usecortex-ai 0.3.5__py3-none-any.whl → 0.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- usecortex_ai/__init__.py +8 -0
- usecortex_ai/types/__init__.py +8 -0
- usecortex_ai/types/chunk_graph_relations_response.py +33 -0
- usecortex_ai/types/extended_context.py +0 -6
- usecortex_ai/types/path_triplet.py +38 -0
- usecortex_ai/types/relation_evidence.py +6 -5
- usecortex_ai/types/retrieve_response.py +3 -3
- usecortex_ai/types/retrieve_user_memory_response.py +3 -3
- usecortex_ai/types/scored_path_response.py +40 -0
- usecortex_ai/types/scored_triplet_response.py +43 -0
- usecortex_ai/types/search_chunk.py +5 -0
- usecortex_ai/types/triple_with_evidence.py +0 -4
- usecortex_ai/user_memory/client.py +2 -2
- usecortex_ai/user_memory/raw_client.py +2 -2
- {usecortex_ai-0.3.5.dist-info → usecortex_ai-0.3.6.dist-info}/METADATA +1 -1
- {usecortex_ai-0.3.5.dist-info → usecortex_ai-0.3.6.dist-info}/RECORD +19 -15
- {usecortex_ai-0.3.5.dist-info → usecortex_ai-0.3.6.dist-info}/WHEEL +0 -0
- {usecortex_ai-0.3.5.dist-info → usecortex_ai-0.3.6.dist-info}/licenses/LICENSE +0 -0
- {usecortex_ai-0.3.5.dist-info → usecortex_ai-0.3.6.dist-info}/top_level.txt +0 -0
usecortex_ai/__init__.py
CHANGED
|
@@ -11,6 +11,7 @@ from .types import (
|
|
|
11
11
|
Bm25OperatorType,
|
|
12
12
|
BodyScrapeWebpageUploadScrapeWebpagePost,
|
|
13
13
|
BodyUpdateScrapeJobUploadUpdateWebpagePatch,
|
|
14
|
+
ChunkGraphRelationsResponse,
|
|
14
15
|
ContentModel,
|
|
15
16
|
DeleteMemoryRequest,
|
|
16
17
|
DeleteSources,
|
|
@@ -30,6 +31,7 @@ from .types import (
|
|
|
30
31
|
ListSourcesResponse,
|
|
31
32
|
ListUserMemoriesResponse,
|
|
32
33
|
MarkdownUploadRequest,
|
|
34
|
+
PathTriplet,
|
|
33
35
|
ProcessingStatus,
|
|
34
36
|
RelatedChunk,
|
|
35
37
|
RelationEvidence,
|
|
@@ -37,6 +39,8 @@ from .types import (
|
|
|
37
39
|
RetrieveMode,
|
|
38
40
|
RetrieveResponse,
|
|
39
41
|
RetrieveUserMemoryResponse,
|
|
42
|
+
ScoredPathResponse,
|
|
43
|
+
ScoredTripletResponse,
|
|
40
44
|
SearchChunk,
|
|
41
45
|
SingleUploadData,
|
|
42
46
|
Source,
|
|
@@ -77,6 +81,7 @@ __all__ = [
|
|
|
77
81
|
"Bm25OperatorType",
|
|
78
82
|
"BodyScrapeWebpageUploadScrapeWebpagePost",
|
|
79
83
|
"BodyUpdateScrapeJobUploadUpdateWebpagePatch",
|
|
84
|
+
"ChunkGraphRelationsResponse",
|
|
80
85
|
"ContentModel",
|
|
81
86
|
"CortexAI",
|
|
82
87
|
"CortexAIEnvironment",
|
|
@@ -101,6 +106,7 @@ __all__ = [
|
|
|
101
106
|
"ListUserMemoriesResponse",
|
|
102
107
|
"MarkdownUploadRequest",
|
|
103
108
|
"NotFoundError",
|
|
109
|
+
"PathTriplet",
|
|
104
110
|
"ProcessingStatus",
|
|
105
111
|
"RelatedChunk",
|
|
106
112
|
"RelationEvidence",
|
|
@@ -108,6 +114,8 @@ __all__ = [
|
|
|
108
114
|
"RetrieveMode",
|
|
109
115
|
"RetrieveResponse",
|
|
110
116
|
"RetrieveUserMemoryResponse",
|
|
117
|
+
"ScoredPathResponse",
|
|
118
|
+
"ScoredTripletResponse",
|
|
111
119
|
"SearchChunk",
|
|
112
120
|
"ServiceUnavailableError",
|
|
113
121
|
"SingleUploadData",
|
usecortex_ai/types/__init__.py
CHANGED
|
@@ -10,6 +10,7 @@ from .batch_upload_data import BatchUploadData
|
|
|
10
10
|
from .bm_25_operator_type import Bm25OperatorType
|
|
11
11
|
from .body_scrape_webpage_upload_scrape_webpage_post import BodyScrapeWebpageUploadScrapeWebpagePost
