upgini 1.2.96a2__py3-none-any.whl → 1.2.96a3906.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.96a2"
1
+ __version__ = "1.2.96a3906.dev1"
upgini/autofe/unary.py CHANGED
@@ -190,3 +190,11 @@ class Bin(PandasOperator):
190
190
  if isinstance(value, str):
191
191
  return json.loads(value)
192
192
  return value
193
+
194
+
195
+ class Cluster(PandasOperator):
196
+ name: str = "cluster"
197
+ is_unary: bool = True
198
+ input_type: Optional[str] = "vector"
199
+ output_type: Optional[str] = "category"
200
+ is_categorical: bool = True
@@ -1122,7 +1122,6 @@ class FeaturesEnricher(TransformerMixin):
1122
1122
  # and calculate final metric (and uplift)
1123
1123
  enriched_metric = None
1124
1124
  uplift = None
1125
- uplift_perc = None
1126
1125
  enriched_estimator = None
1127
1126
  if set(fitting_X.columns) != set(fitting_enriched_X.columns):
1128
1127
  self.logger.info(
@@ -1154,7 +1153,6 @@ class FeaturesEnricher(TransformerMixin):
1154
1153
  self.logger.info(f"Enriched {metric} on train combined features: {enriched_metric}")
1155
1154
  if baseline_metric is not None and enriched_metric is not None:
1156
1155
  uplift = (enriched_cv_result.metric - baseline_cv_result.metric) * multiplier
1157
- uplift_perc = uplift / abs(baseline_cv_result.metric) * 100
1158
1156
 
1159
1157
  train_metrics = {
1160
1158
  self.bundle.get("quality_metrics_segment_header"): self.bundle.get(
@@ -1181,10 +1179,7 @@ class FeaturesEnricher(TransformerMixin):
1181
1179
  enriched_metric
1182
1180
  )
1183
1181
  if uplift is not None:
1184
- train_metrics[self.bundle.get("quality_metrics_uplift_header")] = round(uplift, 3)
1185
- train_metrics[self.bundle.get("quality_metrics_uplift_perc_header")] = (
1186
- f"{round(uplift_perc, 1)}%"
1187
- )
1182
+ train_metrics[self.bundle.get("quality_metrics_uplift_header")] = uplift
1188
1183
  metrics = [train_metrics]
1189
1184
 
1190
1185
  # 3 If eval_set is presented - fit final model on train enriched data and score each
@@ -1233,10 +1228,8 @@ class FeaturesEnricher(TransformerMixin):
1233
1228
 
1234
1229
  if etalon_eval_metric is not None and enriched_eval_metric is not None:
1235
1230
  eval_uplift = (enriched_eval_results.metric - etalon_eval_results.metric) * multiplier
1236
- eval_uplift_perc = eval_uplift / abs(etalon_eval_results.metric) * 100
1237
1231
  else:
1238
1232
  eval_uplift = None
1239
- eval_uplift_perc = None
1240
1233
 
1241
1234
  eval_metrics = {
1242
1235
  self.bundle.get("quality_metrics_segment_header"): self.bundle.get(
@@ -1267,10 +1260,7 @@ class FeaturesEnricher(TransformerMixin):
1267
1260
  enriched_eval_metric
1268
1261
  )
1269
1262
  if eval_uplift is not None:
1270
- eval_metrics[self.bundle.get("quality_metrics_uplift_header")] = round(eval_uplift, 3)
1271
- eval_metrics[self.bundle.get("quality_metrics_uplift_perc_header")] = (
1272
- f"{round(eval_uplift_perc, 1)}%"
1273
- )
1263
+ eval_metrics[self.bundle.get("quality_metrics_uplift_header")] = eval_uplift
1274
1264
 
1275
1265
  metrics.append(eval_metrics)
1276
1266
 
@@ -284,8 +284,8 @@ quality_metrics_segment_header=Dataset type
284
284
  quality_metrics_match_rate_header=Match rate
285
285
  quality_metrics_baseline_header=Baseline {}
286
286
  quality_metrics_enriched_header=Enriched {}
287
- quality_metrics_uplift_header=Uplift, abs
288
- quality_metrics_uplift_perc_header=Uplift, %
287
+ quality_metrics_uplift_header=Uplift
288
+ quality_metrics_uplift_prc_header=Uplift, %
289
289
 
