usecortex-ai 0.3.4__py3-none-any.whl → 0.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,6 +8,7 @@ from ..core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
8
8
  from ..core.http_response import AsyncHttpResponse, HttpResponse
9
9
  from ..core.pydantic_utilities import parse_obj_as
10
10
  from ..core.request_options import RequestOptions
11
+ from ..core.serialization import convert_and_respect_annotation_metadata
11
12
  from ..errors.bad_request_error import BadRequestError
12
13
  from ..errors.forbidden_error import ForbiddenError
13
14
  from ..errors.internal_server_error import InternalServerError
@@ -18,9 +19,9 @@ from ..errors.unprocessable_entity_error import UnprocessableEntityError
18
19
  from ..types.actual_error_response import ActualErrorResponse
19
20
  from ..types.add_user_memory_response import AddUserMemoryResponse
20
21
  from ..types.delete_user_memory_response import DeleteUserMemoryResponse
21
- from ..types.generate_user_memory_response import GenerateUserMemoryResponse
22
22
  from ..types.list_user_memories_response import ListUserMemoriesResponse
23
23
  from ..types.retrieve_user_memory_response import RetrieveUserMemoryResponse
24
+ from ..types.user_assistant_pair import UserAssistantPair
24
25
 
25
26
  # this is used as the default value for optional parameters
26
27
  OMIT = typing.cast(typing.Any, ...)
@@ -312,14 +313,14 @@ class RawUserMemoryClient:
312
313
  request_options: typing.Optional[RequestOptions] = None,
313
314
  ) -> HttpResponse[RetrieveUserMemoryResponse]:
314
315
  """
315
- Find relevant user memories using semantic search.
316
+ Find relevant user memories using semantic search and knowledge graph.
316
317
 
317
- This endpoint performs a semantic search across all your stored user memories
318
- to find the most relevant ones based on your query. The results are ranked by
319
- similarity score, with the most relevant memories returned first.
318
+ This endpoint performs parallel searches:
319
+ 1. Semantic search in Weaviate across all stored user memories
320
+ 2. Entity-based search in the knowledge graph for memory entities
320
321
 
321
- Use this to recall past preferences, context, or information that might be
322
- relevant to your current task or query.
322
+ Results from both sources are combined and ranked by relevance to provide
323
+ comprehensive memory retrieval.
323
324
 
324
325
  Parameters
325
326
  ----------
@@ -456,184 +457,50 @@ class RawUserMemoryClient:
456
457
  raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text)
457
458
  raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
458
459
 
459
- def generate_user_memory(
460
+ def add_user_memory(
460
461
  self,
461
462
  *,
462
463
  tenant_id: str,
463
- user_message: str,
464
- user_name: str,
465
464
  sub_tenant_id: typing.Optional[str] = None,
465
+ raw_text: typing.Optional[str] = OMIT,
466
+ user_assistant_pairs: typing.Optional[typing.Sequence[UserAssistantPair]] = OMIT,
467
+ expiry_time: typing.Optional[int] = OMIT,
468
+ infer: typing.Optional[bool] = OMIT,
469
+ custom_instructions: typing.Optional[str] = OMIT,
466
470
  request_options: typing.Optional[RequestOptions] = None,
467
- ) -> HttpResponse[GenerateUserMemoryResponse]:
471
+ ) -> HttpResponse[AddUserMemoryResponse]:
468
472
  """
469
- Generate AI-powered user memories from your query and context.
473
+ Store new user memories for future reference.
470
474
 
471
- This endpoint uses artificial intelligence to create personalized memories
472
- based on your query and user context. The AI analyzes your input and generates
473
- relevant, contextual memories that can help improve future interactions.
475
+ This endpoint allows you to add memories in two formats:
476
+ 1. Raw text string - A single text-based memory
477
+ 2. User/Assistant pairs array - Conversation pairs that will be chunked as a single memory
474
478
 
475
- Generated memories are automatically stored and can be retrieved through
476
- the standard memory search endpoints.
479
+ The stored memories will be chunked, indexed in both Weaviate and the knowledge graph,
480
+ and made available for semantic search and graph-based retrieval.
477
481
 
478
482
  Parameters
479
483
  ----------
480
484
  tenant_id : str
481
485
  Unique identifier for the tenant/organization
482
486
 
483
- user_message : str
484
- Your query or context for AI memory generation
485
-
486
- user_name : str
487
- Your name to personalize the generated memories
488
-
489
487
  sub_tenant_id : typing.Optional[str]
490
488
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
491
489
 
