upgini 1.2.124__py3-none-any.whl → 1.2.127__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.124"
1
+ __version__ = "1.2.127"
upgini/autofe/binary.py CHANGED
@@ -1,5 +1,6 @@
1
1
  import abc
2
2
  from typing import Optional
3
+
3
4
  import Levenshtein
4
5
  import numpy as np
5
6
  import pandas as pd
@@ -201,7 +202,7 @@ class JaroWinklerSim1(StringSim):
201
202
  has_symmetry_importance: bool = True
202
203
 
203
204
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
204
- return value
205
+ return value if value is not None and len(value) > 0 else None
205
206
 
206
207
  def _similarity(self, left: str, right: str) -> float:
207
208
  return jarowinkler_similarity(left, right)
@@ -216,7 +217,7 @@ class JaroWinklerSim2(StringSim):
216
217
  has_symmetry_importance: bool = True
217
218
 
218
219
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
219
- return value[::-1] if value is not None else None
220
+ return value[::-1] if value is not None and len(value) > 0 else None
220
221
 
221
222
  def _similarity(self, left: str, right: str) -> float:
222
223
  return jarowinkler_similarity(left, right)
@@ -231,7 +232,7 @@ class LevenshteinSim(StringSim):
231
232
  has_symmetry_importance: bool = True
232
233
 
233
234
  def _prepare_value(self, value: Optional[str]) -> Optional[str]:
234
- return value
235
+ return value if value is not None and len(value) > 0 else None
235
236
 
236
237
  def _similarity(self, left: str, right: str) -> float:
237
238
  return 1 - Levenshtein.distance(left, right) / max(len(left), len(right))
@@ -123,17 +123,9 @@ class DataSourcePublisher:
123
123
  set(search_keys.values()) == {SearchKey.IP_RANGE_FROM, SearchKey.IP_RANGE_TO}
124
124
  or set(search_keys.values()) == {SearchKey.IPV6_RANGE_FROM, SearchKey.IPV6_RANGE_TO}
125
125
  or set(search_keys.values()) == {SearchKey.MSISDN_RANGE_FROM, SearchKey.MSISDN_RANGE_TO}
126
+ or snapshot_frequency_days is not None or join_date_abs_limit_days is not None
126
127
  ) and sort_column is None:
127
128
  raise ValidationError("Sort column is required for passed search keys")
128
- if (
129
- set(search_keys.values()) == {SearchKey.PHONE, SearchKey.DATE}
130
- and snapshot_frequency_days is None
131
- and join_date_abs_limit_days is None
132
- ):
133
- raise ValidationError(
134
- "With MSISDN and DATE keys one of the snapshot_frequency_days or"
135
- " join_date_abs_limit_days parameters is required"
136
- )
137
129
  if (
138
130
  set(search_keys.values()) == {SearchKey.PHONE, SearchKey.DATE}
139
131
  or set(search_keys.values()) == {SearchKey.HEM, SearchKey.DATE}
upgini/dataset.py CHANGED
@@ -151,7 +151,9 @@ class Dataset:
151
151
  def etalon_def_checked(self) -> Dict[str, str]:
152
152
  if self.etalon_def is None:
153
153
  self.etalon_def = {
154
- v.value: k for k, v in self.meaning_types_checked.items() if v != FileColumnMeaningType.FEATURE
154
+ v.value: k
155
+ for k, v in self.meaning_types_checked.items()
156
+ if v not in [FileColumnMeaningType.FEATURE, FileColumnMeaningType.DATE_FEATURE]
155
157
  }
156
158
 
157
159
  return self.etalon_def
@@ -76,7 +76,7 @@ from upgini.utils.custom_loss_utils import (
76
76
  )
77
77
  from upgini.utils.cv_utils import CVConfig, get_groups
78
78
  from upgini.utils.datetime_utils import (
79
- DateTimeSearchKeyConverter,
79
+ DateTimeConverter,
80
80
  is_blocked_time_series,
81
81
  is_dates_distribution_valid,
82
82
  is_time_series,
@@ -220,7 +220,9 @@ class FeaturesEnricher(TransformerMixin):
220
220
  cv: CVType | None = None,
221
221
  loss: str | None = None,
222
222
  autodetect_search_keys: bool = True,
223
+ # deprecated, use text_features instead
223
224
  generate_features: list[str] | None = None,
225
+ text_features: list[str] | None = None,
224
226
  columns_for_online_api: list[str] | None = None,
225
227
  round_embeddings: int | None = None,
226
228
  logs_enabled: bool = True,
@@ -305,10 +307,8 @@ class FeaturesEnricher(TransformerMixin):
305
307
  search_task = SearchTask(search_id, rest_client=self.rest_client, logger=self.logger)
306
308
 
307
309
  print(self.bundle.get("search_by_task_id_start"))
308
- trace_id = str(uuid.uuid4())
309
- if self.print_trace_id:
310
- print(f"https://app.datadoghq.eu/logs?query=%40trace_id%3A{trace_id}")
311
- with MDC(trace_id=trace_id):
310
+ trace_id = time.time_ns()
311
+ with MDC(correlation_id=trace_id):
312
312
  try:
313
313
  self.logger.debug(f"FeaturesEnricher created from existing search: {search_id}")
314
314
  self._search_task = search_task.poll_result(trace_id, quiet=True, check_fit=True)
@@ -342,14 +342,14 @@ class FeaturesEnricher(TransformerMixin):
342
342
  self.shared_datasets = shared_datasets
343
343
  if shared_datasets is not None:
344
344
  self.runtime_parameters.properties["shared_datasets"] = ",".join(shared_datasets)
345
- self.generate_features = generate_features
345
+ self.generate_features = text_features or generate_features
346
346
  self.round_embeddings = round_embeddings
347
- if generate_features is not None:
348
- if len(generate_features) > self.GENERATE_FEATURES_LIMIT:
347
+ if self.generate_features is not None:
348
+ if len(self.generate_features) > self.GENERATE_FEATURES_LIMIT:
349
349
  msg = self.bundle.get("too_many_generate_features").format(self.GENERATE_FEATURES_LIMIT)
350
350
  self.logger.error(msg)
351
351
  raise ValidationError(msg)
352
- self.runtime_parameters.properties["generate_features"] = ",".join(generate_features)
352
+ self.runtime_parameters.properties["generate_features"] = ",".join(self.generate_features)
353
353
  if round_embeddings is not None:
354
354
  if not isinstance(round_embeddings, int) or round_embeddings < 0:
355
355
  msg = self.bundle.get("invalid_round_embeddings")
@@ -484,9 +484,9 @@ class FeaturesEnricher(TransformerMixin):
484
484
  stability_agg_func: str, optional (default="max")
485
485
  Function to aggregate stability values. Can be "max", "min", "mean".
486
486
  """
487
- trace_id = str(uuid.uuid4())
487
+ trace_id = time.time_ns()
488
488
  if self.print_trace_id:
489
- print(f"https://app.datadoghq.eu/logs?query=%40trace_id%3A{trace_id}")
489
+ print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
490
490
  start_time = time.time()
491
491
  auto_fe_parameters = AutoFEParameters() if auto_fe_parameters is None else auto_fe_parameters
492
492
  search_progress = SearchProgress(0.0, ProgressStage.START_FIT)
@@ -498,7 +498,7 @@ class FeaturesEnricher(TransformerMixin):
498
498
  progress_bar.progress = search_progress.to_progress_bar()
499
499
  progress_bar.display()
500
500
 
