usecortex-ai 0.3.5__py3-none-any.whl → 0.3.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
usecortex_ai/__init__.py CHANGED
@@ -11,6 +11,7 @@ from .types import (
11
11
  Bm25OperatorType,
12
12
  BodyScrapeWebpageUploadScrapeWebpagePost,
13
13
  BodyUpdateScrapeJobUploadUpdateWebpagePatch,
14
+ ChunkGraphRelationsResponse,
14
15
  ContentModel,
15
16
  DeleteMemoryRequest,
16
17
  DeleteSources,
@@ -30,6 +31,7 @@ from .types import (
30
31
  ListSourcesResponse,
31
32
  ListUserMemoriesResponse,
32
33
  MarkdownUploadRequest,
34
+ PathTriplet,
33
35
  ProcessingStatus,
34
36
  RelatedChunk,
35
37
  RelationEvidence,
@@ -37,6 +39,8 @@ from .types import (
37
39
  RetrieveMode,
38
40
  RetrieveResponse,
39
41
  RetrieveUserMemoryResponse,
42
+ ScoredPathResponse,
43
+ ScoredTripletResponse,
40
44
  SearchChunk,
41
45
  SingleUploadData,
42
46
  Source,
@@ -77,6 +81,7 @@ __all__ = [
77
81
  "Bm25OperatorType",
78
82
  "BodyScrapeWebpageUploadScrapeWebpagePost",
79
83
  "BodyUpdateScrapeJobUploadUpdateWebpagePatch",
84
+ "ChunkGraphRelationsResponse",
80
85
  "ContentModel",
81
86
  "CortexAI",
82
87
  "CortexAIEnvironment",
@@ -101,6 +106,7 @@ __all__ = [
101
106
  "ListUserMemoriesResponse",
102
107
  "MarkdownUploadRequest",
103
108
  "NotFoundError",
109
+ "PathTriplet",
104
110
  "ProcessingStatus",
105
111
  "RelatedChunk",
106
112
  "RelationEvidence",
@@ -108,6 +114,8 @@ __all__ = [
108
114
  "RetrieveMode",
109
115
  "RetrieveResponse",
110
116
  "RetrieveUserMemoryResponse",
117
+ "ScoredPathResponse",
118
+ "ScoredTripletResponse",
111
119
  "SearchChunk",
112
120
  "ServiceUnavailableError",
113
121
  "SingleUploadData",
@@ -10,6 +10,7 @@ from .batch_upload_data import BatchUploadData
10
10
  from .bm_25_operator_type import Bm25OperatorType
11
11
  from .body_scrape_webpage_upload_scrape_webpage_post import BodyScrapeWebpageUploadScrapeWebpagePost
12
12
  from .body_update_scrape_job_upload_update_webpage_patch import BodyUpdateScrapeJobUploadUpdateWebpagePatch
13
+ from .chunk_graph_relations_response import ChunkGraphRelationsResponse
13
14
  from .content_model import ContentModel
14
15
  from .delete_memory_request import DeleteMemoryRequest
15
16
  from .delete_sources import DeleteSources
@@ -29,6 +30,7 @@ from .http_validation_error import HttpValidationError
29
30
  from .list_sources_response import ListSourcesResponse
30
31
  from .list_user_memories_response import ListUserMemoriesResponse
31
32
  from .markdown_upload_request import MarkdownUploadRequest
33
+ from .path_triplet import PathTriplet
32
34
  from .processing_status import ProcessingStatus
33
35
  from .related_chunk import RelatedChunk
34
36
  from .relation_evidence import RelationEvidence
@@ -36,6 +38,8 @@ from .relations import Relations
36
38
  from .retrieve_mode import RetrieveMode
37
39
  from .retrieve_response import RetrieveResponse
38
40
  from .retrieve_user_memory_response import RetrieveUserMemoryResponse
41
+ from .scored_path_response import ScoredPathResponse
42
+ from .scored_triplet_response import ScoredTripletResponse
39
43
  from .search_chunk import SearchChunk
40
44
  from .single_upload_data import SingleUploadData
41
45
  from .source import Source
@@ -59,6 +63,7 @@ __all__ = [
59
63
  "Bm25OperatorType",
60
64
  "BodyScrapeWebpageUploadScrapeWebpagePost",
61
65
  "BodyUpdateScrapeJobUploadUpdateWebpagePatch",
66
+ "ChunkGraphRelationsResponse",
62
67
  "ContentModel",
63
68
  "DeleteMemoryRequest",
64
69
  "DeleteSources",
@@ -78,6 +83,7 @@ __all__ = [
78
83
  "ListSourcesResponse",
79
84
  "ListUserMemoriesResponse",
80
85
  "MarkdownUploadRequest",
86
+ "PathTriplet",
81
87
  "ProcessingStatus",
82
88
  "RelatedChunk",
83
89
  "RelationEvidence",
@@ -85,6 +91,8 @@ __all__ = [
85
91
  "RetrieveMode",
86
92
  "RetrieveResponse",
87
93
  "RetrieveUserMemoryResponse",
94
+ "ScoredPathResponse",
95
+ "ScoredTripletResponse",
88
96
  "SearchChunk",
89
97
  "SingleUploadData",
90
98
  "Source",
@@ -0,0 +1,33 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ import pydantic
6
+ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
+ from .scored_path_response import ScoredPathResponse
8
+ from .scored_triplet_response import ScoredTripletResponse
9
+
10
+
11
+ class ChunkGraphRelationsResponse(UniversalBaseModel):
12
+ """
13
+ Graph relations with group_id -> triplet mapping
14
+ """
15
+
16
+ entity_paths: typing.Optional[typing.List[ScoredPathResponse]] = pydantic.Field(default=None)
17
+ """
18
+ Multi-hop paths connecting entities from the query, reranked by relevance. Each path is a chain of connected triplets.
19
+ """
20
+
21
+ chunk_triplets: typing.Optional[typing.Dict[str, ScoredTripletResponse]] = pydantic.Field(default=None)
22
+ """
23
+ Mapping of group_id to scored triplet. Use chunk.graph_triplet_ids to find which groups belong to a chunk.
24
+ """
25
+
26
+ if IS_PYDANTIC_V2:
27
+ model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
28
+ else:
29
+
30
+ class Config:
31
+ frozen = True
32
+ smart_union = True
33
+ extra = pydantic.Extra.allow
@@ -4,15 +4,9 @@ import typing
4
4
 
