valediction 1.0.0__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,174 +1,174 @@
1
- import re
2
- from typing import Any, Literal
3
-
4
- from pandas import Series
5
- from pandas import isna as _pd_isna
6
-
7
- from valediction.data_types.data_types import DataType
8
- from valediction.exceptions import DataDictionaryImportError
9
- from valediction.integrity import get_config
10
-
11
-
12
- def _check_name(name: str, entity: Literal["table", "column"]) -> list[str]:
13
- if entity not in ["table", "column"]:
14
- raise ValueError("entity must be either 'table' or 'column'")
15
-
16
- errors: list = []
17
- config = get_config()
18
- invalid_chars = (
19
- config.invalid_name_pattern
20
- if isinstance(config.invalid_name_pattern, re.Pattern)
21
- else re.compile(config.invalid_name_pattern)
22
- )
23
- max_name_length = (
24
- config.max_table_name_length
25
- if entity == "table"
26
- else config.max_column_name_length
27
- )
28
-
29
- if name != name.upper(): # name must be uppercase
30
- errors.append("must be uppercase")
31
-
32
- if invalid_chars.search(name): # check invalid characters
33
- bad = set(invalid_chars.findall(name))
34
- errors.append(
35
- f"invalid characters: '{''.join(sorted(bad))}'; "
36
- "only A-Z, 0-9, and underscores are allowed with no whitespace"
37
- )
38
-
39
- if len(name) > max_name_length: # max length 30
40
- errors.append(f"exceeds max length of {max_name_length}")
41
-
42
- if not name[0].isalpha(): # column starts with a letter
43
- errors.append("must start with a letter")
44
-
45
- if name.endswith("_"): # column cannot end with an underscore
46
- errors.append("cannot end with '_'")
47
-
48
- if "__" in name: # column cannot contain double underscores
49
- errors.append("cannot contain double underscores '__'")
50
-
51
- return errors
52
-
53
-
54
- def _check_order(order: int | None) -> list[str]:
55
- errors: list = []
56
- if order is None: # presence
57
- errors.append("order is required and must be an integer ≥ 1")
58
- return errors
59
-
60
- if not isinstance(order, int): # type integer
61
- errors.append("order must be an integer ≥ 1")
62
- return errors
63
-
64
- if order < 1: # must be ≥ 1
65
- errors.append("order must be ≥ 1")
66
- return errors
67
-
68
- return errors
69
-
70
-
71
- def _check_data_type(data_type: DataType, length: int | None) -> list[str]:
72
- errors: list = []
73
- if not isinstance(data_type, DataType): # Ensure is a DataType
74
- errors.append("data type is invalid; must be a DataType object")
75
-
76
- if length is not None: # length rules
77
- if not isinstance(length, int):
78
- errors.append("length must be an positive integer if provided")
79
- if length <= 0: # must be positive
80
- errors.append("length must be an positive integer if provided")
81
-
82
- if data_type == DataType.TEXT: # required for DataType.TEXT
83
- if length is None:
84
- errors.append("length is required for TEXT columns")
85
- else:
86
- if length is not None: # length not applicable
87
- errors.append(f"length is not applicable to {data_type.value} columns")
88
-
89
- return errors
90
-
91
-
92
- def _check_primary_key(primary_key: int | None, data_type: DataType) -> list[str]:
93
- errors: list = []
94
- if primary_key is None:
95
- return errors
96
-
97
- if (
98
- not isinstance(primary_key, int)
99
- or primary_key < 1
100
- or primary_key > get_config().max_primary_keys
101
- ):
102
- errors.append(
103
- "primary key order must be an integer between 1 and 7 if provided"
104
- )
105
-
106
- if (
107
- hasattr(data_type, "valid_for_primary_key")
108
- and not data_type.valid_for_primary_key()
109
- ):
110
- errors.append(
111
- f"invalid data type '{data_type.value}' for primary key column; "
