upgini 1.2.91a3884.dev4__py3-none-any.whl → 1.2.91a3906.dev1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- upgini/__about__.py +1 -1
- upgini/autofe/unary.py +8 -0
- upgini/dataset.py +96 -55
- upgini/features_enricher.py +187 -220
- upgini/metadata.py +0 -3
- upgini/metrics.py +11 -12
- upgini/resource_bundle/strings.properties +0 -2
- upgini/utils/target_utils.py +199 -3
- {upgini-1.2.91a3884.dev4.dist-info → upgini-1.2.91a3906.dev1.dist-info}/METADATA +1 -1
- {upgini-1.2.91a3884.dev4.dist-info → upgini-1.2.91a3906.dev1.dist-info}/RECORD +12 -13
- upgini/utils/sample_utils.py +0 -414
- {upgini-1.2.91a3884.dev4.dist-info → upgini-1.2.91a3906.dev1.dist-info}/WHEEL +0 -0
- {upgini-1.2.91a3884.dev4.dist-info → upgini-1.2.91a3906.dev1.dist-info}/licenses/LICENSE +0 -0
upgini/utils/sample_utils.py
DELETED
@@ -1,414 +0,0 @@
|
|
1
|
-
from dataclasses import dataclass, field
|
2
|
-
import logging
|
3
|
-
import numbers
|
4
|
-
from typing import Callable, List, Optional
|
5
|
-
import numpy as np
|
6
|
-
import pandas as pd
|
7
|
-
|
8
|
-
from upgini.metadata import SYSTEM_RECORD_ID, CVType, ModelTaskType
|
9
|
-
from upgini.resource_bundle import ResourceBundle, get_custom_bundle
|
10
|
-
from upgini.utils.target_utils import balance_undersample
|
11
|
-
from upgini.utils.ts_utils import get_most_frequent_time_unit, trunc_datetime
|
12
|
-
|
13
|
-
|
14
|
-
TS_MIN_DIFFERENT_IDS_RATIO = 0.2
|
15
|
-
TS_DEFAULT_HIGH_FREQ_TRUNC_LENGTHS = [pd.DateOffset(years=2, months=6), pd.DateOffset(years=2, days=7)]
|
16
|
-
TS_DEFAULT_LOW_FREQ_TRUNC_LENGTHS = [pd.DateOffset(years=7), pd.DateOffset(years=5)]
|
17
|
-
TS_DEFAULT_TIME_UNIT_THRESHOLD = pd.Timedelta(weeks=4)
|
18
|
-
FIT_SAMPLE_ROWS_TS = 54_000
|
19
|
-
|
20
|
-
BINARY_MIN_SAMPLE_THRESHOLD = 5_000
|
21
|
-
MULTICLASS_MIN_SAMPLE_THRESHOLD = 25_000
|
22
|
-
BINARY_BOOTSTRAP_LOOPS = 5
|
23
|
-
MULTICLASS_BOOTSTRAP_LOOPS = 2
|
24
|
-
|
25
|
-
FIT_SAMPLE_THRESHOLD = 200_000
|
26
|
-
FIT_SAMPLE_ROWS = 200_000
|
27
|
-
FIT_SAMPLE_ROWS_WITH_EVAL_SET = 200_000
|
28
|
-
FIT_SAMPLE_THRESHOLD_WITH_EVAL_SET = 200_000
|
29
|
-
|
30
|
-
|
31
|
-
@dataclass
|
32
|
-
class SampleConfig:
|
33
|
-
force_sample_size: int = 7000
|
34
|
-
ts_min_different_ids_ratio: float = TS_MIN_DIFFERENT_IDS_RATIO
|
35
|
-
ts_default_high_freq_trunc_lengths: List[pd.DateOffset] = field(
|
36
|
-
default_factory=TS_DEFAULT_HIGH_FREQ_TRUNC_LENGTHS.copy
|
37
|
-
)
|
38
|
-
ts_default_low_freq_trunc_lengths: List[pd.DateOffset] = field(
|
39
|
-
default_factory=TS_DEFAULT_LOW_FREQ_TRUNC_LENGTHS.copy
|
40
|
-
)
|
41
|
-
ts_default_time_unit_threshold: pd.Timedelta = TS_DEFAULT_TIME_UNIT_THRESHOLD
|
42
|
-
binary_min_sample_threshold: int = BINARY_MIN_SAMPLE_THRESHOLD
|
43
|
-
multiclass_min_sample_threshold: int = MULTICLASS_MIN_SAMPLE_THRESHOLD
|
44
|
-
binary_bootstrap_loops: int = BINARY_BOOTSTRAP_LOOPS
|
45
|
-
multiclass_bootstrap_loops: int = MULTICLASS_BOOTSTRAP_LOOPS
|
46
|
-
