upgini 1.2.78__py3-none-any.whl → 1.2.79a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.78"
1
+ __version__ = "1.2.79a1"
upgini/autofe/vector.py CHANGED
@@ -1,8 +1,8 @@
1
- from typing import List, Optional
1
+ from typing import Dict, List, Optional
2
2
 
3
3
  import pandas as pd
4
4
 
5
- from upgini.autofe.operator import PandasOperator, VectorizableMixin
5
+ from upgini.autofe.operator import OperatorRegistry, PandasOperator, VectorizableMixin
6
6
 
7
7
 
8
8
  class Mean(PandasOperator, VectorizableMixin):
@@ -31,3 +31,19 @@ class Vectorize(PandasOperator, VectorizableMixin):
31
31
 
32
32
  def calculate_vector(self, data: List[pd.Series]) -> pd.Series:
33
33
  return pd.DataFrame(data).T.apply(lambda x: x.to_list(), axis=1)
34
+
35
+
36
+ class OnnxModel(PandasOperator, metaclass=OperatorRegistry):
37
+ name: str = "onnx"
38
+ is_vector: bool = True
39
+ output_type: Optional[str] = "float"
40
+ model_name: str = ""
41
+
42
+ def get_params(self) -> Dict[str, Optional[str]]:
43
+ res = super().get_params()
44
+ res.update(
45
+ {
46
+ "model_name": self.model_name,
47
+ }
48
+ )
49
+ return res
upgini/metrics.py CHANGED
@@ -87,7 +87,6 @@ CATBOOST_MULTICLASS_PARAMS = {
87
87
 
88
88
  LIGHTGBM_REGRESSION_PARAMS = {
89
89
  "random_state": DEFAULT_RANDOM_STATE,
90
- "deterministic": True,
91
90
  "min_gain_to_split": 0.001,
92
91
  "n_estimators": 275,
93
92
  "max_depth": 5,
@@ -99,6 +98,9 @@ LIGHTGBM_REGRESSION_PARAMS = {
99
98
  "feature_fraction": 1.0,
100
99
  "min_sum_hessian_in_leaf": 0.01,
101
100
  "objective": "huber",
101
+ "deterministic": "true",
102
+ "force_col_wise": "true",
103
+ "force_row_wise": "true",
102
104
  "verbosity": -1,
103
105
  }
104
106
 
@@ -117,6 +119,9 @@ LIGHTGBM_MULTICLASS_PARAMS = {
117
119
  "use_quantized_grad": "true",
118
120
  "num_grad_quant_bins": "8",
119
121
  "stochastic_rounding": "true",
122
+ "deterministic": "true",
123
+ "force_col_wise": "true",
124
+ "force_row_wise": "true",
120
125
  "verbosity": -1,
121
126
  }
122
127
 
@@ -128,11 +133,13 @@ LIGHTGBM_BINARY_PARAMS = {
128
133
  "learning_rate": 0.05,
129
134
  "objective": "binary",
130
135
  # "class_weight": "balanced",
131
- "deterministic": True,
132
136
  "max_cat_threshold": 80,
133
137
  "min_data_per_group": 20,
134
138
  "cat_smooth": 18,
135
139
  "cat_l2": 8,
140
+ "deterministic": "true",
141
+ "force_col_wise": "true",
142
+ "force_row_wise": "true",
136
143
  "verbosity": -1,
137
144
  }
138
145
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.78
3
+ Version: 1.2.79a1
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,4 +1,4 @@
1
- upgini/__about__.py,sha256=um-GnDBOmvXVFDzFeMIfwSF9jG0V0HqCNhYlIkfUoOQ,23
1
+ upgini/__about__.py,sha256=h3pHSW7QFH3c863fq8fxK5FCQiwhFda3blWAzoxplSE,25
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=aspri7ZAgwkNNUiIgQ1GRXvw8XQii3F4RfNXSrF4wrw,35365
@@ -6,7 +6,7 @@ upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
6
  upgini/features_enricher.py,sha256=_UkJS35uGaYtI7dR6Xd9Q28nmiPzTjhK3y8v3IjJTfQ,208245
7
7
  upgini/http.py,sha256=UH7nswcZ221un3O_VW9limCBO5oRsyg1eKUHiVslRPs,43737
8
8
  upgini/metadata.py,sha256=Yd6iW2f7Wz6vUkg5uvR4xylN16ANnCKVKqAsAkap7p8,12354
9
- upgini/metrics.py,sha256=1AgIPEzd4sGJ8AlMrJziQruT-M1-lGgpnDIXUYeQJ6Q,39171
9
+ upgini/metrics.py,sha256=l7r4cM-xrftcgOTv4uMQBHC_Sd820Z6umw5bIpP5wDI,39384
10
10
  upgini/search_task.py,sha256=RcvAE785yksWTsTNWuZFVNlk32jHElMoEna1T_C5N8Q,17823
11
11
  upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
12
12
  upgini/version_validator.py,sha256=DvbaAvuYFoJqYt0fitpsk6Xcv-H1BYDJYHUMxaKSH_Y,1509
@@ -21,7 +21,7 @@ upgini/autofe/groupby.py,sha256=IYmQV9uoCdRcpkeWZj_kI3ObzoNCNx3ff3h8sTL01tk,3603
21
21
  upgini/autofe/operator.py,sha256=EOffJw6vKXpEh5yymqb1RFNJPxGxmnHdFRo9dB5SCFo,4969
22
22
  upgini/autofe/unary.py,sha256=Sx11IoHRh5nwyALzjgG9GQOrVNIs8NZ1JzunAJuN66A,5731
23
23
  upgini/autofe/utils.py,sha256=fK1am2_tQj3fL2vDslblye8lmyfWgGIUOX1beYVBz4k,2420
24
- upgini/autofe/vector.py,sha256=zehv1J9ChHdZKWjKlkRf6RpfQMCJduZmqCEePYNUfkQ,943
24
+ upgini/autofe/vector.py,sha256=jHs0nNTOaHspYUlxW7fjQepk4cvr_JDQ65L1OCiVsds,1360
25
25
  upgini/autofe/timeseries/__init__.py,sha256=PGwwDAMwvkXl3el12tXVEmZUgDUvlmIPlXtROm6bD18,738
26
26
  upgini/autofe/timeseries/base.py,sha256=rWJqRuFAzTZEsUdWG5s1Vhif9zzRRmalASXvarufRxI,3610
27
27
  upgini/autofe/timeseries/cross.py,sha256=BTINVwuZSbm_4NKkVm0FGM68SrvZLENZKXN7-UyvhYI,5319
@@ -70,7 +70,7 @@ upgini/utils/target_utils.py,sha256=P0cCVRaakWLydYwFjk3TEaQfr0p0hfsJCvKRD8qcxiE,
70
70
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
71
71
  upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
72
72
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
73
- upgini-1.2.78.dist-info/METADATA,sha256=9NDKzhMak5vKoLrxoAAfTjU-HsTJByudWztn1gxxJyA,49091
74
- upgini-1.2.78.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
75
- upgini-1.2.78.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
76
- upgini-1.2.78.dist-info/RECORD,,
73
+ upgini-1.2.79a1.dist-info/METADATA,sha256=49MF6sCtAqdDrgL7s0hY2fm7T0ma0A5yeJQ6oIokZDo,49093
74
+ upgini-1.2.79a1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
75
+ upgini-1.2.79a1.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
76
+ upgini-1.2.79a1.dist-info/RECORD,,