492
- request_options : typing.Optional[RequestOptions]
493
- Request-specific configuration.
490
+ raw_text : typing.Optional[str]
491
+ Single raw text memory to store
494
492
 
495
- Returns
496
- -------
497
- HttpResponse[GenerateUserMemoryResponse]
498
- Successful Response
499
- """
500
- _response = self._client_wrapper.httpx_client.request(
501
- "user_memory/generate_user_memory",
502
- method="POST",
503
- params={
504
- "tenant_id": tenant_id,
505
- "sub_tenant_id": sub_tenant_id,
506
- },
507
- json={
508
- "user_message": user_message,
509
- "user_name": user_name,
510
- },
511
- headers={
512
- "content-type": "application/json",
513
- },
514
- request_options=request_options,
515
- omit=OMIT,
516
- )
517
- try:
518
- if 200 <= _response.status_code < 300:
519
- _data = typing.cast(
520
- GenerateUserMemoryResponse,
521
- parse_obj_as(
522
- type_=GenerateUserMemoryResponse, # type: ignore
523
- object_=_response.json(),
524
- ),
525
- )
526
- return HttpResponse(response=_response, data=_data)
527
- if _response.status_code == 400:
528
- raise BadRequestError(
529
- headers=dict(_response.headers),
530
- body=typing.cast(
531
- ActualErrorResponse,
532
- parse_obj_as(
533
- type_=ActualErrorResponse, # type: ignore
534
- object_=_response.json(),
535
- ),
536
- ),
537
- )
538
- if _response.status_code == 401:
539
- raise UnauthorizedError(
540
- headers=dict(_response.headers),
541
- body=typing.cast(
542
- ActualErrorResponse,
543
- parse_obj_as(
544
- type_=ActualErrorResponse, # type: ignore
545
- object_=_response.json(),
546
- ),
547
- ),
548
- )
549
- if _response.status_code == 403:
550
- raise ForbiddenError(
551
- headers=dict(_response.headers),
552
- body=typing.cast(
553
- ActualErrorResponse,
554
- parse_obj_as(
555
- type_=ActualErrorResponse, # type: ignore
556
- object_=_response.json(),
557
- ),
558
- ),
559
- )
560
- if _response.status_code == 404:
561
- raise NotFoundError(
562
- headers=dict(_response.headers),
563
- body=typing.cast(
564
- ActualErrorResponse,
565
- parse_obj_as(
566
- type_=ActualErrorResponse, # type: ignore
567
- object_=_response.json(),
568
- ),
569
- ),
570
- )
571
- if _response.status_code == 422:
572
- raise UnprocessableEntityError(
573
- headers=dict(_response.headers),
574
- body=typing.cast(
575
- typing.Optional[typing.Any],
576
- parse_obj_as(
577
- type_=typing.Optional[typing.Any], # type: ignore
578
- object_=_response.json(),
579
- ),
580
- ),
581
- )
582
- if _response.status_code == 500:
583
- raise InternalServerError(
584
- headers=dict(_response.headers),
585
- body=typing.cast(
586
- ActualErrorResponse,
587
- parse_obj_as(
588
- type_=ActualErrorResponse, # type: ignore
589
- object_=_response.json(),
590
- ),
591
- ),
592
- )
593
- if _response.status_code == 503:
594
- raise ServiceUnavailableError(
595
- headers=dict(_response.headers),
596
- body=typing.cast(
597
- ActualErrorResponse,
598
- parse_obj_as(
599
- type_=ActualErrorResponse, # type: ignore
600
- object_=_response.json(),
601
- ),
602
- ),
603
- )
604
- _response_json = _response.json()
605
- except JSONDecodeError:
606
- raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text)
607
- raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
608
-
609
- def add_user_memory(
610
- self,
611
- *,
612
- tenant_id: str,
613
- user_memory: str,
614
- sub_tenant_id: typing.Optional[str] = None,
615
- request_options: typing.Optional[RequestOptions] = None,
616
- ) -> HttpResponse[AddUserMemoryResponse]:
617
- """
618
- Store a new user memory for future reference.
493
+ user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
494
+ Array of user/assistant conversation pairs to store as a single memory
619
495
 
620
- This endpoint allows you to manually add a memory that will be stored and
621
- can be retrieved later through memory search. Use this to save important
622
- preferences, context, or information that you want the system to remember.
496
+ expiry_time : typing.Optional[int]
497
+ Expiry time in seconds for the memory (optional)
623
498
 