fit_sample_threshold: int = FIT_SAMPLE_THRESHOLD
|
47
|
-
fit_sample_rows: int = FIT_SAMPLE_ROWS
|
48
|
-
fit_sample_rows_with_eval_set: int = FIT_SAMPLE_ROWS_WITH_EVAL_SET
|
49
|
-
fit_sample_threshold_with_eval_set: int = FIT_SAMPLE_THRESHOLD_WITH_EVAL_SET
|
50
|
-
fit_sample_rows_ts: int = FIT_SAMPLE_ROWS_TS
|
51
|
-
|
52
|
-
|
53
|
-
@dataclass
|
54
|
-
class SampleColumns:
|
55
|
-
date: str
|
56
|
-
target: str
|
57
|
-
ids: Optional[List[str]] = None
|
58
|
-
eval_set_index: Optional[str] = None
|
59
|
-
|
60
|
-
|
61
|
-
def sample(
|
62
|
-
df: pd.DataFrame,
|
63
|
-
task_type: Optional[ModelTaskType],
|
64
|
-
cv_type: Optional[CVType],
|
65
|
-
sample_config: SampleConfig,
|
66
|
-
sample_columns: SampleColumns,
|
67
|
-
random_state: int = 42,
|
68
|
-
balance: bool = True,
|
69
|
-
force_downsampling: bool = False,
|
70
|
-
logger: Optional[logging.Logger] = None,
|
71
|
-
**kwargs,
|
72
|
-
) -> pd.DataFrame:
|
73
|
-
if force_downsampling:
|
74
|
-
return balance_undersample_forced(
|
75
|
-
df,
|
76
|
-
sample_columns.target,
|
77
|
-
sample_columns.ids,
|
78
|
-
sample_columns.date,
|
79
|
-
task_type,
|
80
|
-
cv_type,
|
81
|
-
random_state,
|
82
|
-
sample_config.force_sample_size,
|
83
|
-
logger=logger,
|
84
|
-
**kwargs,
|
85
|
-
)
|
86
|
-
|
87
|
-
if sample_columns.eval_set_index in df.columns:
|
88
|
-
fit_sample_threshold = sample_config.fit_sample_threshold_with_eval_set
|
89
|
-
fit_sample_rows = sample_config.fit_sample_rows_with_eval_set
|
90
|
-
else:
|
91
|
-
fit_sample_threshold = sample_config.fit_sample_threshold
|
92
|
-
fit_sample_rows = sample_config.fit_sample_rows
|
93
|
-
|
94
|
-
if cv_type is not None and cv_type.is_time_series():
|
95
|
-
return sample_time_series_train_eval(
|
96
|
-
df,
|
97
|
-
sample_columns,
|
98
|
-
sample_config.fit_sample_rows_ts,
|
99
|
-
trim_threshold=fit_sample_threshold,
|
100
|
-
max_rows=fit_sample_rows,
|
101
|
-
random_state=random_state,
|
102
|
-
logger=logger,
|
103
|
-
**kwargs,
|
104
|
-
)
|
105
|
-
|
106
|
-
if task_type is not None and task_type.is_classification() and balance:
|
107
|
-
df = balance_undersample(
|
108
|
-
df=df,
|
109
|
-
target_column=sample_columns.target,
|
110
|
-
task_type=task_type,
|
111
|
-
random_state=random_state,
|
112
|
-
binary_min_sample_threshold=sample_config.binary_min_sample_threshold,
|
113
|
-
multiclass_min_sample_threshold=sample_config.multiclass_min_sample_threshold,
|
114
|
-
binary_bootstrap_loops=sample_config.binary_bootstrap_loops,
|
115
|
-
multiclass_bootstrap_loops=sample_config.multiclass_bootstrap_loops,
|
116
|
-
logger=logger,
|
117
|
-
**kwargs,
|
118
|
-
)
|
119
|
-
|
120
|
-
num_samples = _num_samples(df)
|
121
|
-
if num_samples > fit_sample_threshold:
|
122
|
-
logger.info(
|
123
|
-
f"Etalon has size {num_samples} more than threshold {fit_sample_threshold} "
|
124
|
-
f"and will be downsampled to {fit_sample_rows}"
|
125
|
-
)
|
126
|
-
df = df.sample(n=fit_sample_rows, random_state=random_state)
