usecortex-ai 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cortex_ai/__init__.py +103 -0
- cortex_ai/client.py +244 -0
- cortex_ai/core/__init__.py +52 -0
- cortex_ai/core/api_error.py +23 -0
- cortex_ai/core/client_wrapper.py +84 -0
- cortex_ai/core/datetime_utils.py +28 -0
- cortex_ai/core/file.py +67 -0
- cortex_ai/core/force_multipart.py +18 -0
- cortex_ai/core/http_client.py +543 -0
- cortex_ai/core/http_response.py +55 -0
- cortex_ai/core/jsonable_encoder.py +100 -0
- cortex_ai/core/pydantic_utilities.py +258 -0
- cortex_ai/core/query_encoder.py +58 -0
- cortex_ai/core/remove_none_from_dict.py +11 -0
- cortex_ai/core/request_options.py +35 -0
- cortex_ai/core/serialization.py +276 -0
- cortex_ai/embeddings/__init__.py +4 -0
- cortex_ai/embeddings/client.py +442 -0
- cortex_ai/embeddings/raw_client.py +1153 -0
- cortex_ai/environment.py +7 -0
- cortex_ai/errors/__init__.py +21 -0
- cortex_ai/errors/bad_request_error.py +11 -0
- cortex_ai/errors/forbidden_error.py +11 -0
- cortex_ai/errors/internal_server_error.py +11 -0
- cortex_ai/errors/not_found_error.py +11 -0
- cortex_ai/errors/service_unavailable_error.py +11 -0
- cortex_ai/errors/unauthorized_error.py +11 -0
- cortex_ai/errors/unprocessable_entity_error.py +10 -0
- cortex_ai/fetch/__init__.py +4 -0
- cortex_ai/fetch/client.py +143 -0
- cortex_ai/fetch/raw_client.py +310 -0
- cortex_ai/raw_client.py +90 -0
- cortex_ai/search/__init__.py +7 -0
- cortex_ai/search/client.py +536 -0
- cortex_ai/search/raw_client.py +1064 -0
- cortex_ai/search/types/__init__.py +7 -0
- cortex_ai/search/types/alpha.py +5 -0
- cortex_ai/sources/__init__.py +4 -0
- cortex_ai/sources/client.py +187 -0
- cortex_ai/sources/raw_client.py +532 -0
- cortex_ai/tenant/__init__.py +4 -0
- cortex_ai/tenant/client.py +120 -0
- cortex_ai/tenant/raw_client.py +283 -0
- cortex_ai/types/__init__.py +69 -0
- cortex_ai/types/actual_error_response.py +20 -0
- cortex_ai/types/app_sources_upload_data.py +22 -0
- cortex_ai/types/attachment_model.py +26 -0
- cortex_ai/types/batch_upload_data.py +22 -0
- cortex_ai/types/bm_25_operator_type.py +5 -0
- cortex_ai/types/content_model.py +26 -0
- cortex_ai/types/delete_memory_request.py +21 -0
- cortex_ai/types/embeddings_create_collection_data.py +22 -0
- cortex_ai/types/embeddings_delete_data.py +22 -0
- cortex_ai/types/embeddings_get_data.py +22 -0
- cortex_ai/types/embeddings_search_data.py +22 -0
- cortex_ai/types/error_response.py +22 -0
- cortex_ai/types/extended_context.py +20 -0
- cortex_ai/types/fetch_content_data.py +23 -0
- cortex_ai/types/file_upload_result.py +20 -0
- cortex_ai/types/full_text_search_data.py +22 -0
- cortex_ai/types/http_validation_error.py +20 -0
- cortex_ai/types/list_sources_response.py +22 -0
- cortex_ai/types/markdown_upload_request.py +21 -0
- cortex_ai/types/processing_status.py +22 -0
- cortex_ai/types/related_chunk.py +22 -0
- cortex_ai/types/search_chunk.py +34 -0
- cortex_ai/types/search_data.py +22 -0
- cortex_ai/types/single_upload_data.py +21 -0
- cortex_ai/types/source.py +32 -0
- cortex_ai/types/source_content.py +26 -0
- cortex_ai/types/source_model.py +32 -0
- cortex_ai/types/tenant_create_data.py +22 -0
- cortex_ai/types/tenant_stats.py +23 -0
- cortex_ai/types/validation_error.py +22 -0
- cortex_ai/types/validation_error_loc_item.py +5 -0