501
- with MDC(trace_id=trace_id):
501
+ with MDC(correlation_id=trace_id):
502
502
  if len(args) > 0:
503
503
  msg = f"WARNING: Unsupported positional arguments for fit: {args}"
504
504
  self.logger.warning(msg)
@@ -643,11 +643,11 @@ class FeaturesEnricher(TransformerMixin):
643
643
 
644
644
  self.warning_counter.reset()
645
645
  auto_fe_parameters = AutoFEParameters() if auto_fe_parameters is None else auto_fe_parameters
646
- trace_id = str(uuid.uuid4())
646
+ trace_id = time.time_ns()
647
647
  if self.print_trace_id:
648
- print(f"https://app.datadoghq.eu/logs?query=%40trace_id%3A{trace_id}")
648
+ print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
649
649
  start_time = time.time()
650
- with MDC(trace_id=trace_id):
650
+ with MDC(correlation_id=trace_id):
651
651
  if len(args) > 0:
652
652
  msg = f"WARNING: Unsupported positional arguments for fit_transform: {args}"
653
653
  self.logger.warning(msg)
@@ -745,8 +745,8 @@ class FeaturesEnricher(TransformerMixin):
745
745
  def transform(
746
746
  self,
747
747
  X: pd.DataFrame,
748
- *args,
749
748
  y: pd.Series | None = None,
749
+ *args,
750
750
  exclude_features_sources: list[str] | None = None,
751
751
  keep_input: bool = True,
752
752
  trace_id: str | None = None,
@@ -787,9 +787,11 @@ class FeaturesEnricher(TransformerMixin):
787
787
  progress_bar.progress = search_progress.to_progress_bar()
788
788
  if new_progress:
789
789
  progress_bar.display()
790
- trace_id = trace_id or str(uuid.uuid4())
790
+ trace_id = trace_id or time.time_ns()
791
+ if self.print_trace_id:
792
+ print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
791
793
  search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
792
- with MDC(trace_id=trace_id, search_id=search_id):
794
+ with MDC(correlation_id=trace_id, search_id=search_id):
793
795
  self.dump_input(trace_id, X)
794
796
  if len(args) > 0:
795
797
  msg = f"WARNING: Unsupported positional arguments for transform: {args}"
@@ -904,10 +906,10 @@ class FeaturesEnricher(TransformerMixin):
904
906
  Dataframe with metrics calculated on train and validation datasets.
905
907
  """
906
908
 
907
- trace_id = trace_id or str(uuid.uuid4())
909
+ trace_id = trace_id or time.time_ns()
908
910
  start_time = time.time()
909
911
  search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
910
- with MDC(trace_id=trace_id, search_id=search_id):
912
+ with MDC(correlation_id=trace_id, search_id=search_id):
911
913
  self.logger.info("Start calculate metrics")
912
914
  if len(args) > 0:
913
915
  msg = f"WARNING: Unsupported positional arguments for calculate_metrics: {args}"
@@ -1415,13 +1417,11 @@ class FeaturesEnricher(TransformerMixin):
1415
1417
  # Find latest eval set or earliest if all eval sets are before train set
1416
1418
  date_column = self._get_date_column(search_keys)
1417
1419
 
1418
- date_converter = DateTimeSearchKeyConverter(
1420
+ date_converter = DateTimeConverter(
1419
1421
  date_column, self.date_format, self.logger, self.bundle, generate_cyclical_features=False
1420
1422
  )
1421
1423
 
1422
- X = date_converter.convert(X)
1423
-
1424
- x_date = X[date_column].dropna()
1424
+ x_date = date_converter.to_date_ms(X).dropna()
1425
1425
  if len(x_date) == 0:
1426
1426
  self.logger.warning("Empty date column in X")
1427
1427
  return []
@@ -1434,8 +1434,7 @@ class FeaturesEnricher(TransformerMixin):
1434
1434
  if date_column not in eval_x.columns:
1435
1435
  self.logger.warning(f"Date column not found in eval_set {i + 1}")
1436
1436
  continue
1437
- eval_x = date_converter.convert(eval_x)
1438
- eval_x_date = eval_x[date_column].dropna()
1437
+ eval_x_date = date_converter.to_date_ms(eval_x).dropna()
1439
1438
  if len(eval_x_date) < 1000:
1440
1439
  self.logger.warning(f"Eval_set {i} has less than 1000 rows. It will be ignored for stability check")
1441
1440
  continue
@@ -1472,8 +1471,7 @@ class FeaturesEnricher(TransformerMixin):
1472
1471
  )
1473
1472
  checking_eval_set_df = checking_eval_set_df.copy()
1474
1473
 
1475
- checking_eval_set_df[date_column] = eval_set_dates[selected_eval_set_idx]
1476
- checking_eval_set_df = date_converter.convert(checking_eval_set_df)
1474
+ checking_eval_set_df[date_column] = date_converter.to_date_ms(eval_set_dates[selected_eval_set_idx].to_frame())
1477
1475
 
1478
1476
  psi_values_sparse = calculate_sparsity_psi(
1479
1477
  checking_eval_set_df, cat_features, date_column, self.logger, model_task_type
@@ -1745,9 +1743,11 @@ class FeaturesEnricher(TransformerMixin):
1745
1743
  not in (
1746
1744
  excluding_search_keys
1747
1745
  + list(self.fit_dropped_features)
1748
- + [DateTimeSearchKeyConverter.DATETIME_COL, SYSTEM_RECORD_ID, ENTITY_SYSTEM_RECORD_ID]
1746
+ + [DateTimeConverter.DATETIME_COL, SYSTEM_RECORD_ID, ENTITY_SYSTEM_RECORD_ID]
1749
1747
  )
1750
1748
  ]
1749
+ if self.baseline_score_column is not None and self.baseline_score_column not in client_features:
1750
+ client_features.append(self.baseline_score_column)
1751
1751
  self.logger.info(f"Client features column on prepare data for metrics: {client_features}")
1752
1752
 
1753
1753
  selected_enriched_features = [c for c in self.feature_names_ if c not in client_features]
@@ -1995,7 +1995,7 @@ class FeaturesEnricher(TransformerMixin):
1995
1995
  date_column = self._get_date_column(search_keys)
1996
1996
  generated_features = []
1997
1997
  if date_column is not None:
1998
- converter = DateTimeSearchKeyConverter(
1998
+ converter = DateTimeConverter(
1999
1999
  date_column,
2000
2000
  self.date_format,
2001
2001
  self.logger,
@@ -2004,6 +2004,7 @@ class FeaturesEnricher(TransformerMixin):
2004
2004
  )
2005
2005
  # Leave original date column values
2006
2006
  df_with_date_features = converter.convert(df, keep_time=True)
2007
+ # TODO check if this is correct
2007
2008
  df_with_date_features[date_column] = df[date_column]
2008
2009
  df = df_with_date_features
2009
2010
  generated_features = converter.generated_features
@@ -2035,8 +2036,8 @@ class FeaturesEnricher(TransformerMixin):
2035
2036
  # Sample after sorting by system_record_id for idempotency
2036
2037
  df.sort_values(by=SYSTEM_RECORD_ID, inplace=True)
2037
2038
 
2038
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
2039
- df = df.drop(columns=DateTimeSearchKeyConverter.DATETIME_COL)
2039
+ if DateTimeConverter.DATETIME_COL in df.columns:
2040
+ df = df.drop(columns=DateTimeConverter.DATETIME_COL)
2040
2041
 