|
|
12
12
|
from .body_update_scrape_job_upload_update_webpage_patch import BodyUpdateScrapeJobUploadUpdateWebpagePatch
|
|
13
|
+
from .chunk_graph_relations_response import ChunkGraphRelationsResponse
|
|
13
14
|
from .content_model import ContentModel
|
|
14
15
|
from .delete_memory_request import DeleteMemoryRequest
|
|
15
16
|
from .delete_sources import DeleteSources
|
|
@@ -29,6 +30,7 @@ from .http_validation_error import HttpValidationError
|
|
|
29
30
|
from .list_sources_response import ListSourcesResponse
|
|
30
31
|
from .list_user_memories_response import ListUserMemoriesResponse
|
|
31
32
|
from .markdown_upload_request import MarkdownUploadRequest
|
|
33
|
+
from .path_triplet import PathTriplet
|
|
32
34
|
from .processing_status import ProcessingStatus
|
|
33
35
|
from .related_chunk import RelatedChunk
|
|
34
36
|
from .relation_evidence import RelationEvidence
|
|
@@ -36,6 +38,8 @@ from .relations import Relations
|
|
|
36
38
|
from .retrieve_mode import RetrieveMode
|
|
37
39
|
from .retrieve_response import RetrieveResponse
|
|
38
40
|
from .retrieve_user_memory_response import RetrieveUserMemoryResponse
|
|
41
|
+
from .scored_path_response import ScoredPathResponse
|
|
42
|
+
from .scored_triplet_response import ScoredTripletResponse
|
|
39
43
|
from .search_chunk import SearchChunk
|
|
40
44
|
from .single_upload_data import SingleUploadData
|
|
41
45
|
from .source import Source
|
|
@@ -59,6 +63,7 @@ __all__ = [
|
|
|
59
63
|
"Bm25OperatorType",
|
|
60
64
|
"BodyScrapeWebpageUploadScrapeWebpagePost",
|
|
61
65
|
"BodyUpdateScrapeJobUploadUpdateWebpagePatch",
|
|
66
|
+
"ChunkGraphRelationsResponse",
|
|
62
67
|
"ContentModel",
|
|
63
68
|
"DeleteMemoryRequest",
|
|
64
69
|
"DeleteSources",
|
|
@@ -78,6 +83,7 @@ __all__ = [
|
|
|
78
83
|
"ListSourcesResponse",
|
|
79
84
|
"ListUserMemoriesResponse",
|
|
80
85
|
"MarkdownUploadRequest",
|
|
86
|
+
"PathTriplet",
|
|
81
87
|
"ProcessingStatus",
|
|
82
88
|
"RelatedChunk",
|
|
83
89
|
"RelationEvidence",
|
|
@@ -85,6 +91,8 @@ __all__ = [
|
|
|
85
91
|
"RetrieveMode",
|
|
86
92
|
"RetrieveResponse",
|
|
87
93
|
"RetrieveUserMemoryResponse",
|
|
94
|
+
"ScoredPathResponse",
|
|
95
|
+
"ScoredTripletResponse",
|
|
88
96
|
"SearchChunk",
|
|
89
97
|
"SingleUploadData",
|
|
90
98
|
"Source",
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .scored_path_response import ScoredPathResponse
|
|
8
|
+
from .scored_triplet_response import ScoredTripletResponse
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ChunkGraphRelationsResponse(UniversalBaseModel):
|
|
12
|
+
"""
|
|
13
|
+
Graph relations with group_id -> triplet mapping
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
entity_paths: typing.Optional[typing.List[ScoredPathResponse]] = pydantic.Field(default=None)
|
|
17
|
+
"""
|
|
18
|
+
Multi-hop paths connecting entities from the query, reranked by relevance. Each path is a chain of connected triplets.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
chunk_triplets: typing.Optional[typing.Dict[str, ScoredTripletResponse]] = pydantic.Field(default=None)
|
|
22
|
+
"""
|
|
23
|
+
Mapping of group_id to scored triplet. Use chunk.graph_triplet_ids to find which groups belong to a chunk.
