usecortex-ai 0.5.0__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- usecortex_ai/__init__.py +8 -4
- usecortex_ai/client.py +0 -4
- usecortex_ai/dashboard/client.py +2 -30
- usecortex_ai/dashboard/raw_client.py +0 -28
- usecortex_ai/embeddings/client.py +8 -58
- usecortex_ai/embeddings/raw_client.py +8 -58
- usecortex_ai/fetch/__init__.py +3 -0
- usecortex_ai/fetch/client.py +42 -165
- usecortex_ai/fetch/raw_client.py +38 -341
- usecortex_ai/fetch/types/__init__.py +7 -0
- usecortex_ai/fetch/types/fetch_list_knowledge_response.py +8 -0
- usecortex_ai/raw_client.py +0 -4
- usecortex_ai/search/client.py +36 -124
- usecortex_ai/search/raw_client.py +36 -124
- usecortex_ai/sources/client.py +2 -16
- usecortex_ai/sources/raw_client.py +2 -16
- usecortex_ai/tenant/client.py +4 -108
- usecortex_ai/tenant/raw_client.py +2 -106
- usecortex_ai/types/__init__.py +6 -2
- usecortex_ai/types/list_content_kind.py +5 -0
- usecortex_ai/types/list_user_memories_response.py +32 -0
- usecortex_ai/types/retrieval_result.py +1 -1
- usecortex_ai/types/retrieve_mode.py +1 -1
- usecortex_ai/types/user_memory.py +31 -0
- usecortex_ai/upload/__init__.py +0 -3
- usecortex_ai/upload/client.py +34 -204
- usecortex_ai/upload/raw_client.py +30 -382
- {usecortex_ai-0.5.0.dist-info → usecortex_ai-0.5.1.dist-info}/METADATA +1 -1
- {usecortex_ai-0.5.0.dist-info → usecortex_ai-0.5.1.dist-info}/RECORD +32 -30
- {usecortex_ai-0.5.0.dist-info → usecortex_ai-0.5.1.dist-info}/licenses/LICENSE +21 -21
- {usecortex_ai-0.5.0.dist-info → usecortex_ai-0.5.1.dist-info}/top_level.txt +0 -0
- usecortex_ai/types/app_sources_upload_data.py +0 -39
- usecortex_ai/upload/types/__init__.py +0 -7
- usecortex_ai/upload/types/body_upload_app_ingestion_upload_app_post_app_sources.py +0 -7
- {usecortex_ai-0.5.0.dist-info → usecortex_ai-0.5.1.dist-info}/WHEEL +0 -0
|
@@ -38,47 +38,6 @@ class RawTenantClient:
|
|
|
38
38
|
request_options: typing.Optional[RequestOptions] = None,
|
|
39
39
|
) -> HttpResponse[TenantCreateResponse]:
|
|
40
40
|
"""
|
|
41
|
-
Create a tenant for your account.
|
|
42
|
-
|
|
43
|
-
Use this endpoint to initialize a tenant space you can use for ingestion, embeddings, and search.
|
|
44
|
-
|
|
45
|
-
**Tenant Metadata Schema**
|
|
46
|
-
|
|
47
|
-
You can optionally provide a `tenant_metadata_schema` to define custom fields that will be
|
|
48
|
-
indexed in the vector store. Each field can be configured with:
|
|
49
|
-
|
|
50
|
-
- `enable_match`: Enable text filtering on this field
|
|
51
|
-
- `enable_dense_embedding`: Create dense embeddings for semantic similarity search
|
|
52
|
-
- `enable_sparse_embedding`: Create sparse embeddings (BM25) for keyword search
|
|
53
|
-
|
|
54
|
-
**Example Request:**
|
|
55
|
-
```json
|
|
56
|
-
{
|
|
57
|
-
"tenant_id": "my-tenant",
|
|
58
|
-
"tenant_metadata_schema": [
|
|
59
|
-
{
|
|
60
|
-
"name": "category",
|
|
61
|
-
"data_type": "VARCHAR",
|
|
62
|
-
"max_length": 256,
|
|
63
|
-
"enable_match": true
|
|
64
|
-
},
|
|
65
|
-
{
|
|
66
|
-
"name": "product_description",
|
|
67
|
-
"data_type": "VARCHAR",
|
|
68
|
-
"max_length": 4096,
|
|
69
|
-
"enable_dense_embedding": true,
|
|
70
|
-
"enable_sparse_embedding": true
|
|
71
|
-
}
|
|
72
|
-
]
|
|
73
|
-
}
|
|
74
|
-
```
|
|
75
|
-
|
|
76
|
-
Expected outcome:
|
|
77
|
-
- A tenant is created and returned with its identifier.