624
- The stored memory will be indexed and available for semantic search, making
625
- it accessible when relevant to future queries or interactions.
499
+ infer : typing.Optional[bool]
500
+ If true, process and compress chunks into inferred representations before indexing (default: False)
626
501
 
627
- Parameters
628
- ----------
629
- tenant_id : str
630
- Unique identifier for the tenant/organization
631
-
632
- user_memory : str
633
- The memory content to store for future reference
634
-
635
- sub_tenant_id : typing.Optional[str]
636
- Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
502
+ custom_instructions : typing.Optional[str]
503
+ Custom instructions to guide cortex
637
504
 
638
505
  request_options : typing.Optional[RequestOptions]
639
506
  Request-specific configuration.
@@ -651,7 +518,13 @@ class RawUserMemoryClient:
651
518
  "sub_tenant_id": sub_tenant_id,
652
519
  },
653
520
  json={
654
- "user_memory": user_memory,
521
+ "raw_text": raw_text,
522
+ "user_assistant_pairs": convert_and_respect_annotation_metadata(
523
+ object_=user_assistant_pairs, annotation=typing.Sequence[UserAssistantPair], direction="write"
524
+ ),
525
+ "expiry_time": expiry_time,
526
+ "infer": infer,
527
+ "custom_instructions": custom_instructions,
655
528
  },
656
529
  headers={
657
530
  "content-type": "application/json",
@@ -1038,14 +911,14 @@ class AsyncRawUserMemoryClient:
1038
911
  request_options: typing.Optional[RequestOptions] = None,
1039
912
  ) -> AsyncHttpResponse[RetrieveUserMemoryResponse]:
1040
913
  """
1041
- Find relevant user memories using semantic search.
914
+ Find relevant user memories using semantic search and knowledge graph.
1042
915
 
1043
- This endpoint performs a semantic search across all your stored user memories
1044
- to find the most relevant ones based on your query. The results are ranked by
1045
- similarity score, with the most relevant memories returned first.
916
+ This endpoint performs parallel searches:
917
+ 1. Semantic search in Weaviate across all stored user memories
918
+ 2. Entity-based search in the knowledge graph for memory entities
1046
919
 
1047
- Use this to recall past preferences, context, or information that might be
1048
- relevant to your current task or query.
920
+ Results from both sources are combined and ranked by relevance to provide
921
+ comprehensive memory retrieval.
1049
922
 
1050
923
  Parameters
1051
924
  ----------
@@ -1182,184 +1055,50 @@ class AsyncRawUserMemoryClient:
1182
1055
  raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text)
1183
1056
  raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
1184
1057
 
1185
- async def generate_user_memory(
1058
+ async def add_user_memory(
1186
1059
  self,
1187
1060
  *,
1188
1061
  tenant_id: str,
1189
- user_message: str,
1190
- user_name: str,
1191
1062
  sub_tenant_id: typing.Optional[str] = None,
1063
+ raw_text: typing.Optional[str] = OMIT,
1064
+ user_assistant_pairs: typing.Optional[typing.Sequence[UserAssistantPair]] = OMIT,
1065
+ expiry_time: typing.Optional[int] = OMIT,
1066
+ infer: typing.Optional[bool] = OMIT,
1067
+ custom_instructions: typing.Optional[str] = OMIT,
1192
1068
  request_options: typing.Optional[RequestOptions] = None,
1193
- ) -> AsyncHttpResponse[GenerateUserMemoryResponse]:
1069
+ ) -> AsyncHttpResponse[AddUserMemoryResponse]:
1194
1070
  """
1195
- Generate AI-powered user memories from your query and context.
1071
+ Store new user memories for future reference.
1196
1072
 
1197
- This endpoint uses artificial intelligence to create personalized memories
1198
- based on your query and user context. The AI analyzes your input and generates
1199
- relevant, contextual memories that can help improve future interactions.
1073
+ This endpoint allows you to add memories in two formats:
1074
+ 1. Raw text string - A single text-based memory
1075
+ 2. User/Assistant pairs array - Conversation pairs that will be chunked as a single memory
1200
1076
 
1201
- Generated memories are automatically stored and can be retrieved through
1202
- the standard memory search endpoints.
1077
+ The stored memories will be chunked, indexed in both Weaviate and the knowledge graph,
1078
+ and made available for semantic search and graph-based retrieval.
1203
1079
 
1204
1080
  Parameters
1205
1081
  ----------
1206
1082
  tenant_id : str
1207
1083
  Unique identifier for the tenant/organization
1208
1084
 