|
127
|
-
logger.info(f"Shape after threshold resampling: {df.shape}")
|
128
|
-
|
129
|
-
return df
|
130
|
-
|
131
|
-
|
132
|
-
def sample_time_series_train_eval(
|
133
|
-
df: pd.DataFrame,
|
134
|
-
sample_columns: SampleColumns,
|
135
|
-
sample_size: int,
|
136
|
-
trim_threshold: int,
|
137
|
-
max_rows: int,
|
138
|
-
random_state: int = 42,
|
139
|
-
logger: Optional[logging.Logger] = None,
|
140
|
-
bundle: Optional[ResourceBundle] = None,
|
141
|
-
**kwargs,
|
142
|
-
):
|
143
|
-
if sample_columns.eval_set_index in df.columns:
|
144
|
-
train_df = df[df[sample_columns.eval_set_index] == 0]
|
145
|
-
eval_df = df[df[sample_columns.eval_set_index] > 0]
|
146
|
-
else:
|
147
|
-
train_df = df
|
148
|
-
eval_df = None
|
149
|
-
|
150
|
-
train_df = sample_time_series_trunc(
|
151
|
-
train_df, sample_columns.ids, sample_columns.date, sample_size, random_state, logger=logger, **kwargs
|
152
|
-
)
|
153
|
-
if sample_columns.ids and eval_df is not None:
|
154
|
-
missing_ids = (
|
155
|
-
eval_df[~eval_df[sample_columns.ids].isin(np.unique(train_df[sample_columns.ids]))][sample_columns.ids]
|
156
|
-
.dropna()
|
157
|
-
.drop_duplicates()
|
158
|
-
.values.tolist()
|
159
|
-
)
|
160
|
-
if missing_ids:
|
161
|
-
bundle = bundle or get_custom_bundle()
|
162
|
-
print(bundle.get("missing_ids_in_eval_set").format(missing_ids))
|
163
|
-
eval_df = eval_df.merge(train_df[sample_columns.ids].drop_duplicates())
|
164
|
-
|
165
|
-
if eval_df is not None:
|
166
|
-
if len(eval_df) > trim_threshold - len(train_df):
|
167
|
-
eval_df = sample_time_series_trunc(
|
168
|
-
eval_df,
|
169
|
-
sample_columns.ids,
|
170
|
-
sample_columns.date,
|
171
|
-
max_rows - len(train_df),
|
172
|
-
random_state,
|
173
|
-
logger=logger,
|
174
|
-
**kwargs,
|
175
|
-
)
|
176
|
-
logger.info(f"Eval set size: {len(eval_df)}")
|
177
|
-
df = pd.concat([train_df, eval_df])
|
178
|
-
|
179
|
-
elif len(train_df) > max_rows:
|
180
|
-
df = sample_time_series_trunc(
|
181
|
-
train_df,
|
182
|
-
sample_columns.ids,
|
183
|
-
sample_columns.date,
|
184
|
-
max_rows,
|
185
|
-
random_state,
|
186
|
-
logger=logger,
|
187
|
-
**kwargs,
|
188
|
-
)
|
189
|
-
else:
|
190
|
-
df = train_df
|
191
|
-
|
192
|
-
logger.info(f"Train set size: {len(df)}")
|
193
|
-
|
194
|
-
return df
|
195
|
-
|
196
|
-
|
197
|
-
def sample_time_series_trunc(
|
198
|
-
df: pd.DataFrame,
|
199
|
-
id_columns: Optional[List[str]],
|
200
|
-
date_column: str,
|
201
|
-
sample_size: int,
|
202
|
-
random_state: int = 42,
|
203
|
-
logger: Optional[logging.Logger] = None,
|
204
|
-
highfreq_trunc_lengths: List[pd.DateOffset] = TS_DEFAULT_HIGH_FREQ_TRUNC_LENGTHS,
|
205
|
-
lowfreq_trunc_lengths: List[pd.DateOffset] = TS_DEFAULT_LOW_FREQ_TRUNC_LENGTHS,
|
206
|
-
time_unit_threshold: pd.Timedelta = TS_DEFAULT_TIME_UNIT_THRESHOLD,
|
207
|
-
**kwargs,
|
208
|
-
):
|
209
|
-
if id_columns is None:
|
210
|
-
id_columns = []
|
211
|
-