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
if IS_PYDANTIC_V2:
|
|
27
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
28
|
+
else:
|
|
29
|
+
|
|
30
|
+
class Config:
|
|
31
|
+
frozen = True
|
|
32
|
+
smart_union = True
|
|
33
|
+
extra = pydantic.Extra.allow
|
|
@@ -4,15 +4,9 @@ import typing
|
|
|
4
4
|
|
|
5
5
|
import pydantic
|
|
6
6
|
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
-
from .triple_with_evidence import TripleWithEvidence
|
|
8
7
|
|
|
9
8
|
|
|
10
9
|
class ExtendedContext(UniversalBaseModel):
|
|
11
|
-
chunk_relations: typing.Optional[typing.List[TripleWithEvidence]] = pydantic.Field(default=None)
|
|
12
|
-
"""
|
|
13
|
-
Relations linked with this chunk
|
|
14
|
-
"""
|
|
15
|
-
|
|
16
10
|
if IS_PYDANTIC_V2:
|
|
17
11
|
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
18
12
|
else:
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .entity import Entity
|
|
8
|
+
from .relation_evidence import RelationEvidence
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class PathTriplet(UniversalBaseModel):
|
|
12
|
+
"""
|
|
13
|
+
Single triplet within a path (without score, as the path is scored as a whole)
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
source: Entity = pydantic.Field()
|
|
17
|
+
"""
|
|
18
|
+
Source entity
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
target: Entity = pydantic.Field()
|
|
22
|
+
"""
|
|
23
|
+
Target entity
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
relation: RelationEvidence = pydantic.Field()
|
|
27
|
+
"""
|
|
28
|
+
Relation between entities
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
if IS_PYDANTIC_V2:
|
|
32
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
33
|
+
else:
|
|
34
|
+
|
|
35
|
+
class Config:
|
|
36
|
+
frozen = True
|
|
37
|
+
smart_union = True
|
|
38
|
+
extra = pydantic.Extra.allow
|
|
@@ -8,8 +8,9 @@ from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
|
8
8
|
|
|
9
9
|
|
|
10
10
|
class RelationEvidence(UniversalBaseModel):
|
|
11
|
+
relationship_id: typing.Optional[str] = pydantic.Field(default=None)
|
|
11
12
|
"""
|
|
12
|
-
|
|
13
|
+
Unique identifier for this specific relationship edge in the graph. The combination of source entity, target entity, and relationship_id allows disambiguation between multiple relations between the same source and target entities.
|
|
13
14
|
"""
|
|
14
15
|
|
|
15
16
|
canonical_predicate: str = pydantic.Field()
|
|
@@ -27,14 +28,14 @@ class RelationEvidence(UniversalBaseModel):
|
|
|
27
28
|
Rich contextual description of the relationship with surrounding information, details about how/why/when, and any relevant background. Should be comprehensive enough to understand the relationship without referring back to source.