|
|
78
|
-
- If tenant_metadata_schema is provided, the vector store collection will include
|
|
79
|
-
the specified custom fields with their configured search capabilities.
|
|
80
|
-
- If the tenant already exists, you receive a success message with the existing identifier.
|
|
81
|
-
|
|
82
41
|
Parameters
|
|
83
42
|
----------
|
|
84
43
|
tenant_id : str
|
|
@@ -216,17 +175,6 @@ class RawTenantClient:
|
|
|
216
175
|
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
217
176
|
) -> HttpResponse[TenantStatsResponse]:
|
|
218
177
|
"""
|
|
219
|
-
Retrieve usage stats for your tenant.
|
|
220
|
-
|
|
221
|
-
Use this endpoint to check whether a tenant exists and view core metrics like total
|
|
222
|
-
indexed objects and vector dimension. This helps you validate
|
|
223
|
-
setup and monitor ingestion.
|
|
224
|
-
|
|
225
|
-
Expected outcome
|
|
226
|
-
|
|
227
|
-
You receive the current object count and vector dimension for the tenant.
|
|
228
|
-
If the tenant does not exist, you get a not-found error.
|
|
229
|
-
|
|
230
178
|
Parameters
|
|
231
179
|
----------
|
|
232
180
|
tenant_id : str
|
|
@@ -241,7 +189,7 @@ class RawTenantClient:
|
|
|
241
189
|
Successful Response
|
|
242
190
|
"""
|
|
243
191
|
_response = self._client_wrapper.httpx_client.request(
|
|
244
|
-
"tenants/
|
|
192
|
+
"tenants/monitor",
|
|
245
193
|
method="GET",
|
|
246
194
|
params={
|
|
247
195
|
"tenant_id": tenant_id,
|
|
@@ -355,47 +303,6 @@ class AsyncRawTenantClient:
|
|
|
355
303
|
request_options: typing.Optional[RequestOptions] = None,
|
|
356
304
|
) -> AsyncHttpResponse[TenantCreateResponse]:
|
|
357
305
|
"""
|
|
358
|
-
Create a tenant for your account.
|
|
359
|
-
|
|
360
|
-
Use this endpoint to initialize a tenant space you can use for ingestion, embeddings, and search.
|
|
361
|
-
|
|
362
|
-
**Tenant Metadata Schema**
|
|
363
|
-
|
|
364
|
-
You can optionally provide a `tenant_metadata_schema` to define custom fields that will be
|
|
365
|
-
indexed in the vector store. Each field can be configured with:
|
|
366
|
-
|
|
367
|
-
- `enable_match`: Enable text filtering on this field
|
|
368
|
-
- `enable_dense_embedding`: Create dense embeddings for semantic similarity search
|
|
369
|
-
- `enable_sparse_embedding`: Create sparse embeddings (BM25) for keyword search
|
|
370
|
-
|
|
371
|
-
**Example Request:**
|
|
372
|
-
```json
|
|
373
|
-
{
|
|
374
|
-
"tenant_id": "my-tenant",
|
|
375
|
-
"tenant_metadata_schema": [
|
|
376
|
-
{
|
|
377
|
-
"name": "category",
|
|
378
|
-
"data_type": "VARCHAR",
|
|
379
|
-
"max_length": 256,
|
|
380
|
-
"enable_match": true
|
|
381
|
-
},
|
|
382
|
-
{
|
|
383
|
-
"name": "product_description",
|
|
384
|
-
"data_type": "VARCHAR",
|
|
385
|
-
"max_length": 4096,
|
|
386
|
-
"enable_dense_embedding": true,
|
|
387
|
-
"enable_sparse_embedding": true
|
|
388
|
-
}
|
|
389
|
-
]
|
|
390
|
-
}
|
|
391
|
-
```
|
|
392
|
-
|
|
393
|
-
Expected outcome:
|
|
394
|
-
- A tenant is created and returned with its identifier.