1209
- user_message : str
1210
- Your query or context for AI memory generation
1211
-
1212
- user_name : str
1213
- Your name to personalize the generated memories
1214
-
1215
1085
  sub_tenant_id : typing.Optional[str]
1216
1086
  Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
1217
1087
 
1218
- request_options : typing.Optional[RequestOptions]
1219
- Request-specific configuration.
1088
+ raw_text : typing.Optional[str]
1089
+ Single raw text memory to store
1220
1090
 
1221
- Returns
1222
- -------
1223
- AsyncHttpResponse[GenerateUserMemoryResponse]
1224
- Successful Response
1225
- """
1226
- _response = await self._client_wrapper.httpx_client.request(
1227
- "user_memory/generate_user_memory",
1228
- method="POST",
1229
- params={
1230
- "tenant_id": tenant_id,
1231
- "sub_tenant_id": sub_tenant_id,
1232
- },
1233
- json={
1234
- "user_message": user_message,
1235
- "user_name": user_name,
1236
- },
1237
- headers={
1238
- "content-type": "application/json",
1239
- },
1240
- request_options=request_options,
1241
- omit=OMIT,
1242
- )
1243
- try:
1244
- if 200 <= _response.status_code < 300:
1245
- _data = typing.cast(
1246
- GenerateUserMemoryResponse,
1247
- parse_obj_as(
1248
- type_=GenerateUserMemoryResponse, # type: ignore
1249
- object_=_response.json(),
1250
- ),
1251
- )
1252
- return AsyncHttpResponse(response=_response, data=_data)
1253
- if _response.status_code == 400:
1254
- raise BadRequestError(
1255
- headers=dict(_response.headers),
1256
- body=typing.cast(
1257
- ActualErrorResponse,
1258
- parse_obj_as(
1259
- type_=ActualErrorResponse, # type: ignore
1260
- object_=_response.json(),
1261
- ),
1262
- ),
1263
- )
1264
- if _response.status_code == 401:
1265
- raise UnauthorizedError(
1266
- headers=dict(_response.headers),
1267
- body=typing.cast(
1268
- ActualErrorResponse,
1269
- parse_obj_as(
1270
- type_=ActualErrorResponse, # type: ignore
1271
- object_=_response.json(),
1272
- ),
1273
- ),
1274
- )
1275
- if _response.status_code == 403:
1276
- raise ForbiddenError(
1277
- headers=dict(_response.headers),
1278
- body=typing.cast(
1279
- ActualErrorResponse,
1280
- parse_obj_as(
1281
- type_=ActualErrorResponse, # type: ignore
1282
- object_=_response.json(),
1283
- ),
1284
- ),
1285
- )
1286
- if _response.status_code == 404:
1287
- raise NotFoundError(
1288
- headers=dict(_response.headers),
1289
- body=typing.cast(
1290
- ActualErrorResponse,
1291
- parse_obj_as(
1292
- type_=ActualErrorResponse, # type: ignore
1293
- object_=_response.json(),
1294
- ),
1295
- ),
1296
- )
1297
- if _response.status_code == 422:
1298
- raise UnprocessableEntityError(
1299
- headers=dict(_response.headers),
1300
- body=typing.cast(
1301
- typing.Optional[typing.Any],
1302
- parse_obj_as(
1303
- type_=typing.Optional[typing.Any], # type: ignore
1304
- object_=_response.json(),
1305
- ),
1306
- ),
1307
- )
1308
- if _response.status_code == 500:
1309
- raise InternalServerError(
1310
- headers=dict(_response.headers),
1311
- body=typing.cast(
1312
- ActualErrorResponse,
1313
- parse_obj_as(
1314
- type_=ActualErrorResponse, # type: ignore
1315
- object_=_response.json(),
1316
- ),
1317
- ),
1318
- )
1319
- if _response.status_code == 503:
1320
- raise ServiceUnavailableError(
1321
- headers=dict(_response.headers),
1322
- body=typing.cast(
1323
- ActualErrorResponse,
1324
- parse_obj_as(
1325
- type_=ActualErrorResponse, # type: ignore
1326
- object_=_response.json(),
1327
- ),
1328
- ),
1329
- )
1330
- _response_json = _response.json()
1331
- except JSONDecodeError:
1332
- raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response.text)
1333
- raise ApiError(status_code=_response.status_code, headers=dict(_response.headers), body=_response_json)
1334
-
1335
- async def add_user_memory(
1336
- self,
1337
- *,
1338
- tenant_id: str,
1339
- user_memory: str,
1340
- sub_tenant_id: typing.Optional[str] = None,
1341
- request_options: typing.Optional[RequestOptions] = None,
1342
- ) -> AsyncHttpResponse[AddUserMemoryResponse]:
1343
- """
1344
- Store a new user memory for future reference.
1091
+ user_assistant_pairs : typing.Optional[typing.Sequence[UserAssistantPair]]
1092
+ Array of user/assistant conversation pairs to store as a single memory
1345
1093
 
