217
+ cfg=self.csv_cfg,
218
+ )
219
+ inferer.update_with_chunk(empty)
220
+ self._create_or_update_columns(table, inferer)
221
+
222
+ def _infer_from_dataframe_into_table(self, df: pd.DataFrame, table: Table) -> None:
223
+ self.__begin_step(step=IMPORTING_DATA)
224
+ inferer = TypeInferer(
225
+ debug=self.debug,
226
+ dayfirst=self.config.dayfirst,
227
+ progress=self.progress,
228
+ )
229
+ self.__complete_step()
230
+
231
+ inferer.update_with_chunk(df)
232
+ self._create_or_update_columns(table, inferer)
233
+
234
+ # Emit/Update Helpers
235
+ def _create_or_update_columns(self, table: Table, inferer: TypeInferer) -> None:
236
+ if len(table):
237
+ for existing in table:
238
+ table.remove_column(existing.name)
239
+
240
+ ordered = list(inferer.states.keys())
241
+ for idx, col_name in enumerate(ordered, start=1):
242
+ col_state = inferer.states[col_name]
243
+ data_type, length = col_state.final_data_type_and_length()
244
+ col = Column(
245
+ name=_normalise_name(col_name),
246
+ order=idx,
247
+ data_type=data_type,
248
+ length=length if data_type == DataType.TEXT else None,
249
+ vocabulary=None,
250
+ primary_key=None,
251
+ foreign_key=None,
252
+ description=None,
253
+ enumerations=None,
254
+ )
255
+ self._set_datetime_format(column_state=col_state, column=col)
256
+
257
+ table.add_column(col)
258
+
259
+ def _set_datetime_format(self, column_state: ColumnState, column: Column) -> None:
260
+ if column.data_type in (DataType.DATE, DataType.DATETIME):
261
+ datetime_format = getattr(column_state, "cached_datetime_format", None)
262
+ if datetime_format and hasattr(column, "datetime_format"):
263
+ column.datetime_format = datetime_format
264
+
265
+ else:
266
+ if hasattr(column, "datetime_format"):
267
+ column.datetime_format = None
268
+
269
+ def _apply_state_to_existing_columns(
270
+ self,
271
+ table: Table,
272
+ inferer: TypeInferer,
273
+ columns_by_name: dict[str, Column],
274
+ ) -> None:
275
+ for col_name, col_state in inferer.states.items():
276
+ if col_name not in columns_by_name:
277
+ next_order = max((c.order or 0 for c in table), default=0) + 1
278
+ data_type, length = col_state.final_data_type_and_length()
279
+ new_col = Column(
280
+ name=_normalise_name(col_name),
281
+ order=next_order,
282
+ data_type=data_type,
283
+ length=length if data_type == DataType.TEXT else None,
284
+ vocabulary=None,
285
+ primary_key=None,
286
+ foreign_key=None,
287
+ description=None,
288
+ enumerations=None,
289
+ )
290
+ self._set_datetime_format(column_state=col_state, column=new_col)
291
+ table.add_column(new_col)
292
+ columns_by_name[col_name] = new_col
293
+ continue
294
+
295
+ col = columns_by_name[col_name]
296
+ data_type, length = col_state.final_data_type_and_length()
297
+
298
+ if col.data_type != data_type:
299
+ col.data_type = data_type
300
+
301
+ if data_type == DataType.TEXT:
302
+ if length is not None and (col.length or 0) < length:
303
+ col.length = int(length)
304
+ else:
305
+ col.length = None
306
+
307
+ self._set_datetime_format(column_state=col_state, column=col)
308
+
309
+ # Progress
310
+ def __progress_init(self, item: DatasetItemLike) -> None:
311
+ # Switch to debug mode
312
+ if self.debug:
313
+ self.progress = Progress(enabled=False)
314
+ return
315
+
316
+ # Switch to silent mode
317
+ if not self.feedback:
318
+ self.progress = Progress(enabled=False)
319
+ return
320
+
321
+ # Progress bars on
322
+ total_steps = (
323
+ (CHUNK_STEPS + (COLUMN_STEPS * item.column_count))
324
+ if (isinstance(item.data, DataFrame) or self.config.sample_rows)
325
+ else None
326
+ )
327
+ pad = " " * item._padding if item._padding else ""
328
+
329
+ self.progress = Progress(
330
+ desc=f"Generating {item.name}: {pad}",
331
+ starting_step=IMPORTING_DATA,
332
+ est_total=total_steps,
333
+ smoothing_steps=(COLUMN_STEPS * item.column_count),
334
+ )
335
+
336
+ def __progress_retarget_total(
337
+ self, est_chunk_count: int, column_count: int
338
+ ) -> None:
339
+ new_total = (CHUNK_STEPS * est_chunk_count) + (
340
+ COLUMN_STEPS * est_chunk_count * column_count
341
+ )
342
+ self.progress.retarget_total(new_total=new_total)
343
+
344
+ def __begin_step(self, step: str | None = None) -> None:
345
+ self.progress.begin_step(step=step)
346
+
347
+ def __complete_step(self) -> None:
348
+ self.progress.complete_step()
349
+
350
+ def __finish_generation_for_table(self) -> dict[str, timedelta]:
351
+ step = (
352
+ f"Completed ({calculate_runtime(start=self.progress.full_start).message})"
353
+ )
354
+ save_as = "Total"
355
+ self.progress.finish(postfix=step, save_as=save_as, good=True)
356
+ self.progress.close()
357
+ return self.progress.runtimes