# Convert date column to datetime
|
212
|
-
dates_df = df[id_columns + [date_column]].copy().reset_index(drop=True)
|
213
|
-
if pd.api.types.is_numeric_dtype(dates_df[date_column]):
|
214
|
-
dates_df[date_column] = pd.to_datetime(dates_df[date_column], unit="ms")
|
215
|
-
else:
|
216
|
-
dates_df[date_column] = pd.to_datetime(dates_df[date_column])
|
217
|
-
|
218
|
-
time_unit = get_most_frequent_time_unit(dates_df, id_columns, date_column)
|
219
|
-
if logger is not None:
|
220
|
-
logger.info(f"Time unit: {time_unit}")
|
221
|
-
|
222
|
-
if time_unit is None:
|
223
|
-
if logger is not None:
|
224
|
-
logger.info("Cannot detect time unit, returning original dataset")
|
225
|
-
return df
|
226
|
-
|
227
|
-
if time_unit < time_unit_threshold:
|
228
|
-
for trunc_length in highfreq_trunc_lengths:
|
229
|
-
sampled_df = trunc_datetime(dates_df, id_columns, date_column, trunc_length, logger=logger)
|
230
|
-
if len(sampled_df) <= sample_size:
|
231
|
-
break
|
232
|
-
if len(sampled_df) > sample_size:
|
233
|
-
sampled_df = sample_time_series(
|
234
|
-
sampled_df, id_columns, date_column, sample_size, random_state, logger=logger, **kwargs
|
235
|
-
)
|
236
|
-
else:
|
237
|
-
for trunc_length in lowfreq_trunc_lengths:
|
238
|
-
sampled_df = trunc_datetime(dates_df, id_columns, date_column, trunc_length, logger=logger)
|
239
|
-
if len(sampled_df) <= sample_size:
|
240
|
-
break
|
241
|
-
if len(sampled_df) > sample_size:
|
242
|
-
sampled_df = sample_time_series(
|
243
|
-
sampled_df, id_columns, date_column, sample_size, random_state, logger=logger, **kwargs
|
244
|
-
)
|
245
|
-
|
246
|
-
return df.iloc[sampled_df.index]
|
247
|
-
|
248
|
-
|
249
|
-
def sample_time_series(
|
250
|
-
df: pd.DataFrame,
|
251
|
-
id_columns: List[str],
|
252
|
-
date_column: str,
|
253
|
-
sample_size: int,
|
254
|
-
random_state: int = 42,
|
255
|
-
min_different_ids_ratio: float = TS_MIN_DIFFERENT_IDS_RATIO,
|
256
|
-
prefer_recent_dates: bool = True,
|
257
|
-
logger: Optional[logging.Logger] = None,
|
258
|
-
**kwargs,
|
259
|
-
):
|
260
|
-
def ensure_tuple(x):
|
261
|
-
return tuple([x]) if not isinstance(x, tuple) else x
|
262
|
-
|
263
|
-
random_state = np.random.RandomState(random_state)
|
264
|
-
|
265
|
-
if not id_columns:
|
266
|
-
id_columns = [date_column]
|
267
|
-
ids_sort = df.groupby(id_columns)[date_column].aggregate(["max", "count"]).T.to_dict()
|
268
|
-
ids_sort = {
|
269
|
-
ensure_tuple(k): (
|
270
|
-
(v["max"], v["count"], random_state.rand()) if prefer_recent_dates else (v["count"], random_state.rand())
|
271
|
-
)
|
272
|
-
for k, v in ids_sort.items()
|
273
|
-
}
|
274
|
-
id_counts = df[id_columns].value_counts()
|
275
|
-
id_counts.index = [ensure_tuple(i) for i in id_counts.index]
|
276
|
-
id_counts = id_counts.sort_index(key=lambda x: [ids_sort[y] for y in x], ascending=False).cumsum()
|
277
|
-
id_counts = id_counts[id_counts <= sample_size]
|
278
|
-