|
|
395
|
-
- If tenant_metadata_schema is provided, the vector store collection will include
|
|
396
|
-
the specified custom fields with their configured search capabilities.
|
|
397
|
-
- If the tenant already exists, you receive a success message with the existing identifier.
|
|
398
|
-
|
|
399
306
|
Parameters
|
|
400
307
|
----------
|
|
401
308
|
tenant_id : str
|
|
@@ -533,17 +440,6 @@ class AsyncRawTenantClient:
|
|
|
533
440
|
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
534
441
|
) -> AsyncHttpResponse[TenantStatsResponse]:
|
|
535
442
|
"""
|
|
536
|
-
Retrieve usage stats for your tenant.
|
|
537
|
-
|
|
538
|
-
Use this endpoint to check whether a tenant exists and view core metrics like total
|
|
539
|
-
indexed objects and vector dimension. This helps you validate
|
|
540
|
-
setup and monitor ingestion.
|
|
541
|
-
|
|
542
|
-
Expected outcome
|
|
543
|
-
|
|
544
|
-
You receive the current object count and vector dimension for the tenant.
|
|
545
|
-
If the tenant does not exist, you get a not-found error.
|
|
546
|
-
|
|
547
443
|
Parameters
|
|
548
444
|
----------
|
|
549
445
|
tenant_id : str
|
|
@@ -558,7 +454,7 @@ class AsyncRawTenantClient:
|
|
|
558
454
|
Successful Response
|
|
559
455
|
"""
|
|
560
456
|
_response = await self._client_wrapper.httpx_client.request(
|
|
561
|
-
"tenants/
|
|
457
|
+
"tenants/monitor",
|
|
562
458
|
method="GET",
|
|
563
459
|
params={
|
|
564
460
|
"tenant_id": tenant_id,
|
usecortex_ai/types/__init__.py
CHANGED
|
@@ -5,7 +5,6 @@
|
|
|
5
5
|
from .actual_error_response import ActualErrorResponse
|
|
6
6
|
from .add_memory_response import AddMemoryResponse
|
|
7
7
|
from .api_key_info import ApiKeyInfo
|
|
8
|
-
from .app_sources_upload_data import AppSourcesUploadData
|
|
9
8
|
from .attachment_model import AttachmentModel
|
|
10
9
|
from .bm_25_operator_type import Bm25OperatorType
|
|
11
10
|
from .collection_stats import CollectionStats
|
|
@@ -24,6 +23,8 @@ from .graph_context import GraphContext
|
|
|
24
23
|
from .http_validation_error import HttpValidationError
|
|
25
24
|
from .infra import Infra
|
|
26
25
|
from .insert_result import InsertResult
|
|
26
|
+
from .list_content_kind import ListContentKind
|
|
27
|
+
from .list_user_memories_response import ListUserMemoriesResponse
|
|
27
28
|
from .memory_item import MemoryItem
|
|
28
29
|
from .memory_result_item import MemoryResultItem
|
|
29
30
|
from .milvus_data_type import MilvusDataType
|
|
@@ -55,6 +56,7 @@ from .tenant_metadata_schema_info import TenantMetadataSchemaInfo
|
|
|
55
56
|
from .tenant_stats_response import TenantStatsResponse
|
|
56
57
|
from .triplet_with_evidence import TripletWithEvidence
|
|
57
58
|
from .user_assistant_pair import UserAssistantPair
|
|
59
|
+
from .user_memory import UserMemory
|
|
58
60
|
from .validation_error import ValidationError
|
|
59
61
|
from .validation_error_loc_item import ValidationErrorLocItem
|
|
60
62
|
from .vector_store_chunk import VectorStoreChunk
|
|
@@ -63,7 +65,6 @@ __all__ = [
|
|
|
63
65
|
"ActualErrorResponse",