1346
- This endpoint allows you to manually add a memory that will be stored and
1347
- can be retrieved later through memory search. Use this to save important
1348
- preferences, context, or information that you want the system to remember.
1094
+ expiry_time : typing.Optional[int]
1095
+ Expiry time in seconds for the memory (optional)
1349
1096
 
1350
- The stored memory will be indexed and available for semantic search, making
1351
- it accessible when relevant to future queries or interactions.
1097
+ infer : typing.Optional[bool]
1098
+ If true, process and compress chunks into inferred representations before indexing (default: False)
1352
1099
 
1353
- Parameters
1354
- ----------
1355
- tenant_id : str
1356
- Unique identifier for the tenant/organization
1357
-
1358
- user_memory : str
1359
- The memory content to store for future reference
1360
-
1361
- sub_tenant_id : typing.Optional[str]
1362
- Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
1100
+ custom_instructions : typing.Optional[str]
1101
+ Custom instructions to guide cortex
1363
1102
 
1364
1103
  request_options : typing.Optional[RequestOptions]
1365
1104
  Request-specific configuration.
@@ -1377,7 +1116,13 @@ class AsyncRawUserMemoryClient:
1377
1116
  "sub_tenant_id": sub_tenant_id,
1378
1117
  },
1379
1118
  json={
1380
- "user_memory": user_memory,
1119
+ "raw_text": raw_text,
1120
+ "user_assistant_pairs": convert_and_respect_annotation_metadata(
1121
+ object_=user_assistant_pairs, annotation=typing.Sequence[UserAssistantPair], direction="write"
1122
+ ),
1123
+ "expiry_time": expiry_time,
1124
+ "infer": infer,
1125
+ "custom_instructions": custom_instructions,
1381
1126
  },
1382
1127
  headers={
1383
1128
  "content-type": "application/json",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: usecortex-ai
3
- Version: 0.3.4
3
+ Version: 0.3.5
4
4
  Summary: The official Python SDK for the Cortex AI platform.
5
5
  Author-email: Nishkarsh Shrivastava <nishkarsh@usecortex.ai>
6
6
  License: Copyright (c) 2024 Cortex AI
@@ -1,4 +1,4 @@
1
- usecortex_ai/__init__.py,sha256=tBzCBzMXAryjOScjDm-x6rrtntfm64vtwPxctKilwLY,2934
1
+ usecortex_ai/__init__.py,sha256=ihocaNv75jejXPhW9QucLfwC9SLhZbu_T_xHZAWop-g,3234
2
2
  usecortex_ai/client.py,sha256=i-1RW54MMmplowh9sDAm3W-Nw_mlQyBWHSFmc4XsOKA,9865
3
3
  usecortex_ai/environment.py,sha256=IZ0X7CTz4V0TzNaMrw6E5GJklcTLxGJmrWEyH-LtYsc,162
4
4
  usecortex_ai/raw_client.py,sha256=Z2zedJhFwHoO_Zmm2enC_s-gd8SM_itaWZOfL0rSobE,3532
@@ -34,19 +34,19 @@ usecortex_ai/fetch/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa
34
34
  usecortex_ai/fetch/client.py,sha256=fWj3cWX5hoiBC1iXXLb3LG5-6YROxwOrZGYJI0-b8co,3970
35
35
  usecortex_ai/fetch/raw_client.py,sha256=FCBFr34T4yIzudw3FBDWPZ2FdV1yWMsORrrjkLVyLTg,11734