- cortex_ai/upload/__init__.py +4 -0
- cortex_ai/upload/client.py +1572 -0
- cortex_ai/upload/raw_client.py +4202 -0
- cortex_ai/user/__init__.py +4 -0
- cortex_ai/user/client.py +125 -0
- cortex_ai/user/raw_client.py +300 -0
- cortex_ai/user_memory/__init__.py +4 -0
- cortex_ai/user_memory/client.py +443 -0
- cortex_ai/user_memory/raw_client.py +651 -0
- usecortex_ai-0.1.0.dist-info/METADATA +136 -0
- usecortex_ai-0.1.0.dist-info/RECORD +89 -0
- usecortex_ai-0.1.0.dist-info/WHEEL +5 -0
- usecortex_ai-0.1.0.dist-info/licenses/LICENSE +22 -0
- usecortex_ai-0.1.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,442 @@
|
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
|
2
|
+
|
|
3
|
+
import typing
|
|
4
|
+
|
|
5
|
+
from ..core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
|
|
6
|
+
from ..core.request_options import RequestOptions
|
|
7
|
+
from ..types.embeddings_create_collection_data import EmbeddingsCreateCollectionData
|
|
8
|
+
from ..types.embeddings_delete_data import EmbeddingsDeleteData
|
|
9
|
+
from ..types.embeddings_get_data import EmbeddingsGetData
|
|
10
|
+
from ..types.embeddings_search_data import EmbeddingsSearchData
|
|
11
|
+
from .raw_client import AsyncRawEmbeddingsClient, RawEmbeddingsClient
|
|
12
|
+
|
|
13
|
+
# this is used as the default value for optional parameters
|
|
14
|
+
OMIT = typing.cast(typing.Any, ...)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class EmbeddingsClient:
|
|
18
|
+
def __init__(self, *, client_wrapper: SyncClientWrapper):
|
|
19
|
+
self._raw_client = RawEmbeddingsClient(client_wrapper=client_wrapper)
|
|
20
|
+
|
|
21
|
+
@property
|
|
22
|
+
def with_raw_response(self) -> RawEmbeddingsClient:
|
|
23
|
+
"""
|
|
24
|
+
Retrieves a raw implementation of this client that returns raw responses.
|
|
25
|
+
|
|
26
|
+
Returns
|
|
27
|
+
-------
|
|
28
|
+
RawEmbeddingsClient
|
|
29
|
+
"""
|
|
30
|
+
return self._raw_client
|
|
31
|
+
|
|
32
|
+
def delete(
|
|
33
|
+
self,
|
|
34
|
+
*,
|
|
35
|
+
chunk_ids: typing.Sequence[str],
|
|
36
|
+
tenant_id: str,
|
|
37
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
38
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
39
|
+
) -> EmbeddingsDeleteData:
|
|
40
|
+
"""
|
|
41
|
+
Delete specific embedding chunks from indexed sources.
|
|
42
|
+
|
|
43
|
+
This endpoint deletes specified embedding chunks from the Findr backend by sending
|
|
44
|
+
chunk IDs to the backend delete service.
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
request (EmbeddingsDeleteRequest): The delete request containing:
|
|
48
|
+
- chunk_ids (List[str]): List of chunk IDs to delete
|
|
49
|
+
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
50
|
+
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
51
|
+
api_details (dict): Authentication details obtained from API key validation
|
|
52
|
+
|
|
53
|
+
Returns:
|
|
54
|
+
EmbeddingsDeleteData: Success response with deletion details
|
|
55
|
+
|
|
56
|
+
Parameters
|
|
57
|
+
----------
|
|
58
|
+
chunk_ids : typing.Sequence[str]
|
|
59
|
+
|
|
60
|
+
tenant_id : str
|
|
61
|
+
|
|
62
|
+
sub_tenant_id : typing.Optional[str]
|
|
63
|
+
|
|
64
|
+
request_options : typing.Optional[RequestOptions]
|
|
65
|
+
Request-specific configuration.