2041
2042
  df = df.rename(columns=columns_renaming)
2042
2043
  generated_features = [columns_renaming.get(c, c) for c in generated_features]
@@ -2388,7 +2389,7 @@ class FeaturesEnricher(TransformerMixin):
2388
2389
  def get_progress(self, trace_id: str | None = None, search_task: SearchTask | None = None) -> SearchProgress:
2389
2390
  search_task = search_task or self._search_task
2390
2391
  if search_task is not None:
2391
- trace_id = trace_id or uuid.uuid4()
2392
+ trace_id = trace_id or time.time_ns()
2392
2393
  return search_task.get_progress(trace_id)
2393
2394
 
2394
2395
  def display_transactional_transform_api(self, only_online_sources=False):
@@ -2416,7 +2417,7 @@ class FeaturesEnricher(TransformerMixin):
2416
2417
  return "12345678"
2417
2418
  return "test_value"
2418
2419
 
2419
- file_metadata = self._search_task.get_file_metadata(str(uuid.uuid4()))
2420
+ file_metadata = self._search_task.get_file_metadata(time.time_ns())
2420
2421
 
2421
2422
  def get_column_meta(column_name: str) -> FileColumnMetadata:
2422
2423
  for c in file_metadata.columns:
@@ -2510,7 +2511,7 @@ if response.status_code == 200:
2510
2511
 
2511
2512
  start_time = time.time()
2512
2513
  search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
2513
- with MDC(trace_id=trace_id, search_id=search_id):
2514
+ with MDC(correlation_id=trace_id, search_id=search_id):
2514
2515
  self.logger.info("Start transform")
2515
2516
 
2516
2517
  validated_X, validated_y, validated_eval_set = self._validate_train_eval(
@@ -2552,10 +2553,15 @@ if response.status_code == 200:
2552
2553
  if transform_usage.has_limit:
2553
2554
  if len(X) > transform_usage.rest_rows:
2554
2555
  rest_rows = max(transform_usage.rest_rows, 0)
2555
- msg = self.bundle.get("transform_usage_warning").format(len(X), rest_rows)
2556
+ bundle_msg = (
2557
+ "transform_usage_warning_registered"
2558
+ if self.__is_registered
2559
+ else "transform_usage_warning_demo"
2560
+ )
2561
+ msg = self.bundle.get(bundle_msg).format(len(X), rest_rows)
2556
2562
  self.logger.warning(msg)
2557
2563
  print(msg)
2558
- show_request_quote_button()
2564
+ show_request_quote_button(is_registered=self.__is_registered)
2559
2565
  return None, {}, [], {}
2560
2566
  else:
2561
2567
  msg = self.bundle.get("transform_usage_info").format(
@@ -2599,7 +2605,7 @@ if response.status_code == 200:
2599
2605
  generated_features = []
2600
2606
  date_column = self._get_date_column(search_keys)
2601
2607
  if date_column is not None:
2602
- converter = DateTimeSearchKeyConverter(
2608
+ converter = DateTimeConverter(
2603
2609
  date_column,
2604
2610
  self.date_format,
2605
2611
  self.logger,
@@ -2656,8 +2662,8 @@ if response.status_code == 200:
2656
2662
 
2657
2663
  # Don't pass all features in backend on transform
2658
2664
  runtime_parameters = self._get_copy_of_runtime_parameters()
2659
- features_for_transform = self._search_task.get_features_for_transform() or []
2660
- if len(features_for_transform) > 0:
2665
+ features_for_transform = self._search_task.get_features_for_transform()
2666
+ if features_for_transform:
2661
2667
  missing_features_for_transform = [
2662
2668
  columns_renaming.get(f) or f for f in features_for_transform if f not in df.columns
2663
2669
  ]
@@ -2668,7 +2674,10 @@ if response.status_code == 200:
2668
2674
  raise ValidationError(
2669
2675
  self.bundle.get("missing_features_for_transform").format(missing_features_for_transform)
2670
2676
  )
2671
- runtime_parameters.properties["features_for_embeddings"] = ",".join(features_for_transform)
2677
+ features_for_embeddings = self._search_task.get_features_for_embeddings()
2678
+ if features_for_embeddings:
2679
+ runtime_parameters.properties["features_for_embeddings"] = ",".join(features_for_embeddings)
2680
+ features_for_transform = [f for f in features_for_transform if f not in search_keys.keys()]
2672
2681
 
2673
2682
  columns_for_system_record_id = sorted(list(search_keys.keys()) + features_for_transform)
2674
2683
 
@@ -2729,8 +2738,22 @@ if response.status_code == 200:
2729
2738
  )
2730
2739
  df = converter.convert(df)
2731
2740
 
2741
+ date_features = []
2742
+ for col in features_for_transform:
2743
+ if DateTimeConverter(col).is_datetime(df):
2744
+ df[col] = DateTimeConverter(col).to_date_string(df)
2745
+ date_features.append(col)
2746
+
2732
2747
  meaning_types = {}
2733
- meaning_types.update({col: FileColumnMeaningType.FEATURE for col in features_for_transform})
2748
+ meaning_types.update(
2749
+ {
2750
+ col: FileColumnMeaningType.FEATURE
2751
+ for col in features_for_transform
2752
+ if col not in date_features and col not in generated_features
2753
+ }
2754
+ )
2755
+ meaning_types.update({col: FileColumnMeaningType.GENERATED_FEATURE for col in generated_features})
2756
+ meaning_types.update({col: FileColumnMeaningType.DATE_FEATURE for col in date_features})
2734
2757
  meaning_types.update({col: key.value for col, key in search_keys.items()})
2735
2758
 
2736
2759
  features_not_to_pass.extend(
@@ -2743,8 +2766,8 @@ if response.status_code == 200:
2743
2766
  ]
2744
2767
  )
2745
2768
 
2746
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
2747
- df = df.drop(columns=DateTimeSearchKeyConverter.DATETIME_COL)
2769
+ if DateTimeConverter.DATETIME_COL in df.columns:
2770
+ df = df.drop(columns=DateTimeConverter.DATETIME_COL)
2748
2771
 
2749
2772
  # search keys might be changed after explode
2750
2773
  columns_for_system_record_id = sorted(list(search_keys.keys()) + features_for_transform)
@@ -2926,6 +2949,7 @@ if response.status_code == 200:
2926
2949
  or c in self.search_keys
2927
2950
  or c in (self.id_columns or [])
2928
2951
  or c in [EVAL_SET_INDEX, TARGET] # transform for metrics calculation
2952
+ or c == self.baseline_score_column
2929
2953
  ]
2930
2954
  else:
2931
2955
  selected_input_columns = []
@@ -3124,7 +3148,7 @@ if response.status_code == 200:
3124
3148
  self.fit_generated_features = []
3125
3149
 
3126
3150
  if has_date:
3127
- converter = DateTimeSearchKeyConverter(
3151
+ converter = DateTimeConverter(
3128
3152
  maybe_date_column,
3129
3153
  self.date_format,
3130
3154
  self.logger,
@@ -3177,8 +3201,8 @@ if response.status_code == 200:
3177
3201
  self.TARGET_NAME,
3178
3202
  EVAL_SET_INDEX,
3179
3203
  ] + list(self.fit_search_keys.keys())
3180
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
3181
- non_feature_columns.append(DateTimeSearchKeyConverter.DATETIME_COL)
3204
+ if DateTimeConverter.DATETIME_COL in df.columns:
3205
+ non_feature_columns.append(DateTimeConverter.DATETIME_COL)
3182
3206
 