min_different_ids = max(int(len(df[id_columns].drop_duplicates()) * min_different_ids_ratio), 1)
|
279
|
-
|
280
|
-
def id_mask(sample_index: pd.Index) -> pd.Index:
|
281
|
-
if isinstance(sample_index, pd.MultiIndex):
|
282
|
-
return pd.MultiIndex.from_frame(df[id_columns]).isin(sample_index)
|
283
|
-
else:
|
284
|
-
return df[id_columns[0]].isin(sample_index)
|
285
|
-
|
286
|
-
if len(id_counts) < min_different_ids:
|
287
|
-
if logger is not None:
|
288
|
-
logger.info(
|
289
|
-
f"Different ids count {len(id_counts)} for sample size {sample_size}"
|
290
|
-
f" is less than min different ids {min_different_ids}, sampling time window"
|
291
|
-
)
|
292
|
-
date_counts = df.groupby(id_columns)[date_column].nunique().sort_values(ascending=False)
|
293
|
-
ids_to_sample = date_counts.index[:min_different_ids] if len(id_counts) > 0 else date_counts.index
|
294
|
-
mask = id_mask(ids_to_sample)
|
295
|
-
df = df[mask]
|
296
|
-
sample_date_counts = df[date_column].value_counts().sort_index(ascending=False).cumsum()
|
297
|
-
sample_date_counts = sample_date_counts[sample_date_counts <= sample_size]
|
298
|
-
df = df[df[date_column].isin(sample_date_counts.index)]
|
299
|
-
else:
|
300
|
-
if len(id_columns) > 1:
|
301
|
-
id_counts.index = pd.MultiIndex.from_tuples(id_counts.index)
|
302
|
-
else:
|
303
|
-
id_counts.index = [i[0] for i in id_counts.index]
|
304
|
-
mask = id_mask(id_counts.index)
|
305
|
-
df = df[mask]
|
306
|
-
|
307
|
-
return df
|
308
|
-
|
309
|
-
|
310
|
-
def balance_undersample_forced(
|
311
|
-
df: pd.DataFrame,
|
312
|
-
sample_columns: SampleColumns,
|
313
|
-
task_type: ModelTaskType,
|
314
|
-
cv_type: Optional[CVType],
|
315
|
-
random_state: int,
|
316
|
-
sample_size: int = 7000,
|
317
|
-
logger: Optional[logging.Logger] = None,
|
318
|
-
bundle: Optional[ResourceBundle] = None,
|
319
|
-
warning_callback: Optional[Callable] = None,
|
320
|
-
):
|
321
|
-
if len(df) <= sample_size:
|
322
|
-
return df
|
323
|
-
|
324
|
-
if logger is None:
|
325
|
-
logger = logging.getLogger("muted_logger")
|
326
|
-
logger.setLevel("FATAL")
|
327
|
-
bundle = bundle or get_custom_bundle()
|
328
|
-
if SYSTEM_RECORD_ID not in df.columns:
|
329
|
-
raise Exception("System record id must be presented for undersampling")
|
330
|
-
|
331
|
-
msg = bundle.get("forced_balance_undersample")
|
332
|
-
logger.info(msg)
|
333
|
-
if warning_callback is not None:
|
334
|
-
warning_callback(msg)
|
335
|
-
|
336
|
-
target = df[sample_columns.target].copy()
|
337
|
-
|
338
|
-
vc = target.value_counts()
|
339
|
-
max_class_value = vc.index[0]
|
340
|
-
min_class_value = vc.index[len(vc) - 1]
|
341
|
-
max_class_count = vc[max_class_value]
|
342
|
-
min_class_count = vc[min_class_value]
|
343
|
-
|
344
|
-
resampled_data = df
|
345
|
-
df = df.copy().sort_values(by=SYSTEM_RECORD_ID)
|
346
|
-
if cv_type is not None and cv_type.is_time_series():
|
347
|
-
logger.warning(f"Sampling time series dataset from {len(df)} to {sample_size}")
|
348
|
-