|
|
66
|
+
|
|
67
|
+
Returns
|
|
68
|
+
-------
|
|
69
|
+
EmbeddingsDeleteData
|
|
70
|
+
Successful Response
|
|
71
|
+
|
|
72
|
+
Examples
|
|
73
|
+
--------
|
|
74
|
+
from cortex-ai import CortexAI
|
|
75
|
+
|
|
76
|
+
client = CortexAI(token="YOUR_TOKEN", )
|
|
77
|
+
client.embeddings.delete(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
|
|
78
|
+
"""
|
|
79
|
+
_response = self._raw_client.delete(
|
|
80
|
+
chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
81
|
+
)
|
|
82
|
+
return _response.data
|
|
83
|
+
|
|
84
|
+
def search(
|
|
85
|
+
self,
|
|
86
|
+
*,
|
|
87
|
+
embeddings: typing.Sequence[float],
|
|
88
|
+
tenant_id: str,
|
|
89
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
90
|
+
max_chunks: typing.Optional[int] = OMIT,
|
|
91
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
92
|
+
) -> EmbeddingsSearchData:
|
|
93
|
+
"""
|
|
94
|
+
Search for similar embedding chunks using vector similarity.
|
|
95
|
+
|
|
96
|
+
This endpoint performs semantic search by sending an embedding vector to the Findr backend
|
|
97
|
+
and returns a list of the most similar chunk IDs based on vector similarity.
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
request (EmbeddingsSearchRequest): The search request containing:
|
|
101
|
+
- embeddings (List[float]): Single embedding vector for similarity search
|
|
102
|
+
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
103
|
+
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
104
|
+
- max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
|
|
105
|
+
api_details (dict): Authentication details obtained from API key validation
|
|
106
|
+
|
|
107
|
+
Returns:
|
|
108
|
+
EmbeddingsSearchData: List of chunk IDs with similarity scores
|
|
109
|
+
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
embeddings : typing.Sequence[float]
|
|
113
|
+
Single embedding vector for search
|
|
114
|
+
|
|
115
|
+
tenant_id : str
|
|
116
|
+
|
|
117
|
+
sub_tenant_id : typing.Optional[str]
|
|
118
|
+
|
|
119
|
+
max_chunks : typing.Optional[int]
|
|
120
|
+
|
|
121
|
+
request_options : typing.Optional[RequestOptions]
|
|
122
|
+
Request-specific configuration.
|
|
123
|
+
|
|
124
|
+
Returns
|
|
125
|
+
-------
|
|
126
|
+
EmbeddingsSearchData
|
|
127
|
+
Successful Response
|
|
128
|
+
|
|
129
|
+
Examples
|
|
130
|
+
--------
|
|
131
|
+
from cortex-ai import CortexAI
|
|
132
|
+
|
|
133
|
+
client = CortexAI(token="YOUR_TOKEN", )
|
|
134
|
+
client.embeddings.search(embeddings=[1.1], tenant_id='tenant_id', )
|
|
135
|
+
"""
|
|
136
|
+
_response = self._raw_client.search(
|
|
137
|
+
embeddings=embeddings,
|
|
138
|
+
tenant_id=tenant_id,
|
|
139
|
+
sub_tenant_id=sub_tenant_id,
|
|
140
|
+
max_chunks=max_chunks,
|
|
141
|
+
request_options=request_options,
|
|
142
|
+
)
|
|
143
|
+
return _response.data
|
|
144
|
+
|
|
145
|
+
def get_by_chunk_ids(
|
|
146
|
+
self,
|
|
147
|
+
*,
|
|
148
|
+
chunk_ids: typing.Sequence[str],
|
|
149
|
+
tenant_id: str,
|
|
150
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
151
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
152
|
+
) -> EmbeddingsGetData:
|
|
153
|
+
"""
|
|
154
|
+
Get embeddings based on chunk IDs.
|
|
155
|
+
|
|
156
|
+
This endpoint returns embeddings for a list of chunk IDs.