3183
3207
  features_columns = [c for c in df.columns if c not in non_feature_columns]
3184
3208
 
@@ -3265,15 +3289,28 @@ if response.status_code == 200:
3265
3289
  ENTITY_SYSTEM_RECORD_ID,
3266
3290
  SEARCH_KEY_UNNEST,
3267
3291
  ] + list(self.fit_search_keys.keys())
3268
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
3269
- non_feature_columns.append(DateTimeSearchKeyConverter.DATETIME_COL)
3292
+ if DateTimeConverter.DATETIME_COL in df.columns:
3293
+ non_feature_columns.append(DateTimeConverter.DATETIME_COL)
3270
3294
 
3271
3295
  features_columns = [c for c in df.columns if c not in non_feature_columns]
3272
3296
 
3297
+ # find date features
3298
+ date_features = []
3299
+ for col in features_columns:
3300
+ if DateTimeConverter(col).is_datetime(df):
3301
+ df[col] = DateTimeConverter(col).to_date_string(df)
3302
+ date_features.append(col)
3303
+
3273
3304
  meaning_types = {
3274
3305
  **{col: key.value for col, key in self.fit_search_keys.items()},
3275
- **{str(c): FileColumnMeaningType.FEATURE for c in df.columns if c not in non_feature_columns},
3306
+ **{
3307
+ str(c): FileColumnMeaningType.FEATURE
3308
+ for c in df.columns
3309
+ if c not in non_feature_columns and c not in date_features and c not in self.fit_generated_features
3310
+ },
3276
3311
  }
3312
+ meaning_types.update({col: FileColumnMeaningType.GENERATED_FEATURE for col in self.fit_generated_features})
3313
+ meaning_types.update({col: FileColumnMeaningType.DATE_FEATURE for col in date_features})
3277
3314
  meaning_types[self.TARGET_NAME] = FileColumnMeaningType.TARGET
3278
3315
  meaning_types[ENTITY_SYSTEM_RECORD_ID] = FileColumnMeaningType.ENTITY_SYSTEM_RECORD_ID
3279
3316
  if SEARCH_KEY_UNNEST in df.columns:
@@ -3294,8 +3331,8 @@ if response.status_code == 200:
3294
3331
  self.bundle,
3295
3332
  )
3296
3333
 
3297
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
3298
- df = df.drop(columns=DateTimeSearchKeyConverter.DATETIME_COL)
3334
+ if DateTimeConverter.DATETIME_COL in df.columns:
3335
+ df = df.drop(columns=DateTimeConverter.DATETIME_COL)
3299
3336
 
3300
3337
  meaning_types[SYSTEM_RECORD_ID] = FileColumnMeaningType.SYSTEM_RECORD_ID
3301
3338
 
@@ -3332,7 +3369,14 @@ if response.status_code == 200:
3332
3369
  dataset.columns_renaming = self.fit_columns_renaming
3333
3370
 
3334
3371
  self.passed_features = [
3335
- column for column, meaning_type in meaning_types.items() if meaning_type == FileColumnMeaningType.FEATURE
3372
+ column
3373
+ for column, meaning_type in meaning_types.items()
3374
+ if meaning_type
3375
+ in [
3376
+ FileColumnMeaningType.FEATURE,
3377
+ FileColumnMeaningType.DATE_FEATURE,
3378
+ FileColumnMeaningType.GENERATED_FEATURE,
3379
+ ]
3336
3380
  ]
3337
3381
 
3338
3382
  self._search_task = dataset.search(
@@ -3860,8 +3904,8 @@ if response.status_code == 200:
3860
3904
  X = Xy.drop(columns=TARGET)
3861
3905
  y = Xy[TARGET].copy()
3862
3906
 
3863
- if DateTimeSearchKeyConverter.DATETIME_COL in X.columns:
3864
- X.drop(columns=DateTimeSearchKeyConverter.DATETIME_COL, inplace=True)
3907
+ if DateTimeConverter.DATETIME_COL in X.columns:
3908
+ X.drop(columns=DateTimeConverter.DATETIME_COL, inplace=True)
3865
3909
 
3866
3910
  return X, y
3867
3911
 
@@ -3871,8 +3915,8 @@ if response.status_code == 200:
3871
3915
  X: pd.DataFrame, y: pd.Series, search_keys: dict[str, SearchKey], cv: CVType | None
3872
3916
  ) -> tuple[pd.DataFrame, pd.Series]:
3873
3917
  if cv not in [CVType.time_series, CVType.blocked_time_series]:
3874
- if DateTimeSearchKeyConverter.DATETIME_COL in X.columns:
3875
- date_column = DateTimeSearchKeyConverter.DATETIME_COL
3918
+ if DateTimeConverter.DATETIME_COL in X.columns:
3919
+ date_column = DateTimeConverter.DATETIME_COL
3876
3920
  else:
3877
3921
  date_column = FeaturesEnricher._get_date_column(search_keys)
3878
3922
  sort_columns = [date_column] if date_column is not None else []
@@ -3900,8 +3944,8 @@ if response.status_code == 200:
3900
3944
 
3901
3945
  y = Xy[TARGET].copy()
3902
3946
 
3903
- if DateTimeSearchKeyConverter.DATETIME_COL in X.columns:
3904
- X.drop(columns=DateTimeSearchKeyConverter.DATETIME_COL, inplace=True)
3947
+ if DateTimeConverter.DATETIME_COL in X.columns:
3948
+ X.drop(columns=DateTimeConverter.DATETIME_COL, inplace=True)
3905
3949
 
3906
3950
  return X, y
3907
3951
 
@@ -3980,12 +4024,10 @@ if response.status_code == 200:
3980
4024
  maybe_date_col = SearchKey.find_key(self.search_keys, [SearchKey.DATE, SearchKey.DATETIME])
3981
4025
  if X is not None and maybe_date_col is not None and maybe_date_col in X.columns:
3982
4026
  # TODO cast date column to single dtype
3983
- date_converter = DateTimeSearchKeyConverter(
3984
- maybe_date_col, self.date_format, generate_cyclical_features=False
3985
- )
3986
- converted_X = date_converter.convert(X)
3987
- min_date = converted_X[maybe_date_col].min()
3988
- max_date = converted_X[maybe_date_col].max()
4027
+ date_converter = DateTimeConverter(maybe_date_col, self.date_format, generate_cyclical_features=False)
4028
+ date_col_values = date_converter.to_date_ms(X)
4029
+ min_date = date_col_values.min()
4030
+ max_date = date_col_values.max()
3989
4031
  self.logger.info(f"Dates interval is ({min_date}, {max_date})")
3990
4032
 
3991
4033
  except Exception:
@@ -4022,7 +4064,7 @@ if response.status_code == 200:
4022
4064
  self.__log_warning(bundle.get("current_date_added"))
4023
4065
  df[FeaturesEnricher.CURRENT_DATE] = datetime.date.today()
4024
4066
  search_keys[FeaturesEnricher.CURRENT_DATE] = SearchKey.DATE
4025
- converter = DateTimeSearchKeyConverter(FeaturesEnricher.CURRENT_DATE, generate_cyclical_features=False)
4067
+ converter = DateTimeConverter(FeaturesEnricher.CURRENT_DATE, generate_cyclical_features=False)
4026
4068
  df = converter.convert(df)
4027
4069
  return df
4028
4070
 