|
|
28
29
|
"""
|
|
29
30
|
|
|
30
|
-
|
|
31
|
+
temporal_details: typing.Optional[str] = pydantic.Field(default=None)
|
|
31
32
|
"""
|
|
32
|
-
|
|
33
|
+
Temporal timing information extracted from text (e.g., 'last week', 'in 2023', 'yesterday')
|
|
33
34
|
"""
|
|
34
35
|
|
|
35
|
-
|
|
36
|
+
chunk_id: typing.Optional[str] = pydantic.Field(default=None)
|
|
36
37
|
"""
|
|
37
|
-
|
|
38
|
+
The chunk_id this relation came from
|
|
38
39
|
"""
|
|
39
40
|
|
|
40
41
|
timestamp: typing.Optional[dt.datetime] = pydantic.Field(default=None)
|
|
@@ -4,8 +4,8 @@ import typing
|
|
|
4
4
|
|
|
5
5
|
import pydantic
|
|
6
6
|
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .chunk_graph_relations_response import ChunkGraphRelationsResponse
|
|
7
8
|
from .search_chunk import SearchChunk
|
|
8
|
-
from .triple_with_evidence import TripleWithEvidence
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class RetrieveResponse(UniversalBaseModel):
|
|
@@ -14,9 +14,9 @@ class RetrieveResponse(UniversalBaseModel):
|
|
|
14
14
|
Retrieved content chunks
|
|
15
15
|
"""
|
|
16
16
|
|
|
17
|
-
|
|
17
|
+
graph_relations: typing.Optional[ChunkGraphRelationsResponse] = pydantic.Field(default=None)
|
|
18
18
|
"""
|
|
19
|
-
|
|
19
|
+
Graph relations with chunk_relations (by chunk_id) and entity_relations (top entity matches)
|
|
20
20
|
"""
|
|
21
21
|
|
|
22
22
|
metadata: typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]] = pydantic.Field(default=None)
|
|
@@ -4,7 +4,7 @@ import typing
|
|
|
4
4
|
|
|
5
5
|
import pydantic
|
|
6
6
|
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
-
from .
|
|
7
|
+
from .scored_path_response import ScoredPathResponse
|
|
8
8
|
from .user_memory import UserMemory
|
|
9
9
|
|
|
10
10
|
|
|
@@ -23,9 +23,9 @@ class RetrieveUserMemoryResponse(UniversalBaseModel):
|
|
|
23
23
|
Array of user memories ranked by relevance to your search query
|
|
24
24
|
"""
|
|
25
25
|
|
|
26
|
-
relations: typing.Optional[typing.List[
|
|
26
|
+
relations: typing.Optional[typing.List[ScoredPathResponse]] = pydantic.Field(default=None)
|
|
27
27
|
"""
|
|
28
|
-
Array of relations extracted from the user query
|
|
28
|
+
Array of scored relations extracted from the user query via knowledge graph search
|
|
29
29
|
"""
|
|
30
30
|
|
|
31
31
|
if IS_PYDANTIC_V2:
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .path_triplet import PathTriplet
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class ScoredPathResponse(UniversalBaseModel):
|
|
11
|
+
"""
|
|
12
|
+
A multi-hop path (chain of triplets) with a relevancy score.
|
|
13
|
+
|
|
14
|
+
Represents connected paths like: A --rel1--> B --rel2--> C
|
|
15
|
+
The triplets list preserves the chain order.
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
combined_context: typing.Optional[str] = pydantic.Field(default=None)
|
|
19
|
+
"""
|
|
20
|
+
Merged context from all triplets in the path
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
triplets: typing.List[PathTriplet] = pydantic.Field()
|
|
24
|
+
"""
|
|
25
|
+
Ordered list of triplets forming the path chain
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
relevancy_score: typing.Optional[float] = pydantic.Field(default=None)
|
|
29
|
+
"""
|
|
30
|
+
Relevancy score for the entire path
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
if IS_PYDANTIC_V2:
|
|
34
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
35
|
+
else:
|
|
36
|
+
|
|
37
|
+
class Config:
|
|
38
|
+
frozen = True
|
|
39
|
+
smart_union = True
|
|
40
|
+
extra = pydantic.Extra.allow
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
import pydantic
|
|
6
|
+
from ..core.pydantic_utilities import IS_PYDANTIC_V2, UniversalBaseModel
|
|
7
|
+
from .entity import Entity