|
|
157
|
+
|
|
158
|
+
Returns:
|
|
159
|
+
EmbeddingsGetData: Embeddings data for the requested chunk IDs
|
|
160
|
+
|
|
161
|
+
Parameters
|
|
162
|
+
----------
|
|
163
|
+
chunk_ids : typing.Sequence[str]
|
|
164
|
+
|
|
165
|
+
tenant_id : str
|
|
166
|
+
|
|
167
|
+
sub_tenant_id : typing.Optional[str]
|
|
168
|
+
|
|
169
|
+
request_options : typing.Optional[RequestOptions]
|
|
170
|
+
Request-specific configuration.
|
|
171
|
+
|
|
172
|
+
Returns
|
|
173
|
+
-------
|
|
174
|
+
EmbeddingsGetData
|
|
175
|
+
Successful Response
|
|
176
|
+
|
|
177
|
+
Examples
|
|
178
|
+
--------
|
|
179
|
+
from cortex-ai import CortexAI
|
|
180
|
+
|
|
181
|
+
client = CortexAI(token="YOUR_TOKEN", )
|
|
182
|
+
client.embeddings.get_by_chunk_ids(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
|
|
183
|
+
"""
|
|
184
|
+
_response = self._raw_client.get_by_chunk_ids(
|
|
185
|
+
chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
186
|
+
)
|
|
187
|
+
return _response.data
|
|
188
|
+
|
|
189
|
+
def create_collection(
|
|
190
|
+
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
191
|
+
) -> EmbeddingsCreateCollectionData:
|
|
192
|
+
"""
|
|
193
|
+
Create an embeddings collection for the given tenant in Findr.
|
|
194
|
+
|
|
195
|
+
sub_tenant_id is set to be the same as tenant_id as per requirements.
|
|
196
|
+
|
|
197
|
+
Returns:
|
|
198
|
+
EmbeddingsCreateCollectionData: Success response with collection details
|
|
199
|
+
|
|
200
|
+
Parameters
|
|
201
|
+
----------
|
|
202
|
+
tenant_id : str
|
|
203
|
+
|
|
204
|
+
request_options : typing.Optional[RequestOptions]
|
|
205
|
+
Request-specific configuration.
|
|
206
|
+
|
|
207
|
+
Returns
|
|
208
|
+
-------
|
|
209
|
+
EmbeddingsCreateCollectionData
|
|
210
|
+
Successful Response
|
|
211
|
+
|
|
212
|
+
Examples
|
|
213
|
+
--------
|
|
214
|
+
from cortex-ai import CortexAI
|
|
215
|
+
|
|
216
|
+
client = CortexAI(token="YOUR_TOKEN", )
|
|
217
|
+
client.embeddings.create_collection(tenant_id='tenant_id', )
|
|
218
|
+
"""
|
|
219
|
+
_response = self._raw_client.create_collection(tenant_id=tenant_id, request_options=request_options)
|
|
220
|
+
return _response.data
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
class AsyncEmbeddingsClient:
|
|
224
|
+
def __init__(self, *, client_wrapper: AsyncClientWrapper):
|
|
225
|
+
self._raw_client = AsyncRawEmbeddingsClient(client_wrapper=client_wrapper)
|
|
226
|
+
|
|
227
|
+
@property
|
|
228
|
+
def with_raw_response(self) -> AsyncRawEmbeddingsClient:
|
|
229
|
+
"""
|
|
230
|
+
Retrieves a raw implementation of this client that returns raw responses.
|
|
231
|
+
|
|
232
|
+
Returns
|
|
233
|
+
-------
|
|
234
|
+
AsyncRawEmbeddingsClient
|
|
235
|
+
"""
|
|
236
|
+
return self._raw_client
|
|
237
|
+
|
|
238
|
+
async def delete(
|
|
239
|
+
self,
|
|
240
|
+
*,
|
|
241
|
+
chunk_ids: typing.Sequence[str],
|
|
242
|
+
tenant_id: str,
|
|
243
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
244
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
245
|
+
) -> EmbeddingsDeleteData:
|
|
246
|
+
"""
|
|
247
|
+
Delete specific embedding chunks from indexed sources.
|
|
248
|
+
|
|
249
|
+
This endpoint deletes specified embedding chunks from the Findr backend by sending
|
|
250
|
+
chunk IDs to the backend delete service.