@@ -4153,8 +4195,8 @@ if response.status_code == 200:
4153
4195
  "__target",
4154
4196
  ENTITY_SYSTEM_RECORD_ID,
4155
4197
  ]
4156
- if DateTimeSearchKeyConverter.DATETIME_COL in df.columns:
4157
- date_column = DateTimeSearchKeyConverter.DATETIME_COL
4198
+ if DateTimeConverter.DATETIME_COL in df.columns:
4199
+ date_column = DateTimeConverter.DATETIME_COL
4158
4200
  sort_exclude_columns.append(FeaturesEnricher._get_date_column(search_keys))
4159
4201
  else:
4160
4202
  date_column = FeaturesEnricher._get_date_column(search_keys)
@@ -4399,7 +4441,9 @@ if response.status_code == 200:
4399
4441
  raise Exception(self.bundle.get("missing_features_meta"))
4400
4442
  features_meta = deepcopy(features_meta)
4401
4443
 
4402
- original_names_dict = {c.name: c.originalName for c in self._search_task.get_file_metadata(trace_id).columns}
4444
+ file_metadata_columns = self._search_task.get_file_metadata(trace_id).columns
4445
+ file_meta_by_orig_name = {c.originalName: c for c in file_metadata_columns}
4446
+ original_names_dict = {c.name: c.originalName for c in file_metadata_columns}
4403
4447
  features_df = self._search_task.get_all_initial_raw_features(trace_id, metrics_calculation=True)
4404
4448
 
4405
4449
  # To be sure that names with hash suffixes
@@ -4419,7 +4463,11 @@ if response.status_code == 200:
4419
4463
  original_name = original_names_dict.get(feature_meta.name, feature_meta.name)
4420
4464
  feature_meta.name = original_name
4421
4465
 
4422
- is_client_feature = original_name in clients_features_df.columns
4466
+ file_meta = file_meta_by_orig_name.get(original_name)
4467
+ is_generated_feature = (
4468
+ file_meta is not None and file_meta.meaningType == FileColumnMeaningType.GENERATED_FEATURE
4469
+ )
4470
+ is_client_feature = original_name in clients_features_df.columns and not is_generated_feature
4423
4471
 
4424
4472
  if selected_features is not None and feature_meta.name not in selected_features:
4425
4473
  self.logger.info(f"Feature {feature_meta.name} is not selected before and skipped")
@@ -4442,9 +4490,13 @@ if response.status_code == 200:
4442
4490
 
4443
4491
  for feature_meta in selected_features_meta:
4444
4492
  original_name = original_names_dict.get(feature_meta.name, feature_meta.name)
4445
- is_client_feature = original_name in clients_features_df.columns
4493
+ file_meta = file_meta_by_orig_name.get(original_name)
4494
+ is_generated_feature = (
4495
+ file_meta is not None and file_meta.meaningType == FileColumnMeaningType.GENERATED_FEATURE
4496
+ )
4497
+ is_client_feature = original_name in clients_features_df.columns and not is_generated_feature
4446
4498
 
4447
- if not is_client_feature:
4499
+ if not is_client_feature and not is_generated_feature:
4448
4500
  self.external_source_feature_names.append(original_name)
4449
4501
 
4450
4502
  if self.psi_values is not None:
@@ -4475,9 +4527,10 @@ if response.status_code == 200:
4475
4527
 
4476
4528
  self.feature_names_.append(feature_meta.name)
4477
4529
  self.feature_importances_.append(_round_shap_value(feature_meta.shap_value))
4478
-
4479
4530
  df_for_sample = features_df if feature_meta.name in features_df.columns else clients_features_df
4480
- feature_info = FeatureInfo.from_metadata(feature_meta, df_for_sample, is_client_feature)
4531
+ feature_info = FeatureInfo.from_metadata(
4532
+ feature_meta, df_for_sample, is_client_feature, is_generated_feature
4533
+ )
4481
4534
  features_info.append(feature_info.to_row(self.bundle))
4482
4535
  features_info_without_links.append(feature_info.to_row_without_links(self.bundle))
4483
4536
  internal_features_info.append(feature_info.to_internal_row(self.bundle))
@@ -4488,7 +4541,7 @@ if response.status_code == 200:
4488
4541
  if len(features_info) > 0:
4489
4542
  self.features_info = pd.DataFrame(features_info)
4490
4543
  # If all psi values are 0 or null, drop psi column
4491
- if self.features_info[self.bundle.get("features_info_psi")].fillna(0.0).eq(0.0).all():
4544
+ if self.features_info[self.bundle.get("features_info_psi")].astype(np.float64).fillna(0.0).eq(0.0).all():
4492
4545
  self.features_info.drop(columns=[self.bundle.get("features_info_psi")], inplace=True)
4493
4546
  self._features_info_without_links = pd.DataFrame(features_info_without_links)
4494
4547
  self._internal_features_info = pd.DataFrame(internal_features_info)
@@ -4954,7 +5007,7 @@ if response.status_code == 200:
4954
5007
  eval_set: tuple | None = None,
4955
5008
  ):
4956
5009
  def dump_task(X_, y_, eval_set_):
4957
- with MDC(trace_id=trace_id):
5010
+ with MDC(correlation_id=trace_id):
4958
5011
  try:
4959
5012
  if isinstance(X_, pd.Series):
4960
5013
  X_ = X_.to_frame()
upgini/metadata.py CHANGED
@@ -36,6 +36,8 @@ class FileColumnMeaningType(Enum):
36
36
  SCORE = "SCORE"
37
37
  TARGET = "TARGET"
38
38
  FEATURE = "FEATURE"
39
+ GENERATED_FEATURE = "GENERATED_FEATURE"
40
+ DATE_FEATURE = "DATE_FEATURE"
39
41
  CUSTOM_KEY = "CUSTOM_KEY"
40
42
  COUNTRY = "COUNTRY"
41
43
  POSTAL_CODE = "POSTAL_CODE"
@@ -25,7 +25,7 @@ from upgini.metadata import (
25
25
  from upgini.resource_bundle import ResourceBundle, get_custom_bundle
26
26
  from upgini.utils import find_numbers_with_decimal_comma
27
27
  from upgini.utils.country_utils import CountrySearchKeyConverter
28
- from upgini.utils.datetime_utils import DateTimeSearchKeyConverter
28
+ from upgini.utils.datetime_utils import DateTimeConverter
29
29
  from upgini.utils.ip_utils import IpSearchKeyConverter
30
30
  from upgini.utils.phone_utils import PhoneSearchKeyConverter
31
31
  from upgini.utils.postal_code_utils import PostalCodeSearchKeyConverter
@@ -89,7 +89,7 @@ class Normalizer:
89
89
  SYSTEM_RECORD_ID,
90
90
  ENTITY_SYSTEM_RECORD_ID,
91
91
  SEARCH_KEY_UNNEST,
92
- DateTimeSearchKeyConverter.DATETIME_COL,
92
+ DateTimeConverter.DATETIME_COL,
93
93
  ]:
94
94
  self.columns_renaming[column] = column
95
95
  new_columns.append(column)
@@ -12,7 +12,8 @@ polling_unregister_information=We'll send email notification once it's completed
12
12
  ads_upload_finish=Thank you for your submission!\nWe'll check your data sharing proposal and get back to you
13
13
  demo_dataset_info=Demo training dataset detected. Registration for an API key is not required.\n
14
14
  transform_usage_info=You use Trial access to Upgini data enrichment. Limit for Trial: {} rows. You have already enriched: {} rows.
15
- transform_usage_warning=You are trying to launch enrichment for {} rows, which will exceed the rest limit {}.
15
+ transform_usage_warning_demo=Unregistered-user limit: {} rows remaining; you requested {}.
16
+ transform_usage_warning_registered=Free tier limit: {} rows remaining; you requested {}.
16
17
 
