upgini 1.2.78__py3-none-any.whl → 1.2.79__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- upgini/__about__.py +1 -1
- upgini/autofe/vector.py +18 -2
- upgini/metrics.py +6 -2
- {upgini-1.2.78.dist-info → upgini-1.2.79.dist-info}/METADATA +1 -1
- {upgini-1.2.78.dist-info → upgini-1.2.79.dist-info}/RECORD +7 -7
- {upgini-1.2.78.dist-info → upgini-1.2.79.dist-info}/WHEEL +0 -0
- {upgini-1.2.78.dist-info → upgini-1.2.79.dist-info}/licenses/LICENSE +0 -0
upgini/__about__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "1.2.
|
1
|
+
__version__ = "1.2.79"
|
upgini/autofe/vector.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1
|
-
from typing import List, Optional
|
1
|
+
from typing import Dict, List, Optional
|
2
2
|
|
3
3
|
import pandas as pd
|
4
4
|
|
5
|
-
from upgini.autofe.operator import PandasOperator, VectorizableMixin
|
5
|
+
from upgini.autofe.operator import OperatorRegistry, PandasOperator, VectorizableMixin
|
6
6
|
|
7
7
|
|
8
8
|
class Mean(PandasOperator, VectorizableMixin):
|
@@ -31,3 +31,19 @@ class Vectorize(PandasOperator, VectorizableMixin):
|
|
31
31
|
|
32
32
|
def calculate_vector(self, data: List[pd.Series]) -> pd.Series:
|
33
33
|
return pd.DataFrame(data).T.apply(lambda x: x.to_list(), axis=1)
|
34
|
+
|
35
|
+
|
36
|
+
class OnnxModel(PandasOperator, metaclass=OperatorRegistry):
|
37
|
+
name: str = "onnx"
|
38
|
+
is_vector: bool = True
|
39
|
+
output_type: Optional[str] = "float"
|
40
|
+
model_name: str = ""
|
41
|
+
|
42
|
+
def get_params(self) -> Dict[str, Optional[str]]:
|
43
|
+
res = super().get_params()
|
44
|
+
res.update(
|
45
|
+
{
|
46
|
+
"model_name": self.model_name,
|
47
|
+
}
|
48
|
+
)
|
49
|
+
return res
|
upgini/metrics.py
CHANGED
@@ -87,7 +87,6 @@ CATBOOST_MULTICLASS_PARAMS = {
|
|
87
87
|
|
88
88
|
LIGHTGBM_REGRESSION_PARAMS = {
|
89
89
|
"random_state": DEFAULT_RANDOM_STATE,
|
90
|
-
"deterministic": True,
|
91
90
|
"min_gain_to_split": 0.001,
|
92
91
|
"n_estimators": 275,
|
93
92
|
"max_depth": 5,
|
@@ -99,6 +98,8 @@ LIGHTGBM_REGRESSION_PARAMS = {
|
|
99
98
|
"feature_fraction": 1.0,
|
100
99
|
"min_sum_hessian_in_leaf": 0.01,
|
101
100
|
"objective": "huber",
|
101
|
+
"deterministic": "true",
|
102
|
+
"force_col_wise": "true",
|
102
103
|
"verbosity": -1,
|
103
104
|
}
|
104
105
|
|
@@ -117,6 +118,8 @@ LIGHTGBM_MULTICLASS_PARAMS = {
|
|
117
118
|
"use_quantized_grad": "true",
|
118
119
|
"num_grad_quant_bins": "8",
|
119
120
|
"stochastic_rounding": "true",
|
121
|
+
"deterministic": "true",
|
122
|
+
"force_col_wise": "true",
|
120
123
|
"verbosity": -1,
|
121
124
|
}
|
122
125
|
|
@@ -128,11 +131,12 @@ LIGHTGBM_BINARY_PARAMS = {
|
|
128
131
|
"learning_rate": 0.05,
|
129
132
|
"objective": "binary",
|
130
133
|
# "class_weight": "balanced",
|
131
|
-
"deterministic": True,
|
132
134
|
"max_cat_threshold": 80,