|
|
8
|
+
from .relation_evidence import RelationEvidence
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ScoredTripletResponse(UniversalBaseModel):
|
|
12
|
+
"""
|
|
13
|
+
Individual scored triplet for entity-based search results
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
source: Entity = pydantic.Field()
|
|
17
|
+
"""
|
|
18
|
+
Source entity
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
target: Entity = pydantic.Field()
|
|
22
|
+
"""
|
|
23
|
+
Target entity
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
relation: RelationEvidence = pydantic.Field()
|
|
27
|
+
"""
|
|
28
|
+
Relation between entities
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
relevancy_score: typing.Optional[float] = pydantic.Field(default=None)
|
|
32
|
+
"""
|
|
33
|
+
Relevancy score from reranking
|
|
34
|
+
"""
|
|
35
|
+
|
|
36
|
+
if IS_PYDANTIC_V2:
|
|
37
|
+
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
38
|
+
else:
|
|
39
|
+
|
|
40
|
+
class Config:
|
|
41
|
+
frozen = True
|
|
42
|
+
smart_union = True
|
|
43
|
+
extra = pydantic.Extra.allow
|
|
@@ -68,6 +68,11 @@ class SearchChunk(UniversalBaseModel):
|
|
|
68
68
|
Additional context for this chunk
|
|
69
69
|
"""
|
|
70
70
|
|
|
71
|
+
graph_triplet_ids: typing.Optional[typing.List[str]] = pydantic.Field(default=None)
|
|
72
|
+
"""
|
|
73
|
+
List of group IDs for triplets linked to this chunk. Lookup triplet data in graph_relations.chunk_relations[group_id]
|
|
74
|
+
"""
|
|
75
|
+
|
|
71
76
|
if IS_PYDANTIC_V2:
|
|
72
77
|
model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
|
|
73
78
|
else:
|
|
@@ -9,10 +9,6 @@ from .relation_evidence import RelationEvidence
|
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class TripleWithEvidence(UniversalBaseModel):
|
|
12
|
-
"""
|
|
13
|
-
Triple with multiple evidence items from different chunks
|
|
14
|
-
"""
|
|
15
|
-
|
|
16
12
|
source: Entity
|
|
17
13
|
target: Entity
|
|
18
14
|
relations: typing.List[RelationEvidence] = pydantic.Field()
|
|
@@ -215,7 +215,7 @@ class UserMemoryClient:
|
|
|
215
215
|
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
216
216
|
|
|
217
217
|
raw_text : typing.Optional[str]
|
|
218
|
-
Single raw text memory to store
|
|
218
|
+
Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
|
|
219
219
|
|
|
220
220
|
user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
|
|
221
221
|
Array of user/assistant conversation pairs to store as a single memory
|
|
@@ -469,7 +469,7 @@ class AsyncUserMemoryClient:
|
|
|
469
469
|
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
470
470
|
|
|
471
471
|
raw_text : typing.Optional[str]
|
|
472
|
-
Single raw text memory to store
|
|
472
|
+
Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
|
|
473
473
|
|
|
474
474
|
user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
|
|
475
475
|
Array of user/assistant conversation pairs to store as a single memory
|
|
@@ -488,7 +488,7 @@ class RawUserMemoryClient:
|
|
|
488
488
|
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
489
489
|
|
|
490
490
|
raw_text : typing.Optional[str]
|
|
491
|
-
Single raw text memory to store
|
|
491
|
+
Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
|
|
492
492
|
|
|
493
493
|
user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
|
|
494
494
|
Array of user/assistant conversation pairs to store as a single memory
|
|
@@ -1086,7 +1086,7 @@ class AsyncRawUserMemoryClient:
|
|
|
1086
1086
|
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
1087
1087
|
|
|
1088
1088
|
raw_text : typing.Optional[str]
|
|
1089
|
-
Single raw text memory to store
|
|
1089
|
+
Single raw text memory to store. If both raw_text and user_assistant_pairs are provided, raw_text will be used.