17
18
  # Warnings
18
19
  support_link=https://upgini.com/support
upgini/search_task.py CHANGED
@@ -165,10 +165,21 @@ class SearchTask:
165
165
 
166
166
  return list(zero_hit_search_keys)
167
167
 
168
- def get_features_for_transform(self) -> Optional[List[str]]:
168
+ def get_features_for_embeddings(self) -> Optional[List[str]]:
169
169
  if self.provider_metadata_v2 is None:
170
170
  return None
171
171
 
172
+ features_for_transform = set()
173
+ for meta in self.provider_metadata_v2:
174
+ if meta.features_used_for_embeddings is not None:
175
+ features_for_transform.update(meta.features_used_for_embeddings)
176
+
177
+ return list(features_for_transform)
178
+
179
+ def get_features_for_transform(self) -> List[str]:
180
+ if self.provider_metadata_v2 is None:
181
+ return []
182
+
172
183
  features_for_transform = set()
173
184
  for meta in self.provider_metadata_v2:
174
185
  if meta.features_used_for_embeddings is not None:
@@ -30,7 +30,7 @@ DATE_FORMATS = [
30
30
  DATETIME_PATTERN = r"^[\d\s\.\-:T/+]+$"
31
31
 
32
32
 
33
- class DateTimeSearchKeyConverter:
33
+ class DateTimeConverter:
34
34
  DATETIME_COL = "_date_time"
35
35
  # MIN_SUPPORTED_DATE_TS = datetime.datetime(1999, 12, 31) # 946684800000 # 2000-01-01
36
36
  MIN_SUPPORTED_DATE_TS = pd.to_datetime(datetime.datetime(1999, 12, 31)).tz_localize(None)
@@ -73,41 +73,99 @@ class DateTimeSearchKeyConverter:
73
73
  except Exception:
74
74
  return None
75
75
 
76
- def convert(self, df: pd.DataFrame, keep_time=False) -> pd.DataFrame:
77
- if len(df) == 0:
78
- return df
76
+ def is_datetime(self, df: pd.DataFrame) -> bool:
77
+ if len(df) == 0 or df[self.date_column].isna().all():
78
+ return False
79
+
80
+ if pd.api.types.is_datetime64_any_dtype(df[self.date_column]):
81
+ return True
82
+
83
+ parsed = self.parse_datetime(df, raise_errors=False)
84
+ return parsed is not None and not parsed.isna().all()
79
85
 
86
+ def parse_datetime(self, df: pd.DataFrame, raise_errors=True) -> pd.Series | None:
80
87
  df = df.copy()
81
- if df[self.date_column].apply(lambda x: isinstance(x, datetime.datetime)).all():
82
- df[self.date_column] = df[self.date_column].apply(lambda x: x.replace(tzinfo=None))
83
- elif isinstance(df[self.date_column].values[0], datetime.date):
84
- df[self.date_column] = pd.to_datetime(df[self.date_column], errors="coerce")
85
- elif isinstance(df[self.date_column].dtype, pd.PeriodDtype):
86
- df[self.date_column] = df[self.date_column].dt.to_timestamp()
87
- elif is_numeric_dtype(df[self.date_column]):
88
- # 315532801 - 2524608001 - seconds
89
- # 315532801000 - 2524608001000 - milliseconds
90
- # 315532801000000 - 2524608001000000 - microseconds
91
- # 315532801000000000 - 2524608001000000000 - nanoseconds
92
- if df[self.date_column].apply(lambda x: 10**16 < x).all():
93
- df[self.date_column] = pd.to_datetime(df[self.date_column], unit="ns")
94
- elif df[self.date_column].apply(lambda x: 10**14 < x < 10**16).all():
95
- df[self.date_column] = pd.to_datetime(df[self.date_column], unit="us")
96
- elif df[self.date_column].apply(lambda x: 10**11 < x < 10**14).all():
97
- df[self.date_column] = pd.to_datetime(df[self.date_column], unit="ms")
98
- elif df[self.date_column].apply(lambda x: 0 < x < 10**11).all():
99
- df[self.date_column] = pd.to_datetime(df[self.date_column], unit="s")
88
+ if len(df) == 0 or df[self.date_column].isna().all():
89
+ return None
90
+
91
+ try:
92
+ if df[self.date_column].apply(lambda x: isinstance(x, datetime.datetime)).all():
93
+ parsed_datetime = df[self.date_column].apply(lambda x: x.replace(tzinfo=None))
94
+ elif isinstance(df[self.date_column].dropna().values[0], datetime.date):
95
+ parsed_datetime = pd.to_datetime(df[self.date_column], errors="coerce")
96
+ elif isinstance(df[self.date_column].dtype, pd.PeriodDtype):
97
+ parsed_datetime = df[self.date_column].dt.to_timestamp()
98
+ elif is_numeric_dtype(df[self.date_column]):
99
+ # 315532801 - 2524608001 - seconds
100
+ # 315532801000 - 2524608001000 - milliseconds
101
+ # 315532801000000 - 2524608001000000 - microseconds
102
+ # 315532801000000000 - 2524608001000000000 - nanoseconds
103
+ if df[self.date_column].apply(lambda x: 10**16 < x).all():
104
+ parsed_datetime = pd.to_datetime(df[self.date_column], unit="ns")
105
+ elif df[self.date_column].apply(lambda x: 10**14 < x < 10**16).all():
106
+ parsed_datetime = pd.to_datetime(df[self.date_column], unit="us")
107
+ elif df[self.date_column].apply(lambda x: 10**11 < x < 10**14).all():
108
+ parsed_datetime = pd.to_datetime(df[self.date_column], unit="ms")
109
+ elif df[self.date_column].apply(lambda x: 10**8 < x < 10**11).all():
110
+ parsed_datetime = pd.to_datetime(df[self.date_column], unit="s")
111
+ else:
112
+ msg = self.bundle.get("unsupported_date_type").format(self.date_column)
113
+ if raise_errors:
114
+ raise ValidationError(msg)
115
+ else:
116
+ return None
117
+ else:
118
+ df[self.date_column] = df[self.date_column].astype("string").apply(self.clean_date)
119
+ parsed_datetime = self.parse_string_date(df, raise_errors)
120
+ parsed_datetime = parsed_datetime.dt.tz_localize(None)
121
+ return parsed_datetime
122
+ except Exception as e:
123
+ if raise_errors:
124
+ raise ValidationError(e)
100
125
  else:
101
- msg = self.bundle.get("unsupported_date_type").format(self.date_column)
102
- raise ValidationError(msg)
126
+ return None
127
+
128
+ def to_date_string(self, df: pd.DataFrame) -> pd.Series:
129
+ parsed_datetime = self.parse_datetime(df)
130
+ if parsed_datetime is None:
131
+ return df[self.date_column]
132
+ return parsed_datetime.dt.strftime("%Y-%m-%d")
133
+
134
+ def to_date_ms(self, df: pd.DataFrame) -> pd.Series:
135
+ parsed_datetime = self.parse_datetime(df)
136
+ if parsed_datetime is None:
137
+ return df[self.date_column]
138
+ return self.convert_datetime_to_date_ms(parsed_datetime)
139
+
140
+ def convert_datetime_to_datetime_ms(self, date_col: pd.Series) -> pd.Series:
141
+ if date_col.dt.unit == "ns":
142
+ date_col = date_col.astype(np.int64) // 1_000_000
143
+ elif date_col.dt.unit == "us":
144
+ date_col = date_col.astype(np.int64) // 1_000
145
+ elif date_col.dt.unit == "ms":
146
+ date_col = date_col.astype(np.int64)
147
+ elif date_col.dt.unit == "s":
148
+ date_col = date_col.astype(np.int64) * 1_000
103
149
  else:
104
- df[self.date_column] = df[self.date_column].astype("string").apply(self.clean_date)
105
- df[self.date_column] = self.parse_date(df)
150
+ raise ValueError(f"Unsupported date unit: {date_col.dt.unit}")
151
+
152
+ return date_col.apply(self._int_to_opt).astype("Int64")
153
+
154
+ def convert_datetime_to_date_ms(self, date_col: pd.Series) -> pd.Series:
155
+ date_col = date_col.dt.floor("D")
156
+ return self.convert_datetime_to_datetime_ms(date_col)
157
+
158
+ def convert(self, df: pd.DataFrame, keep_time=False) -> pd.DataFrame:
159
+ df = df.copy()
160
+ parsed_datetime = self.parse_datetime(df)
161
+ if parsed_datetime is None:
162
+ return df
163
+
164
+ df[self.date_column] = parsed_datetime
106
165
 