290
290
  # Legacy native api messages
291
291
  dataset_dataframe_or_path_empty=Either `df` or `path` must be provided
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.96a2
3
+ Version: 1.2.96a3906.dev1
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,9 +1,9 @@
1
- upgini/__about__.py,sha256=TCqVix1Z4Eze5phtCvjrIOxc4bqjoaN5fjIL4q_OmWs,25
1
+ upgini/__about__.py,sha256=PUiYzCofvZt-NqYbWaNaLcmWYA89yEpQxOLTh8v2lac,33
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=e6JDYTZ2AwC5aF-dqclKZKkiKrHo2f6cFmMQO2ZZmjM,32724
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=gqXsghM1TjtTUXtrsqDQYFEkNA6gf4zqOdCfPYKnDv8,219124
6
+ upgini/features_enricher.py,sha256=DFBA-3_yZSDcvJnfZjPCvNFFSC8OZwDl992-dlathm0,218432
7
7
  upgini/http.py,sha256=4i7fQwrwU3WzDUOWzrgR-4C8eJwj_5dBwRAR-UjUtlc,44345
8
8
  upgini/metadata.py,sha256=vsbbHyPCP3Rs8WkeDgQg99uAA_zmsbDStAT-NwDYhO4,12455
9
9
  upgini/metrics.py,sha256=UbKEsHB7XDzoyGNqDx846zbh1t65GpqdnnhViccdoKU,45615
@@ -19,7 +19,7 @@ upgini/autofe/date.py,sha256=MM1S-6imNSzCDOhbNnmsc_bwSqUWBcS8vWAdHF8j1kY,11134
19
19
  upgini/autofe/feature.py,sha256=cu4xXjzVVF13ZV4RxuTrysK2qCfezlRCMOzCKRo1rNs,15558
20
20
  upgini/autofe/groupby.py,sha256=IYmQV9uoCdRcpkeWZj_kI3ObzoNCNx3ff3h8sTL01tk,3603
21
21
  upgini/autofe/operator.py,sha256=EOffJw6vKXpEh5yymqb1RFNJPxGxmnHdFRo9dB5SCFo,4969
22
- upgini/autofe/unary.py,sha256=Sx11IoHRh5nwyALzjgG9GQOrVNIs8NZ1JzunAJuN66A,5731
22
+ upgini/autofe/unary.py,sha256=N76Pehn-hO8FWlSdqJ2Wm-yoU1MSR7m6yb2GWYBcumU,5933
23
23
  upgini/autofe/utils.py,sha256=dYrtyAM8Vcc_R8u4dNo54IsGrHKagTHDJTKhGho0bRg,2967
24
24
  upgini/autofe/vector.py,sha256=jHs0nNTOaHspYUlxW7fjQepk4cvr_JDQ65L1OCiVsds,1360
25
25
  upgini/autofe/timeseries/__init__.py,sha256=PGwwDAMwvkXl3el12tXVEmZUgDUvlmIPlXtROm6bD18,738
@@ -38,7 +38,7 @@ upgini/normalizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
38
38
  upgini/normalizer/normalize_utils.py,sha256=g2TcDXZeJp9kAFO2sTqZ4CAsN4J1qHNgoJHZ8gtzUWo,7376
39
39
  upgini/resource_bundle/__init__.py,sha256=S5F2G47pnJd2LDpmFsjDqEwiKkP8Hm-hcseDbMka6Ko,8345
40
40
  upgini/resource_bundle/exceptions.py,sha256=5fRvx0_vWdE1-7HcSgF0tckB4A9AKyf5RiinZkInTsI,621
41
- upgini/resource_bundle/strings.properties,sha256=UO6K0wwvutyOyClOnJYlFYAETzMSen6hHnj3--5AIAs,28497
41
+ upgini/resource_bundle/strings.properties,sha256=Hfpr2-I5Ws6ugIN1QSz549OHayZeLYglRsbrGDT6g9g,28491
42
42
  upgini/resource_bundle/strings_widget.properties,sha256=gOdqvZWntP2LCza_tyVk1_yRYcG4c04K9sQOAVhF_gw,1577
43
43
  upgini/sampler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
44
  upgini/sampler/base.py,sha256=7GpjYqjOp58vYcJLiX__1R5wjUlyQbxvHJ2klFnup_M,6389
@@ -71,7 +71,7 @@ upgini/utils/target_utils.py,sha256=i3Xt5l9ybB2_nF_ma5cfPuL3OeFTs2dY2xDI0p4Azpg,
71
71
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
72
72
  upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
73
73
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
74
- upgini-1.2.96a2.dist-info/METADATA,sha256=UxJo1kNyV-BOPTrcplRgnnFraIMqzEZmML8RUR8hO-8,49530
75
- upgini-1.2.96a2.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
76
- upgini-1.2.96a2.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
77
- upgini-1.2.96a2.dist-info/RECORD,,
74
+ upgini-1.2.96a3906.dev1.dist-info/METADATA,sha256=tsYVKpMvgRQC8vNFCNlPhKvjxD8mysNzj7E4BWM18Gc,49538
75
+ upgini-1.2.96a3906.dev1.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
76
+ upgini-1.2.96a3906.dev1.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
77
+ upgini-1.2.96a3906.dev1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.25.0
2
+ Generator: hatchling 1.24.2
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any