5
5
  import pydantic
6
6
  from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
- from .triple_with_evidence import TripleWithEvidence
8
7
 
9
8
 
10
9
  class ExtendedContext(UniversalBaseModel):
11
- chunk_relations: typing.Optional[typing.List[TripleWithEvidence]] = pydantic.Field(default=None)
12
- """
13
- Relations linked with this chunk
14
- """
15
-
16
10
  if IS_PYDANTIC_V2:
17
11
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
18
12
  else:
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ import pydantic
6
+ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
+ from .entity import Entity
8
+ from .relation_evidence import RelationEvidence
9
+
10
+
11
+ class PathTriplet(UniversalBaseModel):
12
+ """
13
+ Single triplet within a path (without score, as the path is scored as a whole)
14
+ """
15
+
16
+ source: Entity = pydantic.Field()
17
+ """
18
+ Source entity
19
+ """
20
+
21
+ target: Entity = pydantic.Field()
22
+ """
23
+ Target entity
24
+ """
25
+
26
+ relation: RelationEvidence = pydantic.Field()
27
+ """
28
+ Relation between entities
29
+ """
30
+
31
+ if IS_PYDANTIC_V2:
32
+ model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
33
+ else:
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ extra = pydantic.Extra.allow
@@ -8,8 +8,9 @@ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
8
8
 
9
9
 
10
10
  class RelationEvidence(UniversalBaseModel):
11
+ relationship_id: typing.Optional[str] = pydantic.Field(default=None)
11
12
  """
12
- Single piece of evidence for a relationship between two entities
13
+ Unique identifier for this specific relationship edge in the graph. The combination of source entity, target entity, and relationship_id allows disambiguation between multiple relations between the same source and target entities.
13
14
  """
14
15
 
15
16
  canonical_predicate: str = pydantic.Field()
@@ -27,14 +28,14 @@ class RelationEvidence(UniversalBaseModel):
27
28
  Rich contextual description of the relationship with surrounding information, details about how/why/when, and any relevant background. Should be comprehensive enough to understand the relationship without referring back to source.
28
29
  """
29
30
 