107
166
  # If column with date is datetime then extract seconds of the day and minute of the hour
108
167
  # as additional features
109
168
  seconds = "datetime_seconds"
110
- df[self.date_column] = df[self.date_column].dt.tz_localize(None)
111
169
 
112
170
  df = self.clean_old_dates(df)
113
171
 
@@ -182,21 +240,22 @@ class DateTimeSearchKeyConverter:
182
240
  df.drop(columns=seconds, inplace=True)
183
241
 
184
242
  if keep_time:
185
- df[self.DATETIME_COL] = df[self.date_column].astype(np.int64) // 1_000_000
186
- df[self.DATETIME_COL] = df[self.DATETIME_COL].apply(self._int_to_opt).astype("Int64")
187
- df[self.date_column] = df[self.date_column].dt.floor("D").astype(np.int64) // 1_000_000
188
- df[self.date_column] = df[self.date_column].apply(self._int_to_opt).astype("Int64")
243
+ df[self.DATETIME_COL] = self.convert_datetime_to_datetime_ms(df[self.date_column])
244
+ df[self.date_column] = self.convert_datetime_to_date_ms(df[self.date_column])
189
245
 
190
246
  self.logger.info(f"Date after convertion to timestamp: {df[self.date_column]}")
191
247
 
192
248
  return df
193
249
 
194
- def parse_date(self, df: pd.DataFrame):
250
+ def parse_string_date(self, df: pd.DataFrame, raise_errors=True) -> pd.Series | None:
195
251
  if self.date_format is not None:
196
252
  try:
197
253
  return pd.to_datetime(df[self.date_column], format=self.date_format)
198
254
  except ValueError as e:
199
- raise ValidationError(e)
255
+ if raise_errors:
256
+ raise ValidationError(e)
257
+ else:
258
+ return None
200
259
  else:
201
260
  for date_format in DATE_FORMATS:
202
261
  try:
@@ -204,9 +263,17 @@ class DateTimeSearchKeyConverter:
204
263
  except ValueError:
205
264
  pass
206
265
  try:
207
- return pd.to_datetime(df[self.date_column])
266
+ # Suppress warning for intentional fallback to dateutil parsing
267
+ import warnings
268
+
269
+ with warnings.catch_warnings():
270
+ warnings.filterwarnings("ignore", message="Could not infer format")
271
+ return pd.to_datetime(df[self.date_column])
208
272
  except ValueError:
209
- raise ValidationError(self.bundle.get("invalid_date_format").format(self.date_column))
273
+ if raise_errors:
274
+ raise ValidationError(self.bundle.get("invalid_date_format").format(self.date_column))
275
+ else:
276
+ return None
210
277
 
211
278
  def clean_old_dates(self, df: pd.DataFrame) -> pd.DataFrame:
212
279
  condition = df[self.date_column] <= self.MIN_SUPPORTED_DATE_TS
@@ -14,7 +14,7 @@ from upgini.metadata import (
14
14
  SearchKey,
15
15
  )
16
16
  from upgini.resource_bundle import ResourceBundle, get_custom_bundle
17
- from upgini.utils.datetime_utils import DateTimeSearchKeyConverter
17
+ from upgini.utils.datetime_utils import DateTimeConverter
18
18
  from upgini.utils.target_utils import define_task
19
19
 
20
20
 
@@ -104,7 +104,7 @@ def remove_fintech_duplicates(
104
104
  sub_df = pd.merge(sub_df, nonunique_target_rows, on=personal_cols)
105
105
 
106
106
  # Convert date columns for further checks
107
- sub_df = DateTimeSearchKeyConverter(
107
+ sub_df = DateTimeConverter(
108
108
  date_col, date_format=date_format, logger=logger, bundle=bundle, generate_cyclical_features=False
109
109
  ).convert(sub_df)
110
110
  grouped_by_personal_cols = sub_df.groupby(personal_cols, group_keys=False)
@@ -339,17 +339,54 @@ def show_button_download_pdf(
339
339
  return display(HTML(html), display_id=display_id)
340
340
 
341
341
 
342
- def show_request_quote_button():
342
+ def show_request_quote_button(is_registered: bool):
343
343
  if not ipython_available():
344
- print("https://upgini.com/request-a-quote")
344
+ if is_registered:
345
+ print("https://upgini.com/request-a-quote")
346
+ else:
347
+ print("https://profile.upgini.com/login")
345
348
  else:
346
- import ipywidgets as widgets
347
- from IPython.display import Javascript, display
348
-
349
- button = widgets.Button(description="Request a quote", button_style="danger")
349
+ from IPython.display import HTML, display, Javascript
350
+ from ipywidgets import Layout, Button
351
+
352
+ if is_registered:
353
+ display(HTML("""
354
+ <style>
355
+ button.custom-button {
356
+ border: 1px solid black !important;
357
+ background: white !important;
358
+ color: black !important;
359
+ white-space: nowrap;
360
+ }
361
+ </style>
362
+ """))
363
+ description = "Request a quote"
364
+ tooltip = "Ask a quote"
365
+ url = "https://upgini.com/request-a-quote"
366
+ else:
367
+ display(HTML("""
368
+ <style>
369
+ button.custom-button {
370
+ border: 1px solid #d00 !important;
371
+ background: #fff !important;
372
+ color: #d00 !important;
373
+ white-space: nowrap;
374
+ }
375
+ </style>
376
+ """))
377
+ description = "Get an API KEY"
378
+ tooltip = "Register"
379
+ url = "https://profile.upgini.com/login"
380
+
381
+ button = Button(
382
+ description=description,
383
+ layout=Layout(width='auto'),
384
+ tooltip=tooltip
385
+ )
386
+ button.add_class("custom-button")
350
387
 
351
388
  def on_button_clicked(b):
352
- display(Javascript('window.open("https://upgini.com/request-a-quote");'))
389
+ display(Javascript('window.open("' + url + '");'))
353
390
 