|
|
1090
1090
|
|
|
1091
1091
|
user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
|
|
1092
1092
|
Array of user/assistant conversation pairs to store as a single memory
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
usecortex_ai/__init__.py,sha256=
|
|
1
|
+
usecortex_ai/__init__.py,sha256=ZSziRo_n9xvUND64kUQuA9zS_WurzAG_gkGgdR0CVJs,3444
|
|
2
2
|
usecortex_ai/client.py,sha256=i-1RW54MMmplowh9sDAm3W-Nw_mlQyBWHSFmc4XsOKA,9865
|
|
3
3
|
usecortex_ai/environment.py,sha256=IZ0X7CTz4V0TzNaMrw6E5GJklcTLxGJmrWEyH-LtYsc,162
|
|
4
4
|
usecortex_ai/raw_client.py,sha256=Z2zedJhFwHoO_Zmm2enC_s-gd8SM_itaWZOfL0rSobE,3532
|
|
@@ -44,7 +44,7 @@ usecortex_ai/sources/raw_client.py,sha256=oWggwYuje1xcaonWxz8Bm24LcmyYkFPfviEUNh
|
|
|
44
44
|
usecortex_ai/tenant/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
|
|
45
45
|
usecortex_ai/tenant/client.py,sha256=IhVoy4lN2UTO8nvkT5NJXhExb6DrqP7CG51mm647akA,8764
|
|
46
46
|
usecortex_ai/tenant/raw_client.py,sha256=aUBX_Fk09hHga_ezEr6iMD5G1xTnBO0RR4RYksGHZdw,31494
|
|
47
|
-
usecortex_ai/types/__init__.py,sha256=
|
|
47
|
+
usecortex_ai/types/__init__.py,sha256=uLDJhwg-XQUA0om_1EhLJaXJIwLbBWiGCHKsNYm5b0A,4094
|
|
48
48
|
usecortex_ai/types/actual_error_response.py,sha256=EBit_JO3u0FQrVAXDg0UXQktlULLPLtX8FF8J9mZSvY,580
|
|
49
49
|
usecortex_ai/types/add_user_memory_response.py,sha256=7JjjeNn7wmWGBWp-LmLZOQifouNKfQGPCzGU3K1mlis,1088
|
|
50
50
|
usecortex_ai/types/app_sources_upload_data.py,sha256=XIXK7hRxNsqddHrtiF8RzEt4aqQPaLISiVn69AMAB6w,854
|
|
@@ -53,6 +53,7 @@ usecortex_ai/types/batch_upload_data.py,sha256=C7e4MHoYleXTDOHfJz2gBWa7Lcl837An1
|
|
|
53
53
|
usecortex_ai/types/bm_25_operator_type.py,sha256=wiromvB4YjgxKQcS1-1BNBZ7MqKP1JzBEbY1R8K-wq4,153
|
|
54
54
|
usecortex_ai/types/body_scrape_webpage_upload_scrape_webpage_post.py,sha256=7mnML_5krrZ8obOW_2HavWAjP2rxYQ-pETP0GnKsfDI,532
|
|
55
55
|
usecortex_ai/types/body_update_scrape_job_upload_update_webpage_patch.py,sha256=7WtD74CYa-RkkuqluiBzoQjWqvbzUcK2p1cZZr0YgWo,535
|
|
56
|
+
usecortex_ai/types/chunk_graph_relations_response.py,sha256=UKFAUWqITIW955H8q9lD8mbuXRQKvpyQYOFLk2uWv70,1175
|
|
56
57
|
usecortex_ai/types/content_model.py,sha256=7KsEMncTZK90gWsjjVfrmOxOndM2HODIOUHclQU6ysE,1738
|
|
57
58
|
usecortex_ai/types/delete_memory_request.py,sha256=4IoGwsZcGLg4_cJ_HqMsBseSk13exDnXMxpVFb5_PWo,957
|
|
58
59
|
usecortex_ai/types/delete_sources.py,sha256=3Kl4YxQmiCNLiR1O7ZHP0xZgaQ54JTuyofbYS-MWjeM,589
|
|
@@ -64,7 +65,7 @@ usecortex_ai/types/embeddings_get_data.py,sha256=R9ukkUXidR4Q6_k0uT4GsEHjGXxgO-y
|
|
|
64
65
|