36
36
  usecortex_ai/search/__init__.py,sha256=iA8ksy3OzGPGNq_g8cVXsEiZuWyAEAnKI6fHUFWEE-A,131
37
- usecortex_ai/search/client.py,sha256=yqMyIo1aRxwPCEeECdfmSEgRSHBklUSUyea29d-kcso,20725
38
- usecortex_ai/search/raw_client.py,sha256=N6v4Ds6AO9R2A0D_wRUnA1xub_y8_ppec6HxPC0P7es,44827
37
+ usecortex_ai/search/client.py,sha256=O9XbLKH5WDTvueBjlZT_Js6uZHes9MQpDUm5URu3yt4,21957
38
+ usecortex_ai/search/raw_client.py,sha256=FJ0qGnyhQSGMSdsbQVabLwl2WtbgxYMIXXnlJe1kCPM,46069
39
39
  usecortex_ai/search/types/__init__.py,sha256=T0zQrrDzfvgmw2Deo_iYanUoxcVhZ9jDO_fS3CpSU9M,131
40
40
  usecortex_ai/search/types/alpha.py,sha256=afIpOT9uMdYdUZB_biXoggzRnZlnr00miVPDgxDRFIA,113
41
41
  usecortex_ai/sources/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
42
- usecortex_ai/sources/client.py,sha256=e63A4h0AVEsjCBLFMjTqsgd2L-BPCiSWC7_12SnsvII,7970
43
- usecortex_ai/sources/raw_client.py,sha256=85pnqg4qDaYzyWUx2Y5FQBUKAKm2VqhEIDTGoqf1rLY,23353
42
+ usecortex_ai/sources/client.py,sha256=W_G8kefb_6Bi7SeYvi9dy_41xKaPP3nVTCjE4vPQjA8,11606
43
+ usecortex_ai/sources/raw_client.py,sha256=oWggwYuje1xcaonWxz8Bm24LcmyYkFPfviEUNhYmj7o,34572
44
44
  usecortex_ai/tenant/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
45
45
  usecortex_ai/tenant/client.py,sha256=IhVoy4lN2UTO8nvkT5NJXhExb6DrqP7CG51mm647akA,8764
46
46
  usecortex_ai/tenant/raw_client.py,sha256=aUBX_Fk09hHga_ezEr6iMD5G1xTnBO0RR4RYksGHZdw,31494
47
- usecortex_ai/types/__init__.py,sha256=CfNTis7G5s1-v-_Gd2OqczZxAqizVQXhQxxqs2kJ1kI,3291
47
+ usecortex_ai/types/__init__.py,sha256=rmAFjTmlisLyaxRTLFezRzkyqlMbUAdg1fB19O4YTuc,3763
48
48
  usecortex_ai/types/actual_error_response.py,sha256=EBit_JO3u0FQrVAXDg0UXQktlULLPLtX8FF8J9mZSvY,580
49
- usecortex_ai/types/add_user_memory_response.py,sha256=ujoAApV_HEUkRUaRq3BhWhldHLo432In0OablXJ7etc,977
49
+ usecortex_ai/types/add_user_memory_response.py,sha256=7JjjeNn7wmWGBWp-LmLZOQifouNKfQGPCzGU3K1mlis,1088
50
50
  usecortex_ai/types/app_sources_upload_data.py,sha256=XIXK7hRxNsqddHrtiF8RzEt4aqQPaLISiVn69AMAB6w,854
51
51
  usecortex_ai/types/attachment_model.py,sha256=gyIlSbj2fz8VJ6fo03-2FntXd0zZ5w53Ij-LN3PhjYg,1600
52
52
  usecortex_ai/types/batch_upload_data.py,sha256=C7e4MHoYleXTDOHfJz2gBWa7Lcl837An1XEZFfRZ380,850
@@ -62,40 +62,47 @@ usecortex_ai/types/embeddings_create_collection_data.py,sha256=z6PQYZOcFEac03aWD
62
62
  usecortex_ai/types/embeddings_delete_data.py,sha256=3DzQa0Gukog56XPlQe9zaUtvdIhIYWOLPGjlB6suTlU,1116
63
63
  usecortex_ai/types/embeddings_get_data.py,sha256=R9ukkUXidR4Q6_k0uT4GsEHjGXxgO-yArLGSVdKfw_U,1125
64
64
  usecortex_ai/types/embeddings_search_data.py,sha256=61UYdgEpsi-pYkGuMwSLc04-hrDjHXJPGBjoOKERRPM,1056
65
+ usecortex_ai/types/entity.py,sha256=Q7gxZIFiT5jX78TfRO8id1KFh2vmTo_1-wWZZCoZOd4,1082