112
- "primary keys must be Text, Integer, Date, or Datetime"
113
- )
114
-
115
- return errors
116
-
117
-
118
- def _normalise_name(name: str) -> str:
119
- return name.upper().strip()
120
-
121
-
122
- def _norm_header_map(columns: list) -> dict:
123
- mapping, _ = {}, set()
124
- for c in columns:
125
- k = str(c).strip().lower().replace(" ", "_").replace("-", "_")
126
- if k in mapping: # collision
127
- raise DataDictionaryImportError(
128
- f"Ambiguous headers after normalisation: {mapping[k]!r} and {c!r} both map to {k!r}"
129
- )
130
- mapping[k] = c
131
- return mapping
132
-
133
-
134
- def _get_required_header(header_map: dict[str, str], key: str) -> str:
135
- if key not in header_map:
136
- raise DataDictionaryImportError(
137
- f"Required Data Dictionary column '{key}' not found. Available: {list(header_map.keys())}"
138
- )
139
- return header_map[key]
140
-
141
-
142
- def _is_missing(val: Any) -> bool:
143
- return _pd_isna(val) or (isinstance(val, str) and val.strip() == "")
144
-
145
-
146
- def _parse_truthy(val: Any) -> bool:
147
- if isinstance(val, str):
148
- return val.strip().lower() in {"y", "yes", "true", "1"}
149
- if isinstance(val, (int, float)):
150
- try:
151
- return int(val) == 1
152
- except Exception:
153
- return False
154
- return False
155
-
156
-
157
- def _row_is_blank(row: Series, keys: tuple[str, str]) -> bool:
158
- a, b = keys
159
- return _is_missing(row[a]) and _is_missing(row[b])
160
-
161
-
162
- def _parse_int(
163
- value: Any, label: str, row_ctx: str, *, required: bool = True
164
- ) -> int | None:
165
- if _is_missing(value):
166
- if required:
167
- raise DataDictionaryImportError(f"{row_ctx}: {label} is required.")
168
- return None
169
- try:
170
- return int(value)
171
- except Exception as e:
172
- raise DataDictionaryImportError(
173
- f"{row_ctx}: {label} must be integer (got {value!r})."
174
- ) from e
1
+ import re
2
+ from typing import Any, Literal
3
+
4
+ from pandas import Series
5
+ from pandas import isna as _pd_isna
6
+
7
+ from valediction.data_types.data_types import DataType
8
+ from valediction.exceptions import DataDictionaryImportError
9
+ from valediction.integrity import get_config
10
+
11
+
12
+ def _check_name(name: str, entity: Literal["table", "column"]) -> list[str]:
13
+ if entity not in ["table", "column"]:
14
+ raise ValueError("entity must be either 'table' or 'column'")
15
+
16
+ errors: list = []
17
+ config = get_config()
18
+ invalid_chars = (
19
+ config.invalid_name_pattern
20
+ if isinstance(config.invalid_name_pattern, re.Pattern)
21
+ else re.compile(config.invalid_name_pattern)
22
+ )
23
+ max_name_length = (
24
+ config.max_table_name_length
25
+ if entity == "table"
26
+ else config.max_column_name_length
27
+ )
28
+
29
+ if name != name.upper(): # name must be uppercase
30
+ errors.append("must be uppercase")
31
+
32
+ if invalid_chars.search(name): # check invalid characters
33
+ bad = set(invalid_chars.findall(name))
34
+ errors.append(
35
+ f"invalid characters: '{''.join(sorted(bad))}'; "
36
+ "only A-Z, 0-9, and underscores are allowed with no whitespace"
37
+ )
38
+
39
+ if len(name) > max_name_length: # max length 30
40
+ errors.append(f"exceeds max length of {max_name_length}")
41
+
42
+ if not name[0].isalpha(): # column starts with a letter
43
+ errors.append("must start with a letter")
44
+
45
+ if name.endswith("_"): # column cannot end with an underscore
46
+ errors.append("cannot end with '_'")
47
+
48
+ if "__" in name: # column cannot contain double underscores
49
+ errors.append("cannot contain double underscores '__'")
50
+
51
+ return errors
52
+
53
+
54
+ def _check_order(order: int | None) -> list[str]:
55
+ errors: list = []