resampled_data = sample_time_series_train_eval(
|
349
|
-
df,
|
350
|
-
sample_columns=sample_columns,
|
351
|
-
sample_size=sample_size,
|
352
|
-
trim_threshold=sample_size,
|
353
|
-
max_rows=sample_size,
|
354
|
-
random_state=random_state,
|
355
|
-
logger=logger,
|
356
|
-
)
|
357
|
-
elif task_type in [ModelTaskType.MULTICLASS, ModelTaskType.REGRESSION]:
|
358
|
-
logger.warning(f"Sampling dataset from {len(df)} to {sample_size}")
|
359
|
-
resampled_data = df.sample(n=sample_size, random_state=random_state)
|
360
|
-
else:
|
361
|
-
msg = bundle.get("imbalanced_target").format(min_class_value, min_class_count)
|
362
|
-
logger.warning(msg)
|
363
|
-
|
364
|
-
# fill up to min_sample_threshold by majority class
|
365
|
-
minority_class = df[df[sample_columns.target] == min_class_value]
|
366
|
-
majority_class = df[df[sample_columns.target] != min_class_value]
|
367
|
-
logger.info(
|
368
|
-
f"Min class count: {min_class_count}. Max class count: {max_class_count}."
|
369
|
-
f" Rebalance sample size: {sample_size}"
|
370
|
-
)
|
371
|
-
if len(minority_class) > (sample_size / 2):
|
372
|
-
sampled_minority_class = minority_class.sample(n=int(sample_size / 2), random_state=random_state)
|
373
|
-
else:
|
374
|
-
sampled_minority_class = minority_class
|
375
|
-
|
376
|
-
if len(majority_class) > (sample_size) / 2:
|
377
|
-
sampled_majority_class = majority_class.sample(n=int(sample_size / 2), random_state=random_state)
|
378
|
-
|
379
|
-
resampled_data = df[
|
380
|
-
(df[SYSTEM_RECORD_ID].isin(sampled_minority_class[SYSTEM_RECORD_ID]))
|
381
|
-
| (df[SYSTEM_RECORD_ID].isin(sampled_majority_class[SYSTEM_RECORD_ID]))
|
382
|
-
]
|
383
|
-
|
384
|
-
logger.info(f"Shape after forced rebalance resampling: {resampled_data}")
|
385
|
-
return resampled_data
|
386
|
-
|
387
|
-
|
388
|
-
def _num_samples(x):
|
389
|
-
"""Return number of samples in array-like x."""
|
390
|
-
if x is None:
|
391
|
-
return 0
|
392
|
-
message = "Expected sequence or array-like, got %s" % type(x)
|
393
|
-
if hasattr(x, "fit") and callable(x.fit):
|
394
|
-
# Don't get num_samples from an ensembles length!
|
395
|
-
raise TypeError(message)
|
396
|
-
|
397
|
-
if not hasattr(x, "__len__") and not hasattr(x, "shape"):
|
398
|
-
if hasattr(x, "__array__"):
|
399
|
-
x = np.asarray(x)
|
400
|
-
else:
|
401
|
-
raise TypeError(message)
|
402
|
-
|
403
|
-
if hasattr(x, "shape") and x.shape is not None:
|
404
|
-
if len(x.shape) == 0:
|
405
|
-
raise TypeError("Singleton array %r cannot be considered a valid collection." % x)
|
406
|
-
# Check that shape is returning an integer or default to len
|
407
|
-
# Dask dataframes may not return numeric shape[0] value
|
408
|
-
if isinstance(x.shape[0], numbers.Integral):
|
409
|
-
return x.shape[0]
|
410
|
-
|
411
|
-
try:
|
412
|
-
return len(x)
|
413
|
-
except TypeError as type_error:
|
414
|
-
raise TypeError(message) from type_error
|
File without changes
|
File without changes
|