|
133
135
|
"min_data_per_group": 20,
|
134
136
|
"cat_smooth": 18,
|
135
137
|
"cat_l2": 8,
|
138
|
+
"deterministic": "true",
|
139
|
+
"force_col_wise": "true",
|
136
140
|
"verbosity": -1,
|
137
141
|
}
|
138
142
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
upgini/__about__.py,sha256=
|
1
|
+
upgini/__about__.py,sha256=mupwAhPLfGDd9OAn7f6J2lwQapeaIysxn41khUOG57I,23
|
2
2
|
upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
|
3
3
|
upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
|
4
4
|
upgini/dataset.py,sha256=aspri7ZAgwkNNUiIgQ1GRXvw8XQii3F4RfNXSrF4wrw,35365
|
@@ -6,7 +6,7 @@ upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
|
|
6
6
|
upgini/features_enricher.py,sha256=_UkJS35uGaYtI7dR6Xd9Q28nmiPzTjhK3y8v3IjJTfQ,208245
|
7
7
|
upgini/http.py,sha256=UH7nswcZ221un3O_VW9limCBO5oRsyg1eKUHiVslRPs,43737
|
8
8
|
upgini/metadata.py,sha256=Yd6iW2f7Wz6vUkg5uvR4xylN16ANnCKVKqAsAkap7p8,12354
|
9
|
-
upgini/metrics.py,sha256=
|
9
|
+
upgini/metrics.py,sha256=_Ue1nymBMVmoCdPMGGXe0FFkvNxNg592FmX2WJWKDFE,39294
|
10
10
|
upgini/search_task.py,sha256=RcvAE785yksWTsTNWuZFVNlk32jHElMoEna1T_C5N8Q,17823
|
11
11
|
upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
|
12
12
|
upgini/version_validator.py,sha256=DvbaAvuYFoJqYt0fitpsk6Xcv-H1BYDJYHUMxaKSH_Y,1509
|
@@ -21,7 +21,7 @@ upgini/autofe/groupby.py,sha256=IYmQV9uoCdRcpkeWZj_kI3ObzoNCNx3ff3h8sTL01tk,3603
|
|
21
21
|
upgini/autofe/operator.py,sha256=EOffJw6vKXpEh5yymqb1RFNJPxGxmnHdFRo9dB5SCFo,4969
|
22
22
|
upgini/autofe/unary.py,sha256=Sx11IoHRh5nwyALzjgG9GQOrVNIs8NZ1JzunAJuN66A,5731
|
23
23
|
upgini/autofe/utils.py,sha256=fK1am2_tQj3fL2vDslblye8lmyfWgGIUOX1beYVBz4k,2420
|
24
|
-
upgini/autofe/vector.py,sha256=
|
24
|
+
upgini/autofe/vector.py,sha256=jHs0nNTOaHspYUlxW7fjQepk4cvr_JDQ65L1OCiVsds,1360
|
25
25
|
upgini/autofe/timeseries/__init__.py,sha256=PGwwDAMwvkXl3el12tXVEmZUgDUvlmIPlXtROm6bD18,738
|
26
26
|
upgini/autofe/timeseries/base.py,sha256=rWJqRuFAzTZEsUdWG5s1Vhif9zzRRmalASXvarufRxI,3610
|
27
27
|
upgini/autofe/timeseries/cross.py,sha256=BTINVwuZSbm_4NKkVm0FGM68SrvZLENZKXN7-UyvhYI,5319
|
@@ -70,7 +70,7 @@ upgini/utils/target_utils.py,sha256=P0cCVRaakWLydYwFjk3TEaQfr0p0hfsJCvKRD8qcxiE,
|
|
70
70
|
upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
|
71
71
|
upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
|
72
72
|
upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
|
73
|
-
upgini-1.2.
|
74
|
-
upgini-1.2.
|
75
|
-
upgini-1.2.
|
76
|
-
upgini-1.2.
|
73
|
+
upgini-1.2.79.dist-info/METADATA,sha256=zxQyk76bWj5AGiXERdfEQVcqsZXD4RU5gaRQGk1LpeM,49091
|
74
|
+
upgini-1.2.79.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
75
|
+
upgini-1.2.79.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
|
76
|
+
upgini-1.2.79.dist-info/RECORD,,
|
File without changes
|
File without changes
|