30
- confidence: typing.Optional[float] = pydantic.Field(default=None)
31
+ temporal_details: typing.Optional[str] = pydantic.Field(default=None)
31
32
  """
32
- Confidence score
33
+ Temporal timing information extracted from text (e.g., 'last week', 'in 2023', 'yesterday')
33
34
  """
34
35
 
35
- temporal_details: typing.Optional[str] = pydantic.Field(default=None)
36
+ chunk_id: typing.Optional[str] = pydantic.Field(default=None)
36
37
  """
37
- Temporal timing information extracted from text (e.g., 'last week', 'in 2023', 'yesterday')
38
+ The chunk_id this relation came from
38
39
  """
39
40
 
40
41
  timestamp: typing.Optional[dt.datetime] = pydantic.Field(default=None)
@@ -4,8 +4,8 @@ import typing
4
4
 
5
5
  import pydantic
6
6
  from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
+ from .chunk_graph_relations_response import ChunkGraphRelationsResponse
7
8
  from .search_chunk import SearchChunk
8
- from .triple_with_evidence import TripleWithEvidence
9
9
 
10
10
 
11
11
  class RetrieveResponse(UniversalBaseModel):
@@ -14,9 +14,9 @@ class RetrieveResponse(UniversalBaseModel):
14
14
  Retrieved content chunks
15
15
  """
16
16
 
17
- extra_graph_context: typing.Optional[typing.List[TripleWithEvidence]] = pydantic.Field(default=None)
17
+ graph_relations: typing.Optional[ChunkGraphRelationsResponse] = pydantic.Field(default=None)
18
18
  """
19
- Extra graph context which will help you agent get better understanding of the entities involved in query.
19
+ Graph relations with chunk_relations (by chunk_id) and entity_relations (top entity matches)
20
20
  """
21
21
 
22
22
  metadata: typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]] = pydantic.Field(default=None)
@@ -4,7 +4,7 @@ import typing
4
4
 
5
5
  import pydantic
6
6
  from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
- from .triple_with_evidence import TripleWithEvidence
7
+ from .scored_path_response import ScoredPathResponse
8
8
  from .user_memory import UserMemory
9
9
 
10
10
 
@@ -23,9 +23,9 @@ class RetrieveUserMemoryResponse(UniversalBaseModel):
23
23
  Array of user memories ranked by relevance to your search query
24
24
  """
25
25
 
26
- relations: typing.Optional[typing.List[TripleWithEvidence]] = pydantic.Field(default=None)
26
+ relations: typing.Optional[typing.List[ScoredPathResponse]] = pydantic.Field(default=None)
27
27
  """
28
- Array of relations extracted from the user query
28
+ Array of scored relations extracted from the user query via knowledge graph search
29
29
  """
30
30
 
31
31
  if IS_PYDANTIC_V2:
@@ -0,0 +1,40 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ import pydantic
6
+ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
+ from .path_triplet import PathTriplet
8
+
9
+
10
+ class ScoredPathResponse(UniversalBaseModel):
11
+ """
12
+ A multi-hop path (chain of triplets) with a relevancy score.
13
+
14
+ Represents connected paths like: A --rel1--> B --rel2--> C
15
+ The triplets list preserves the chain order.
16
+ """
17
+
18
+ combined_context: typing.Optional[str] = pydantic.Field(default=None)
19
+ """
20
+ Merged context from all triplets in the path
21
+ """
22
+
23
+ triplets: typing.List[PathTriplet] = pydantic.Field()
24
+ """
25
+ Ordered list of triplets forming the path chain
26
+ """
27
+
28
+ relevancy_score: typing.Optional[float] = pydantic.Field(default=None)
29
+ """
30
+ Relevancy score for the entire path
31
+ """
32
+
33
+ if IS_PYDANTIC_V2:
34
+ model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
35
+ else:
36
+
37
+ class Config:
38
+ frozen = True
39
+ smart_union = True
40
+ extra = pydantic.Extra.allow
@@ -0,0 +1,43 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ import pydantic
6
+ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
7
+ from .entity import Entity
8
+ from .relation_evidence import RelationEvidence
9
+
10
+
11
+ class ScoredTripletResponse(UniversalBaseModel):
12
+ """
13
+ Individual scored triplet for entity-based search results
14
+ """
15
+
16
+ source: Entity = pydantic.Field()
17
+ """
18
+ Source entity
19
+ """
20
+
21
+ target: Entity = pydantic.Field()
22
+ """
23
+ Target entity
24
+ """
25
+
26
+ relation: RelationEvidence = pydantic.Field()
27
+ """
28
+ Relation between entities
29
+ """
30
+
31
+ relevancy_score: typing.Optional[float] = pydantic.Field(default=None)
32
+ """
33
+ Relevancy score from reranking
34
+ """
35
+
36
+ if IS_PYDANTIC_V2:
37
+ model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
38
+ else:
39
+
40
+ class Config:
41
+ frozen = True
42
+ smart_union = True
43
+ extra = pydantic.Extra.allow
@@ -68,6 +68,11 @@ class SearchChunk(UniversalBaseModel):
68
68
  Additional context for this chunk
69
69
  """
70
70
 