|
|
251
|
+
|
|
252
|
+
Args:
|
|
253
|
+
request (EmbeddingsDeleteRequest): The delete request containing:
|
|
254
|
+
- chunk_ids (List[str]): List of chunk IDs to delete
|
|
255
|
+
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
256
|
+
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
257
|
+
api_details (dict): Authentication details obtained from API key validation
|
|
258
|
+
|
|
259
|
+
Returns:
|
|
260
|
+
EmbeddingsDeleteData: Success response with deletion details
|
|
261
|
+
|
|
262
|
+
Parameters
|
|
263
|
+
----------
|
|
264
|
+
chunk_ids : typing.Sequence[str]
|
|
265
|
+
|
|
266
|
+
tenant_id : str
|
|
267
|
+
|
|
268
|
+
sub_tenant_id : typing.Optional[str]
|
|
269
|
+
|
|
270
|
+
request_options : typing.Optional[RequestOptions]
|
|
271
|
+
Request-specific configuration.
|
|
272
|
+
|
|
273
|
+
Returns
|
|
274
|
+
-------
|
|
275
|
+
EmbeddingsDeleteData
|
|
276
|
+
Successful Response
|
|
277
|
+
|
|
278
|
+
Examples
|
|
279
|
+
--------
|
|
280
|
+
import asyncio
|
|
281
|
+
|
|
282
|
+
from cortex-ai import AsyncCortexAI
|
|
283
|
+
|
|
284
|
+
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
285
|
+
async def main() -> None:
|
|
286
|
+
await client.embeddings.delete(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
|
|
287
|
+
asyncio.run(main())
|
|
288
|
+
"""
|
|
289
|
+
_response = await self._raw_client.delete(
|
|
290
|
+
chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
291
|
+
)
|
|
292
|
+
return _response.data
|
|
293
|
+
|
|
294
|
+
async def search(
|
|
295
|
+
self,
|
|
296
|
+
*,
|
|
297
|
+
embeddings: typing.Sequence[float],
|
|
298
|
+
tenant_id: str,
|
|
299
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
300
|
+
max_chunks: typing.Optional[int] = OMIT,
|
|
301
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
302
|
+
) -> EmbeddingsSearchData:
|
|
303
|
+
"""
|
|
304
|
+
Search for similar embedding chunks using vector similarity.
|
|
305
|
+
|
|
306
|
+
This endpoint performs semantic search by sending an embedding vector to the Findr backend
|
|
307
|
+
and returns a list of the most similar chunk IDs based on vector similarity.
|
|
308
|
+
|
|
309
|
+
Args:
|
|
310
|
+
request (EmbeddingsSearchRequest): The search request containing:
|
|
311
|
+
- embeddings (List[float]): Single embedding vector for similarity search
|
|
312
|
+
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
313
|
+
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
314
|
+
- max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
|
|
315
|
+
api_details (dict): Authentication details obtained from API key validation
|
|
316
|
+
|
|
317
|
+
Returns:
|
|
318
|
+
EmbeddingsSearchData: List of chunk IDs with similarity scores
|
|
319
|
+
|
|
320
|
+
Parameters
|
|
321
|
+
----------
|
|
322
|
+
embeddings : typing.Sequence[float]
|
|
323
|
+
Single embedding vector for search
|
|
324
|
+
|
|
325
|
+
tenant_id : str
|
|
326
|
+
|
|
327
|
+
sub_tenant_id : typing.Optional[str]
|
|
328
|
+
|
|
329
|
+
max_chunks : typing.Optional[int]
|
|
330
|
+
|
|
331
|
+
request_options : typing.Optional[RequestOptions]
|
|
332
|
+
Request-specific configuration.