65
66
  usecortex_ai/types/error_response.py,sha256=7_MuOTWE3zj6kg6UptuYBFMAhV3KZGEkpsyirFvHJzA,633
66
- usecortex_ai/types/extended_context.py,sha256=yDKPhML8JrGShrjtYK8E44JIKPxLI16KXlYEb-3UTXw,613
67
+ usecortex_ai/types/extended_context.py,sha256=urzqcO8__inNlBU2NwiCLMKfAfQuyMP3Q08wh_Pstp8,715
67
68
  usecortex_ai/types/fetch_content_data.py,sha256=kIBb282-npL1O1vhAMIX0m3KvV3H2Bk-mifBUcbO3e8,1004
68
69
  usecortex_ai/types/file_upload_result.py,sha256=UIqPc63K0MKf-nYsy8fxsui4IKTJ-BxVAetesnKiuzA,738
69
- usecortex_ai/types/generate_user_memory_response.py,sha256=jvpsN_RDg82d-SJ39jAzQKDl1kK9GdVQ-xncML_UBhU,935
70
+ usecortex_ai/types/graph_relations_response.py,sha256=psSKouHYvmMp5nkbRRcIDe87c3vP81Tl4gvqAkeNWbg,966
70
71
  usecortex_ai/types/http_validation_error.py,sha256=NNTK9AbbHXm0n9m1YcsG5zEaSn1n6RghohUX5R8LGzw,623
71
72
  usecortex_ai/types/list_sources_response.py,sha256=ybvnupTDVoZfDRsS3YdzbLemmqQqf4F31ODP-Fcj0n4,930
72
73
  usecortex_ai/types/list_user_memories_response.py,sha256=gsx9pxp2Rsaz0tX2pbGqFFThYF_20XpzwF7BWwOXAGA,906
73
74
  usecortex_ai/types/markdown_upload_request.py,sha256=I1Mot_08BgSQyNzgplPHypb_dBKeGKoMuA9MXBqfL7M,1477
74
75
  usecortex_ai/types/processing_status.py,sha256=rwrLBAMexNxRPMCd8PUSs4PHv4lba_0mkUot8iPJWEc,1153
75
76
  usecortex_ai/types/related_chunk.py,sha256=Ed7pzlEbycX5kmjvzF5-c9QvwOzyGozTsX9uAQMsDCI,613
77
+ usecortex_ai/types/relation_evidence.py,sha256=tBpJD6QKDjuWiLUzBLdNHPclgRu8WjQAx4NE44JMAjw,1551
76
78
  usecortex_ai/types/relations.py,sha256=wcnG2_3dfypUkBLSMRxM4ACaQvVA1KhmOY4YwBbJu24,863
77
- usecortex_ai/types/retrieve_user_memory_response.py,sha256=N-cnTnR53-RfbI2lst5ftzziVRpLZdQQjQrJOgBOpOs,952
78
- usecortex_ai/types/search_chunk.py,sha256=gXRFnNRMrH2VdZc6JEt1XndxA1Ro-FdmTSEfOZVtaSY,2239
79
+ usecortex_ai/types/retrieve_mode.py,sha256=s2nGRBzRRCu5OPIdXi5hhPZ18qBTVz6_T4qU8PoGJr4,156
80
+ usecortex_ai/types/retrieve_response.py,sha256=QmeQDqRl_Ts3f9O0RRz6ZkbRDHJRy1iLSfol9dewWyk,1135
81
+ usecortex_ai/types/retrieve_user_memory_response.py,sha256=c8-foOfPfoEUYg9lwkUQO5ONREjmSHU5dCtH52VvDuc,1170
82
+ usecortex_ai/types/search_chunk.py,sha256=t9e9Db0N3Dgj7jKUDlMPxpDDlUeJEcA04rbT8AzzAPM,2423
79
83
  usecortex_ai/types/single_upload_data.py,sha256=VmuWSY_9zeKrtbj5_WPOZXIJDmqvWqL0Iz7bdq5n6w8,785
80
84
  usecortex_ai/types/source.py,sha256=z8RQ4q-ZweoMJ6DR1dGa4YBlXHjMX7-tfk6l_R3EFMw,1411
81
85
  usecortex_ai/types/source_model.py,sha256=HM5jA8UmLDQk8UfPt3J3ZNAA3eT6k19WwZ20m-TzWOk,2874
82
86
  usecortex_ai/types/sub_tenant_ids_data.py,sha256=D8uiE1JwPx8KJd-Y_tm6FVooSM_QO9JQBBDpz_Lnz8o,1271
83
87
  usecortex_ai/types/tenant_create_data.py,sha256=wpg53JzFfquwtNAsz0B4eG3NP39jmGvVZ0SiBwk2_n4,988
84
88
  usecortex_ai/types/tenant_stats.py,sha256=NMjla1aHriQIB7qiOa5amL9WYFz4vwDFWHHHpyA1ndg,1156