71
+ graph_triplet_ids: typing.Optional[typing.List[str]] = pydantic.Field(default=None)
72
+ """
73
+ List of group IDs for triplets linked to this chunk. Lookup triplet data in graph_relations.chunk_relations[group_id]
74
+ """
75
+
71
76
  if IS_PYDANTIC_V2:
72
77
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
73
78
  else:
@@ -9,10 +9,6 @@ from .relation_evidence import RelationEvidence
9
9
 
10
10
 
11
11
  class TripleWithEvidence(UniversalBaseModel):
12
- """
13
- Triple with multiple evidence items from different chunks
14
- """
15
-
16
12
  source: Entity
17
13
  target: Entity
18
14
  relations: typing.List[RelationEvidence] = pydantic.Field()
@@ -215,7 +215,7 @@ class UserMemoryClient:
215
215
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
216
216
 
217
217
  raw_text : typing.Optional[str]
218
- Single raw text memory to store
218
+ Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
219
219
 
220
220
  user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
221
221
  Array of user/assistant conversation pairs to store as a single memory
@@ -469,7 +469,7 @@ class AsyncUserMemoryClient:
469
469
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
470
470
 
471
471
  raw_text : typing.Optional[str]
472
- Single raw text memory to store
472
+ Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
473
473
 
474
474
  user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
475
475
  Array of user/assistant conversation pairs to store as a single memory
@@ -488,7 +488,7 @@ class RawUserMemoryClient:
488
488
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
489
489
 
490
490
  raw_text : typing.Optional[str]
491
- Single raw text memory to store
491
+ Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
492
492
 
493
493
  user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
494
494
  Array of user/assistant conversation pairs to store as a single memory
@@ -1086,7 +1086,7 @@ class AsyncRawUserMemoryClient:
1086
1086
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
1087
1087
 
1088
1088
  raw_text : typing.Optional[str]
1089
- Single raw text memory to store
1089
+ Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
1090
1090
 