|
|
333
|
+
|
|
334
|
+
Returns
|
|
335
|
+
-------
|
|
336
|
+
EmbeddingsSearchData
|
|
337
|
+
Successful Response
|
|
338
|
+
|
|
339
|
+
Examples
|
|
340
|
+
--------
|
|
341
|
+
import asyncio
|
|
342
|
+
|
|
343
|
+
from cortex-ai import AsyncCortexAI
|
|
344
|
+
|
|
345
|
+
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
346
|
+
async def main() -> None:
|
|
347
|
+
await client.embeddings.search(embeddings=[1.1], tenant_id='tenant_id', )
|
|
348
|
+
asyncio.run(main())
|
|
349
|
+
"""
|
|
350
|
+
_response = await self._raw_client.search(
|
|
351
|
+
embeddings=embeddings,
|
|
352
|
+
tenant_id=tenant_id,
|
|
353
|
+
sub_tenant_id=sub_tenant_id,
|
|
354
|
+
max_chunks=max_chunks,
|
|
355
|
+
request_options=request_options,
|
|
356
|
+
)
|
|
357
|
+
return _response.data
|
|
358
|
+
|
|
359
|
+
async def get_by_chunk_ids(
|
|
360
|
+
self,
|
|
361
|
+
*,
|
|
362
|
+
chunk_ids: typing.Sequence[str],
|
|
363
|
+
tenant_id: str,
|
|
364
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
365
|
+
request_options: typing.Optional[RequestOptions] = None,
|
|
366
|
+
) -> EmbeddingsGetData:
|
|
367
|
+
"""
|
|
368
|
+
Get embeddings based on chunk IDs.
|
|
369
|
+
|
|
370
|
+
This endpoint returns embeddings for a list of chunk IDs.
|
|
371
|
+
|
|
372
|
+
Returns:
|
|
373
|
+
EmbeddingsGetData: Embeddings data for the requested chunk IDs
|
|
374
|
+
|
|
375
|
+
Parameters
|
|
376
|
+
----------
|
|
377
|
+
chunk_ids : typing.Sequence[str]
|
|
378
|
+
|
|
379
|
+
tenant_id : str
|
|
380
|
+
|
|
381
|
+
sub_tenant_id : typing.Optional[str]
|
|
382
|
+
|
|
383
|
+
request_options : typing.Optional[RequestOptions]
|
|
384
|
+
Request-specific configuration.
|
|
385
|
+
|
|
386
|
+
Returns
|
|
387
|
+
-------
|
|
388
|
+
EmbeddingsGetData
|
|
389
|
+
Successful Response
|
|
390
|
+
|
|
391
|
+
Examples
|
|
392
|
+
--------
|
|
393
|
+
import asyncio
|
|
394
|
+
|
|
395
|
+
from cortex-ai import AsyncCortexAI
|
|
396
|
+
|
|
397
|
+
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
398
|
+
async def main() -> None:
|
|
399
|
+
await client.embeddings.get_by_chunk_ids(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
|
|
400
|
+
asyncio.run(main())
|
|
401
|
+
"""
|
|
402
|
+
_response = await self._raw_client.get_by_chunk_ids(
|
|
403
|
+
chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
404
|
+
)
|
|
405
|
+
return _response.data
|
|
406
|
+
|
|
407
|
+
async def create_collection(
|
|
408
|
+
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
409
|
+
) -> EmbeddingsCreateCollectionData:
|
|
410
|
+
"""
|
|
411
|
+
Create an embeddings collection for the given tenant in Findr.
|
|
412
|
+
|
|
413
|
+
sub_tenant_id is set to be the same as tenant_id as per requirements.
|
|
414
|
+
|
|
415
|
+
Returns:
|
|
416
|
+
EmbeddingsCreateCollectionData: Success response with collection details
|
|
417
|
+
|
|
418
|
+
Parameters
|
|
419
|
+
----------
|
|
420
|
+
tenant_id : str
|
|
421
|
+
|
|
422
|
+
request_options : typing.Optional[RequestOptions]
|
|
423
|
+
Request-specific configuration.
|
|
424
|
+
|
|
425
|
+
Returns
|
|
426
|
+
-------
|
|
427
|
+
EmbeddingsCreateCollectionData
|
|
428
|
+
Successful Response
|
|
429
|
+
|
|
430
|
+
Examples
|
|
431
|
+
--------
|
|
432
|
+
import asyncio
|
|
433
|
+
|
|
434
|
+
from cortex-ai import AsyncCortexAI
|
|
435
|
+
|
|
436
|
+
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
437
|
+
async def main() -> None:
|
|
438
|
+
await client.embeddings.create_collection(tenant_id='tenant_id', )
|
|
439
|
+
asyncio.run(main())
|
|
440
|
+
"""
|
|
441
|
+
_response = await self._raw_client.create_collection(tenant_id=tenant_id, request_options=request_options)
|
|
442
|
+
return _response.data
|