|
|
64
66
|
"AddMemoryResponse",
|
|
65
67
|
"ApiKeyInfo",
|
|
66
|
-
"AppSourcesUploadData",
|
|
67
68
|
"AttachmentModel",
|
|
68
69
|
"Bm25OperatorType",
|
|
69
70
|
"CollectionStats",
|
|
@@ -82,6 +83,8 @@ __all__ = [
|
|
|
82
83
|
"HttpValidationError",
|
|
83
84
|
"Infra",
|
|
84
85
|
"InsertResult",
|
|
86
|
+
"ListContentKind",
|
|
87
|
+
"ListUserMemoriesResponse",
|
|
85
88
|
"MemoryItem",
|
|
86
89
|
"MemoryResultItem",
|
|
87
90
|
"MilvusDataType",
|
|
@@ -113,6 +116,7 @@ __all__ = [
|
|
|
113
116
|
"TenantStatsResponse",
|
|
114
117
|
"TripletWithEvidence",
|
|
115
118
|
"UserAssistantPair",
|
|
119
|
+
"UserMemory",
|
|
116
120
|
"ValidationError",
|
|
117
121
|
"ValidationErrorLocItem",
|
|
118
122
|
"VectorStoreChunk",
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .user_memory import UserMemory
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class ListUserMemoriesResponse(UniversalBaseModel):
|
|
11
|
+
"""
|
|
12
|
+
Response model for listing all user memories.
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
success: typing.Optional[bool] = pydantic.Field(default=None)
|
|
16
|
+
"""
|
|
17
|
+
Indicates whether the memory listing operation was successful
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
user_memories: typing.Optional[typing.List[UserMemory]] = pydantic.Field(default=None)
|
|
21
|
+
"""
|
|
22
|
+
Array of all user memories associated with your tenant
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
if IS_PYDANTIC_V2:
|
|
26
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
27
|
+
else:
|
|
28
|
+
|
|
29
|
+
class Config:
|
|
30
|
+
frozen = True
|
|
31
|
+
smart_union = True
|
|
32
|
+
extra = pydantic.Extra.allow
|
|
@@ -15,7 +15,7 @@ class RetrievalResult(UniversalBaseModel):
|
|
|
15
15
|
|
|
16
16
|
chunks: typing.Optional[typing.List[VectorStoreChunk]] = None
|
|
17
17
|
graph_context: typing.Optional[GraphContext] = None
|
|
18
|
-
|
|
18
|
+
additional_context: typing.Optional[typing.Dict[str, VectorStoreChunk]] = pydantic.Field(default=None)
|
|
19
19
|
"""
|
|
20
20
|
Map of chunk_uuid to VectorStoreChunk for extra context from forcefully related sources. Use chunk.extra_context_ids to look up chunks: extra_context[id] for id in chunk.extra_context_ids.
|
|
21
21
|
"""
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class UserMemory(UniversalBaseModel):
|
|
10
|
+
"""
|
|
11
|
+
Represents a user memory stored in the system.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
memory_id: str = pydantic.Field()
|
|
15
|
+
"""
|
|
16
|
+
Unique identifier for the user memory
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
memory_content: str = pydantic.Field()
|
|
20
|
+
"""
|
|
21
|
+
The actual memory content text that was stored
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
if IS_PYDANTIC_V2:
|
|
25
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
26
|
+
else:
|
|
27
|
+
|
|
28
|
+
class Config:
|
|
29
|
+
frozen = True
|
|
30
|
+
smart_union = True
|
|
31
|
+
extra = pydantic.Extra.allow
|