1091
1091
  user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
1092
1092
  Array of user/assistant conversation pairs to store as a single memory
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: usecortex-ai
3
- Version: 0.3.5
3
+ Version: 0.3.6
4
4
  Summary: The official Python SDK for the Cortex AI platform.
5
5
  Author-email: Nishkarsh Shrivastava <nishkarsh@usecortex.ai>
6
6
  License: Copyright (c) 2024 Cortex AI
@@ -1,4 +1,4 @@
1
- usecortex_ai/__init__.py,sha256=ihocaNv75jejXPhW9QucLfwC9SLhZbu_T_xHZAWop-g,3234
1
+ usecortex_ai/__init__.py,sha256=ZSziRo_n9xvUND64kUQuA9zS_WurzAG_gkGgdR0CVJs,3444
2
2
  usecortex_ai/client.py,sha256=i-1RW54MMmplowh9sDAm3W-Nw_mlQyBWHSFmc4XsOKA,9865
3
3
  usecortex_ai/environment.py,sha256=IZ0X7CTz4V0TzNaMrw6E5GJklcTLxGJmrWEyH-LtYsc,162
4
4
  usecortex_ai/raw_client.py,sha256=Z2zedJhFwHoO_Zmm2enC_s-gd8SM_itaWZOfL0rSobE,3532
@@ -44,7 +44,7 @@ usecortex_ai/sources/raw_client.py,sha256=oWggwYuje1xcaonWxz8Bm24LcmyYkFPfviEUNh
44
44
  usecortex_ai/tenant/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
45
45
  usecortex_ai/tenant/client.py,sha256=IhVoy4lN2UTO8nvkT5NJXhExb6DrqP7CG51mm647akA,8764
46
46
  usecortex_ai/tenant/raw_client.py,sha256=aUBX_Fk09hHga_ezEr6iMD5G1xTnBO0RR4RYksGHZdw,31494
47
- usecortex_ai/types/__init__.py,sha256=rmAFjTmlisLyaxRTLFezRzkyqlMbUAdg1fB19O4YTuc,3763
47
+ usecortex_ai/types/__init__.py,sha256=uLDJhwg-XQUA0om_1EhLJaXJIwLbBWiGCHKsNYm5b0A,4094
48
48
  usecortex_ai/types/actual_error_response.py,sha256=EBit_JO3u0FQrVAXDg0UXQktlULLPLtX8FF8J9mZSvY,580
49
49
  usecortex_ai/types/add_user_memory_response.py,sha256=7JjjeNn7wmWGBWp-LmLZOQifouNKfQGPCzGU3K1mlis,1088
50
50
  usecortex_ai/types/app_sources_upload_data.py,sha256=XIXK7hRxNsqddHrtiF8RzEt4aqQPaLISiVn69AMAB6w,854
@@ -53,6 +53,7 @@ usecortex_ai/types/batch_upload_data.py,sha256=C7e4MHoYleXTDOHfJz2gBWa7Lcl837An1
53
53
  usecortex_ai/types/bm_25_operator_type.py,sha256=wiromvB4YjgxKQcS1-1BNBZ7MqKP1JzBEbY1R8K-wq4,153
54
54
  usecortex_ai/types/body_scrape_webpage_upload_scrape_webpage_post.py,sha256=7mnML_5krrZ8obOW_2HavWAjP2rxYQ-pETP0GnKsfDI,532
55
55
  usecortex_ai/types/body_update_scrape_job_upload_update_webpage_patch.py,sha256=7WtD74CYa-RkkuqluiBzoQjWqvbzUcK2p1cZZr0YgWo,535
56
+ usecortex_ai/types/chunk_graph_relations_response.py,sha256=UKFAUWqITIW955H8q9lD8mbuXRQKvpyQYOFLk2uWv70,1175
56
57
  usecortex_ai/types/content_model.py,sha256=7KsEMncTZK90gWsjjVfrmOxOndM2HODIOUHclQU6ysE,1738
57
58
  usecortex_ai/types/delete_memory_request.py,sha256=4IoGwsZcGLg4_cJ_HqMsBseSk13exDnXMxpVFb5_PWo,957
58
59
  usecortex_ai/types/delete_sources.py,sha256=3Kl4YxQmiCNLiR1O7ZHP0xZgaQ54JTuyofbYS-MWjeM,589
@@ -64,7 +65,7 @@ usecortex_ai/types/embeddings_get_data.py,sha256=R9ukkUXidR4Q6_k0uT4GsEHjGXxgO-y