89
+ usecortex_ai/types/triple_with_evidence.py,sha256=-0bKCUWqvI66874mP20TdsY7tdxP6Xtj9AN4sjxFs_4,922
90
+ usecortex_ai/types/user_assistant_pair.py,sha256=gg2F3JPsR0WgeeqYa8y8G3_IpyOf9lNSQVGUon9sEhk,698
85
91
  usecortex_ai/types/user_memory.py,sha256=_lAM0qXL5cAwfLeeWs4_m8VZ2BtkFrGBYk5dip7k7KI,778
86
92
  usecortex_ai/types/validation_error.py,sha256=Ou-GSQTdmDFWIFlP_y9ka_EUAavqFEFLonU9srAkJdc,642
87
93
  usecortex_ai/types/validation_error_loc_item.py,sha256=LAtjCHIllWRBFXvAZ5QZpp7CPXjdtN9EB7HrLVo6EP0,128
94
+ usecortex_ai/types/webpage_scrape_request.py,sha256=7tAPVdqnjQ549kJB9ztKF7RtGWUOHo2Tmbp02PMWwWw,794
88
95
  usecortex_ai/upload/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
89
- usecortex_ai/upload/client.py,sha256=EXT2oc8BfEu5nCPoCwPK0q4Rzho2Z-Qic89QJAwdszE,80449
90
- usecortex_ai/upload/raw_client.py,sha256=FKeiUPArV7XwxhHhuepiuWJ78hlzYErQLSa5eYjxlEQ,194625
96
+ usecortex_ai/upload/client.py,sha256=MeJ9M03ZZsuMjYjXhd3lag48FJ8wAYouKY6wIjy17WU,91473
97
+ usecortex_ai/upload/raw_client.py,sha256=wroi3PVe5J37TWpJmbw9Uo6U1XXEGBUgVjOKYqo44Z0,229362
91
98
  usecortex_ai/user/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
92
99
  usecortex_ai/user/client.py,sha256=w11KTvMzLB862OY46FgoRhVde5SvcaXLbEmnxxryk80,4802
93
100
  usecortex_ai/user/raw_client.py,sha256=RnloKJVojvAknaylQknMUY9kS0HwP6_QjcmMuFvviAs,12740
94
101
  usecortex_ai/user_memory/__init__.py,sha256=_VhToAyIt_5axN6CLJwtxg3-CO7THa_23pbUzqhXJa4,85
95
- usecortex_ai/user_memory/client.py,sha256=tvRx5U_x8VtE7hUN52AMlMMVsWOgUcEK4rzXrVUNHXM,21299
96
- usecortex_ai/user_memory/raw_client.py,sha256=XVsgzClh57SQWtUXc2ikaywbYRME6zA25PSIu7-9m4M,59521
97
- usecortex_ai-0.3.4.dist-info/licenses/LICENSE,sha256=Y4M0dr3NLw8mFQQ2MBdnC0YsrmcJ93WZ7-DgCliupK8,1245
98
- usecortex_ai-0.3.4.dist-info/METADATA,sha256=NJYFjwUALsSW9FlKUuI1a83OUy12qDtXByVI0LmSOj0,7950
99
- usecortex_ai-0.3.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
100
- usecortex_ai-0.3.4.dist-info/top_level.txt,sha256=TQ77el6hL0CvN7BTXJVFTqZ5ot1_kHKo2ZnEcOvZsjo,13
101
- usecortex_ai-0.3.4.dist-info/RECORD,,
102
+ usecortex_ai/user_memory/client.py,sha256=MX9D_RoibzFIMCZsMObLqxFgwQvj8E6cxTK128u3gq4,18652
103
+ usecortex_ai/user_memory/raw_client.py,sha256=kCZ1J06tK-dVH7HCs3RrkkFYfuG48jPQiO0ikzARPBk,49796
104
+ usecortex_ai-0.3.5.dist-info/licenses/LICENSE,sha256=Y4M0dr3NLw8mFQQ2MBdnC0YsrmcJ93WZ7-DgCliupK8,1245
105
+ usecortex_ai-0.3.5.dist-info/METADATA,sha256=oboQXFbCxRdcgcyyw1sXGVIB463vimB1SJSqe9nzYaQ,7950
106
+ usecortex_ai-0.3.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
107
+ usecortex_ai-0.3.5.dist-info/top_level.txt,sha256=TQ77el6hL0CvN7BTXJVFTqZ5ot1_kHKo2ZnEcOvZsjo,13
108
+ usecortex_ai-0.3.5.dist-info/RECORD,,