usecortex_ai/types/embeddings_search_data.py,sha256=61UYdgEpsi-pYkGuMwSLc04-hrDjHXJPGBjoOKERRPM,1056
|
|
65
66
|
usecortex_ai/types/entity.py,sha256=Q7gxZIFiT5jX78TfRO8id1KFh2vmTo_1-wWZZCoZOd4,1082
|
|
66
67
|
usecortex_ai/types/error_response.py,sha256=7_MuOTWE3zj6kg6UptuYBFMAhV3KZGEkpsyirFvHJzA,633
|
|
67
|
-
usecortex_ai/types/extended_context.py,sha256=
|
|
68
|
+
usecortex_ai/types/extended_context.py,sha256=iJKkYJtUWwbKH-CCvm1UVomaqFqG-YXS6U0pmXs7fp0,507
|
|
68
69
|
usecortex_ai/types/fetch_content_data.py,sha256=kIBb282-npL1O1vhAMIX0m3KvV3H2Bk-mifBUcbO3e8,1004
|
|
69
70
|
usecortex_ai/types/file_upload_result.py,sha256=UIqPc63K0MKf-nYsy8fxsui4IKTJ-BxVAetesnKiuzA,738
|
|
70
71
|
usecortex_ai/types/graph_relations_response.py,sha256=psSKouHYvmMp5nkbRRcIDe87c3vP81Tl4gvqAkeNWbg,966
|
|
@@ -72,21 +73,24 @@ usecortex_ai/types/http_validation_error.py,sha256=NNTK9AbbHXm0n9m1YcsG5zEaSn1n6
|
|
|
72
73
|
usecortex_ai/types/list_sources_response.py,sha256=ybvnupTDVoZfDRsS3YdzbLemmqQqf4F31ODP-Fcj0n4,930
|
|
73
74
|
usecortex_ai/types/list_user_memories_response.py,sha256=gsx9pxp2Rsaz0tX2pbGqFFThYF_20XpzwF7BWwOXAGA,906
|
|
74
75
|
usecortex_ai/types/markdown_upload_request.py,sha256=I1Mot_08BgSQyNzgplPHypb_dBKeGKoMuA9MXBqfL7M,1477
|
|
76
|
+
usecortex_ai/types/path_triplet.py,sha256=kQqvCcnVcksob4QyLcRLmnYiTCWjAEyYGmTdEOHJGOE,921
|
|
75
77
|
usecortex_ai/types/processing_status.py,sha256=rwrLBAMexNxRPMCd8PUSs4PHv4lba_0mkUot8iPJWEc,1153
|
|
76
78
|
usecortex_ai/types/related_chunk.py,sha256=Ed7pzlEbycX5kmjvzF5-c9QvwOzyGozTsX9uAQMsDCI,613
|
|
77
|
-
usecortex_ai/types/relation_evidence.py,sha256=
|
|
79
|
+
usecortex_ai/types/relation_evidence.py,sha256=Kq61imTYFeAAc3q6MoMhAH3dlUk_MtMFwBxJVOOMJ-8,1806
|
|
78
80
|
usecortex_ai/types/relations.py,sha256=wcnG2_3dfypUkBLSMRxM4ACaQvVA1KhmOY4YwBbJu24,863
|
|
79
81
|
usecortex_ai/types/retrieve_mode.py,sha256=s2nGRBzRRCu5OPIdXi5hhPZ18qBTVz6_T4qU8PoGJr4,156
|
|
80
|
-
usecortex_ai/types/retrieve_response.py,sha256=
|
|
81
|
-
usecortex_ai/types/retrieve_user_memory_response.py,sha256=
|
|
82
|
-
usecortex_ai/types/
|
|
82
|
+
usecortex_ai/types/retrieve_response.py,sha256=F07DBfXW-XPjMXlvbxlZqOgnbUq5DigVapA5LGrX4VM,1133
|
|
83
|
+
usecortex_ai/types/retrieve_user_memory_response.py,sha256=Ejc0znd4eYZBt-R-EhXXkdZ1GmNHee2O9VAMaTnHZcc,1204
|
|
84
|
+
usecortex_ai/types/scored_path_response.py,sha256=FKyYOE6YPSRYxM0Du6P-MbFHso9QtLyzHWz3LIhpqW8,1142
|
|
85
|
+
usecortex_ai/types/scored_triplet_response.py,sha256=h5fvRh0UdMo8rHlv3lTXkDaA6DYGl74uPrTzln8zd0o,1037
|
|
86
|
+