64
65
  usecortex_ai/types/embeddings_search_data.py,sha256=61UYdgEpsi-pYkGuMwSLc04-hrDjHXJPGBjoOKERRPM,1056
65
66
  usecortex_ai/types/entity.py,sha256=Q7gxZIFiT5jX78TfRO8id1KFh2vmTo_1-wWZZCoZOd4,1082
66
67
  usecortex_ai/types/error_response.py,sha256=7_MuOTWE3zj6kg6UptuYBFMAhV3KZGEkpsyirFvHJzA,633
67
- usecortex_ai/types/extended_context.py,sha256=urzqcO8__inNlBU2NwiCLMKfAfQuyMP3Q08wh_Pstp8,715
68
+ usecortex_ai/types/extended_context.py,sha256=iJKkYJtUWwbKH-CCvm1UVomaqFqG-YXS6U0pmXs7fp0,507
68
69
  usecortex_ai/types/fetch_content_data.py,sha256=kIBb282-npL1O1vhAMIX0m3KvV3H2Bk-mifBUcbO3e8,1004
69
70
  usecortex_ai/types/file_upload_result.py,sha256=UIqPc63K0MKf-nYsy8fxsui4IKTJ-BxVAetesnKiuzA,738
70
71
  usecortex_ai/types/graph_relations_response.py,sha256=psSKouHYvmMp5nkbRRcIDe87c3vP81Tl4gvqAkeNWbg,966
@@ -72,21 +73,24 @@ usecortex_ai/types/http_validation_error.py,sha256=NNTK9AbbHXm0n9m1YcsG5zEaSn1n6
72
73
  usecortex_ai/types/list_sources_response.py,sha256=ybvnupTDVoZfDRsS3YdzbLemmqQqf4F31ODP-Fcj0n4,930
73
74
  usecortex_ai/types/list_user_memories_response.py,sha256=gsx9pxp2Rsaz0tX2pbGqFFThYF_20XpzwF7BWwOXAGA,906
74
75
  usecortex_ai/types/markdown_upload_request.py,sha256=I1Mot_08BgSQyNzgplPHypb_dBKeGKoMuA9MXBqfL7M,1477
76
+ usecortex_ai/types/path_triplet.py,sha256=kQqvCcnVcksob4QyLcRLmnYiTCWjAEyYGmTdEOHJGOE,921
75
77
  usecortex_ai/types/processing_status.py,sha256=rwrLBAMexNxRPMCd8PUSs4PHv4lba_0mkUot8iPJWEc,1153
76
78
  usecortex_ai/types/related_chunk.py,sha256=Ed7pzlEbycX5kmjvzF5-c9QvwOzyGozTsX9uAQMsDCI,613
77
- usecortex_ai/types/relation_evidence.py,sha256=tBpJD6QKDjuWiLUzBLdNHPclgRu8WjQAx4NE44JMAjw,1551
79
+ usecortex_ai/types/relation_evidence.py,sha256=Kq61imTYFeAAc3q6MoMhAH3dlUk_MtMFwBxJVOOMJ-8,1806
78
80
  usecortex_ai/types/relations.py,sha256=wcnG2_3dfypUkBLSMRxM4ACaQvVA1KhmOY4YwBbJu24,863
79
81
  usecortex_ai/types/retrieve_mode.py,sha256=s2nGRBzRRCu5OPIdXi5hhPZ18qBTVz6_T4qU8PoGJr4,156
80
- usecortex_ai/types/retrieve_response.py,sha256=QmeQDqRl_Ts3f9O0RRz6ZkbRDHJRy1iLSfol9dewWyk,1135
81
- usecortex_ai/types/retrieve_user_memory_response.py,sha256=c8-foOfPfoEUYg9lwkUQO5ONREjmSHU5dCtH52VvDuc,1170
82
- usecortex_ai/types/search_chunk.py,sha256=t9e9Db0N3Dgj7jKUDlMPxpDDlUeJEcA04rbT8AzzAPM,2423
82
+ usecortex_ai/types/retrieve_response.py,sha256=F07DBfXW-XPjMXlvbxlZqOgnbUq5DigVapA5LGrX4VM,1133
83
+ usecortex_ai/types/retrieve_user_memory_response.py,sha256=Ejc0znd4eYZBt-R-EhXXkdZ1GmNHee2O9VAMaTnHZcc,1204
84
+ usecortex_ai/types/scored_path_response.py,sha256=FKyYOE6YPSRYxM0Du6P-MbFHso9QtLyzHWz3LIhpqW8,1142
85
+ usecortex_ai/types/scored_triplet_response.py,sha256=h5fvRh0UdMo8rHlv3lTXkDaA6DYGl74uPrTzln8zd0o,1037
86
+ usecortex_ai/types/search_chunk.py,sha256=UApf6poJrXILfLKfXtuL7yKEsSYOJgV8qG1Zt9EL4-8,2650