56
+ if order is None: # presence
57
+ errors.append("order is required and must be an integer ≥ 1")
58
+ return errors
59
+
60
+ if not isinstance(order, int): # type integer
61
+ errors.append("order must be an integer ≥ 1")
62
+ return errors
63
+
64
+ if order < 1: # must be ≥ 1
65
+ errors.append("order must be ≥ 1")
66
+ return errors
67
+
68
+ return errors
69
+
70
+
71
+ def _check_data_type(data_type: DataType, length: int | None) -> list[str]:
72
+ errors: list = []
73
+ if not isinstance(data_type, DataType): # Ensure is a DataType
74
+ errors.append("data type is invalid; must be a DataType object")
75
+
76
+ if length is not None: # length rules
77
+ if not isinstance(length, int):
78
+ errors.append("length must be an positive integer if provided")
79
+ if length <= 0: # must be positive
80
+ errors.append("length must be an positive integer if provided")
81
+
82
+ if data_type == DataType.TEXT: # required for DataType.TEXT
83
+ if length is None:
84
+ errors.append("length is required for TEXT columns")
85
+ else:
86
+ if length is not None: # length not applicable
87
+ errors.append(f"length is not applicable to {data_type.value} columns")
88
+
89
+ return errors
90
+
91
+
92
+ def _check_primary_key(primary_key: int | None, data_type: DataType) -> list[str]:
93
+ errors: list = []
94
+ if primary_key is None:
95
+ return errors
96
+
97
+ if (
98
+ not isinstance(primary_key, int)
99
+ or primary_key < 1
100
+ or primary_key > get_config().max_primary_keys
101
+ ):
102
+ errors.append(
103
+ "primary key order must be an integer between 1 and 7 if provided"
104
+ )
105
+
106
+ if (
107
+ hasattr(data_type, "valid_for_primary_key")
108
+ and not data_type.valid_for_primary_key()
109
+ ):
110
+ errors.append(
111
+ f"invalid data type '{data_type.value}' for primary key column; "
112
+ "primary keys must be Text, Integer, Date, or Datetime"
113
+ )
114
+
115
+ return errors
116
+
117
+
118
+ def _normalise_name(name: str) -> str:
119
+ return name.upper().strip()
120
+
121
+
122
+ def _norm_header_map(columns: list) -> dict:
123
+ mapping, _ = {}, set()
124
+ for c in columns:
125
+ k = str(c).strip().lower().replace(" ", "_").replace("-", "_")
126
+ if k in mapping: # collision
127
+ raise DataDictionaryImportError(
128
+ f"Ambiguous headers after normalisation: {mapping[k]!r} and {c!r} both map to {k!r}"
129
+ )
130
+ mapping[k] = c
131
+ return mapping
132
+
133
+
134
+ def _get_required_header(header_map: dict[str, str], key: str) -> str:
135
+ if key not in header_map:
136
+ raise DataDictionaryImportError(
137
+ f"Required Data Dictionary column '{key}' not found. Available: {list(header_map.keys())}"
138
+ )
139
+ return header_map[key]
140
+
141
+
142
+ def _is_missing(val: Any) -> bool:
143
+ return _pd_isna(val) or (isinstance(val, str) and val.strip() == "")
144
+
145
+
146
+ def _parse_truthy(val: Any) -> bool:
147
+ if isinstance(val, str):
148
+ return val.strip().lower() in {"y", "yes", "true", "1"}
149
+ if isinstance(val, (int, float)):
150
+ try:
151
+ return int(val) == 1
152
+ except Exception:
153
+ return False
154
+ return False
155
+
156
+
157
+ def _row_is_blank(row: Series, keys: tuple[str, str]) -> bool:
158
+ a, b = keys
159
+ return _is_missing(row[a]) and _is_missing(row[b])
160
+
161
+
162
+ def _parse_int(
163
+ value: Any, label: str, row_ctx: str, *, required: bool = True
164
+ ) -> int | None:
165
+ if _is_missing(value):
166
+ if required:
167
+ raise DataDictionaryImportError(f"{row_ctx}: {label} is required.")
168
+ return None
169
+ try:
170
+ return int(value)
171
+ except Exception as e:
172
+ raise DataDictionaryImportError(
173
+ f"{row_ctx}: {label} must be integer (got {value!r})."
174
+ ) from e