usecortex_ai/types/search_chunk.py,sha256=UApf6poJrXILfLKfXtuL7yKEsSYOJgV8qG1Zt9EL4-8,2650
|
|
83
87
|
usecortex_ai/types/single_upload_data.py,sha256=VmuWSY_9zeKrtbj5_WPOZXIJDmqvWqL0Iz7bdq5n6w8,785
|
|
84
88
|
usecortex_ai/types/source.py,sha256=z8RQ4q-ZweoMJ6DR1dGa4YBlXHjMX7-tfk6l_R3EFMw,1411
|
|
85
89
|
usecortex_ai/types/source_model.py,sha256=HM5jA8UmLDQk8UfPt3J3ZNAA3eT6k19WwZ20m-TzWOk,2874
|
|
86
90
|
usecortex_ai/types/sub_tenant_ids_data.py,sha256=D8uiE1JwPx8KJd-Y_tm6FVooSM_QO9JQBBDpz_Lnz8o,1271
|
|
87
91
|
usecortex_ai/types/tenant_create_data.py,sha256=wpg53JzFfquwtNAsz0B4eG3NP39jmGvVZ0SiBwk2_n4,988
|
|
88
92
|
usecortex_ai/types/tenant_stats.py,sha256=NMjla1aHriQIB7qiOa5amL9WYFz4vwDFWHHHpyA1ndg,1156
|
|
89
|
-
usecortex_ai/types/triple_with_evidence.py,sha256
|
|
93
|
+
usecortex_ai/types/triple_with_evidence.py,sha256=VLGI3SYZZydotds4bNvmiaEy1v4EtcUpOShfBcXE-gg,843
|
|
90
94
|
usecortex_ai/types/user_assistant_pair.py,sha256=gg2F3JPsR0WgeeqYa8y8G3_IpyOf9lNSQVGUon9sEhk,698
|
|
91
95
|
usecortex_ai/types/user_memory.py,sha256=_lAM0qXL5cAwfLeeWs4_m8VZ2BtkFrGBYk5dip7k7KI,778
|
|
92
96
|
usecortex_ai/types/validation_error.py,sha256=Ou-GSQTdmDFWIFlP_y9ka_EUAavqFEFLonU9srAkJdc,642
|
|
@@ -99,10 +103,10 @@ usecortex_ai/user/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4
|
|
|
99
103
|
usecortex_ai/user/client.py,sha256=w11KTvMzLB862OY46FgoRhVde5SvcaXLbEmnxxryk80,4802
|
|
100
104
|
usecortex_ai/user/raw_client.py,sha256=RnloKJVojvAknaylQknMUY9kS0HwP6_QjcmMuFvviAs,12740
|
|
101
105
|
usecortex_ai/user_memory/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
|
|
102
|
-
usecortex_ai/user_memory/client.py,sha256=
|
|
103
|
-
usecortex_ai/user_memory/raw_client.py,sha256=
|
|
104
|
-
usecortex_ai-0.3.
|
|
105
|
-
usecortex_ai-0.3.
|
|
106
|
-
usecortex_ai-0.3.
|
|
107
|
-
usecortex_ai-0.3.
|
|
108
|
-
usecortex_ai-0.3.
|
|
106
|
+
usecortex_ai/user_memory/client.py,sha256=nMMtfUjCygTg02GhGHGMYOq9wzzpzl3B0TiG6BD40CU,18812
|
|
107
|
+
usecortex_ai/user_memory/raw_client.py,sha256=Tw5Q4QTqAGV-9y3AN-j4rcezUG5dZUpTDi9lp0bUAoQ,49956
|
|
108
|
+
usecortex_ai-0.3.6.dist-info/licenses/LICENSE,sha256=Y4M0dr3NLw8mFQQ2MBdnC0YsrmcJ93WZ7-DgCliupK8,1245
|
|
109
|
+
usecortex_ai-0.3.6.dist-info/METADATA,sha256=qWHXXEtauBE49wG0oqUqLMn-TvOPRCqSYEpn_bk33BU,7950
|
|
110
|
+
usecortex_ai-0.3.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
111
|
+
usecortex_ai-0.3.6.dist-info/top_level.txt,sha256=TQ77el6hL0CvN7BTXJVFTqZ5ot1_kHKo2ZnEcOvZsjo,13
|
|
112
|
+
usecortex_ai-0.3.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|