83
87
  usecortex_ai/types/single_upload_data.py,sha256=VmuWSY_9zeKrtbj5_WPOZXIJDmqvWqL0Iz7bdq5n6w8,785
84
88
  usecortex_ai/types/source.py,sha256=z8RQ4q-ZweoMJ6DR1dGa4YBlXHjMX7-tfk6l_R3EFMw,1411
85
89
  usecortex_ai/types/source_model.py,sha256=HM5jA8UmLDQk8UfPt3J3ZNAA3eT6k19WwZ20m-TzWOk,2874
86
90
  usecortex_ai/types/sub_tenant_ids_data.py,sha256=D8uiE1JwPx8KJd-Y_tm6FVooSM_QO9JQBBDpz_Lnz8o,1271
87
91
  usecortex_ai/types/tenant_create_data.py,sha256=wpg53JzFfquwtNAsz0B4eG3NP39jmGvVZ0SiBwk2_n4,988
88
92
  usecortex_ai/types/tenant_stats.py,sha256=NMjla1aHriQIB7qiOa5amL9WYFz4vwDFWHHHpyA1ndg,1156
89
- usecortex_ai/types/triple_with_evidence.py,sha256=-0bKCUWqvI66874mP20TdsY7tdxP6Xtj9AN4sjxFs_4,922
93
+ usecortex_ai/types/triple_with_evidence.py,sha256=VLGI3SYZZydotds4bNvmiaEy1v4EtcUpOShfBcXE-gg,843
90
94
  usecortex_ai/types/user_assistant_pair.py,sha256=gg2F3JPsR0WgeeqYa8y8G3_IpyOf9lNSQVGUon9sEhk,698
91
95
  usecortex_ai/types/user_memory.py,sha256=_lAM0qXL5cAwfLeeWs4_m8VZ2BtkFrGBYk5dip7k7KI,778
92
96
  usecortex_ai/types/validation_error.py,sha256=Ou-GSQTdmDFWIFlP_y9ka_EUAavqFEFLonU9srAkJdc,642
@@ -99,10 +103,10 @@ usecortex_ai/user/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4
99
103
  usecortex_ai/user/client.py,sha256=w11KTvMzLB862OY46FgoRhVde5SvcaXLbEmnxxryk80,4802
100
104
  usecortex_ai/user/raw_client.py,sha256=RnloKJVojvAknaylQknMUY9kS0HwP6_QjcmMuFvviAs,12740
101
105
  usecortex_ai/user_memory/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
102
- usecortex_ai/user_memory/client.py,sha256=MX9D_RoibzFIMCZsMObLqxFgwQvj8E6cxTK128u3gq4,18652
103
- usecortex_ai/user_memory/raw_client.py,sha256=kCZ1J06tK-dVH7HCs3RrkkFYfuG48jPQiO0ikzARPBk,49796
104
- usecortex_ai-0.3.5.dist-info/licenses/LICENSE,sha256=Y4M0dr3NLw8mFQQ2MBdnC0YsrmcJ93WZ7-DgCliupK8,1245
105
- usecortex_ai-0.3.5.dist-info/METADATA,sha256=oboQXFbCxRdcgcyyw1sXGVIB463vimB1SJSqe9nzYaQ,7950
106
- usecortex_ai-0.3.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
107
- usecortex_ai-0.3.5.dist-info/top_level.txt,sha256=TQ77el6hL0CvN7BTXJVFTqZ5ot1_kHKo2ZnEcOvZsjo,13
108
- usecortex_ai-0.3.5.dist-info/RECORD,,
106
+ usecortex_ai/user_memory/client.py,sha256=nMMtfUjCygTg02GhGHGMYOq9wzzpzl3B0TiG6BD40CU,18812
107
+ usecortex_ai/user_memory/raw_client.py,sha256=Tw5Q4QTqAGV-9y3AN-j4rcezUG5dZUpTDi9lp0bUAoQ,49956
108
+ usecortex_ai-0.3.6.dist-info/licenses/LICENSE,sha256=Y4M0dr3NLw8mFQQ2MBdnC0YsrmcJ93WZ7-DgCliupK8,1245
109
+ usecortex_ai-0.3.6.dist-info/METADATA,sha256=qWHXXEtauBE49wG0oqUqLMn-TvOPRCqSYEpn_bk33BU,7950
110
+ usecortex_ai-0.3.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
111
+ usecortex_ai-0.3.6.dist-info/top_level.txt,sha256=TQ77el6hL0CvN7BTXJVFTqZ5ot1_kHKo2ZnEcOvZsjo,13
112
+ usecortex_ai-0.3.6.dist-info/RECORD,,