354
391
  button.on_click(on_button_clicked)
355
392
 
@@ -31,7 +31,10 @@ class FeatureInfo:
31
31
 
32
32
  @staticmethod
33
33
  def from_metadata(
34
- feature_meta: FeaturesMetadataV2, data: Optional[pd.DataFrame], is_client_feature: bool
34
+ feature_meta: FeaturesMetadataV2,
35
+ data: Optional[pd.DataFrame],
36
+ is_client_feature: bool,
37
+ is_generated_feature: bool,
35
38
  ) -> "FeatureInfo":
36
39
  return FeatureInfo(
37
40
  name=_get_name(feature_meta),
@@ -41,8 +44,8 @@ class FeatureInfo:
41
44
  value_preview=_get_feature_sample(feature_meta, data),
42
45
  provider=_get_provider(feature_meta, is_client_feature),
43
46
  internal_provider=_get_internal_provider(feature_meta, is_client_feature),
44
- source=_get_source(feature_meta, is_client_feature),
45
- internal_source=_get_internal_source(feature_meta, is_client_feature),
47
+ source=_get_source(feature_meta, is_client_feature, is_generated_feature),
48
+ internal_source=_get_internal_source(feature_meta, is_client_feature, is_generated_feature),
46
49
  update_frequency=feature_meta.update_frequency,
47
50
  commercial_schema=feature_meta.commercial_schema,
48
51
  doc_link=feature_meta.doc_link,
@@ -139,22 +142,30 @@ def _get_internal_provider(feature_meta: FeaturesMetadataV2, is_client_feature:
139
142
  return "" if is_client_feature else (feature_meta.data_provider or "Upgini")
140
143
 
141
144
 
142
- def _get_source(feature_meta: FeaturesMetadataV2, is_client_feature: bool) -> str:
145
+ def _get_source(feature_meta: FeaturesMetadataV2, is_client_feature: bool, is_generated_feature: bool) -> str:
146
+ if is_generated_feature:
147
+ return "AutoFE: features from Training dataset"
148
+
143
149
  sources = _list_or_single(feature_meta.data_sources, feature_meta.data_source)
144
150
  source_links = _list_or_single(feature_meta.data_source_links, feature_meta.data_source_link)
145
151
  if sources:
146
152
  source = _make_links(sources, source_links)
147
153
  else:
148
- source = _get_internal_source(feature_meta, is_client_feature)
154
+ source = _get_internal_source(feature_meta, is_client_feature, is_generated_feature)
149
155
  return source
150
156
 
151
157
 
152
- def _get_internal_source(feature_meta: FeaturesMetadataV2, is_client_feature: bool) -> str:
158
+ def _get_internal_source(feature_meta: FeaturesMetadataV2, is_client_feature: bool, is_generated_feature: bool) -> str:
159
+ if is_generated_feature:
160
+ return "AutoFE: features from Training dataset"
161
+
153
162
  sources = _list_or_single(feature_meta.data_sources, feature_meta.data_source)
154
163
  if sources:
155
164
  return ", ".join(sources)
165
+ elif feature_meta.data_source:
166
+ return feature_meta.data_source
156
167
  else:
157
- return feature_meta.data_source or (
168
+ return (
158
169
  LLM_SOURCE
159
170
  if not feature_meta.name.endswith("_country")
160
171
  and not feature_meta.name.endswith("_postal_code")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.124
3
+ Version: 1.2.127
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -30,6 +30,7 @@ Requires-Dist: ipywidgets>=8.1.0
30
30
  Requires-Dist: jarowinkler>=2.0.0
31
31
  Requires-Dist: levenshtein>=0.25.1
32
32
  Requires-Dist: lightgbm>=4.6.0
33
+ Requires-Dist: more-itertools==10.7.0
33
34
  Requires-Dist: numpy<3.0.0,>=1.19.0
34
35
  Requires-Dist: pandas<3.0.0,>=1.1.0
35
36
  Requires-Dist: psutil>=5.9.0
@@ -1,20 +1,20 @@
1
- upgini/__about__.py,sha256=BVLX26XWHqzeaXiLce8Wr2FrayZ3daxZy_Sdqvu_jrI,24
1
+ upgini/__about__.py,sha256=h491OIJG19TxwsLIKSTYrHLAOPuj31b_J7sUaPKFa6c,24
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
- upgini/dataset.py,sha256=pQ8JQe0cdygD-W9GefJmfE6bnj4EYzXsjlgWdIS9nS8,31578
4
+ upgini/dataset.py,sha256=Nm2ZmwyQqvTnymYpGUwyJWy7y2ebXlHMyYmGeGcyA_s,31652
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=unkzwcMx2kcCqSYzjOP3JzcCsIYMZs30nc0mviOLw5Y,231791
6
+ upgini/features_enricher.py,sha256=wC9hWu47gdn-dXs5yLHO9etjm3t7XVF-xpafF1gakWI,234470
7
7
  upgini/http.py,sha256=-J_wOpnwVnT0ebPC6sOs6fN3AWtCD0LJLu6nlYmxaqk,44348
8
- upgini/metadata.py,sha256=1j2LkkPmFAVaVmT__FT3nYNecf9NMpwY3YE_HN_YcrY,12541
8
+ upgini/metadata.py,sha256=H3wiN37k-yqWZgbPD0tJzx8DzaCIkgmX5cybhByQWLg,12619
9
9
  upgini/metrics.py,sha256=KCPE_apPN-9BIdv6GqASbJVaB_gBcy8wzNApAcyaGo4,46020
10
- upgini/search_task.py,sha256=SAiUd1AytbA2Q6PSnnztr7oTRKpud1wQZ5YtKjsmQHU,18256
10
+ upgini/search_task.py,sha256=5mL_qV5mVtDkIumM9xCOgfa9Lc2B8mxJ1qI21iaScnQ,18656
11
11
  upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
12
12
  upgini/version_validator.py,sha256=DvbaAvuYFoJqYt0fitpsk6Xcv-H1BYDJYHUMxaKSH_Y,1509
13
13
  upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
14
14
  upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
15
15
  upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
16
  upgini/autofe/all_operators.py,sha256=rdjF5eaE4bC6Q4eu_el5Z7ekYt8DjOFermz2bePPbUc,333
17
- upgini/autofe/binary.py,sha256=oOEECc4nRzZN2tYaiqx8F2XHnfWpk1bVvb7ZkZJ0lO8,7709
17
+ upgini/autofe/binary.py,sha256=o3TQuP3EnECAVIeToGczu4yJ4vX7BJ2iSCN9Ra1SZJI,7829
18
18
  upgini/autofe/date.py,sha256=RvexgrL1_6ISYPVrl9HUQmPgpVSGQsTNv8YhNQWs-5M,11329
19
19
  upgini/autofe/feature.py,sha256=W9sZHdz5Vi0H_oPyY5saZAPjyd5wunpULnCqrGLpQc4,16879
20
20
  upgini/autofe/groupby.py,sha256=IYmQV9uoCdRcpkeWZj_kI3ObzoNCNx3ff3h8sTL01tk,3603
@@ -31,14 +31,14 @@ upgini/autofe/timeseries/roll.py,sha256=zADKXU-eYWQnQ5R3am1yEal8uU6Tm0jLAixwPb_a
31
31
  upgini/autofe/timeseries/trend.py,sha256=K1_iw2ko_LIUU8YCUgrvN3n0MkHtsi7-63-8x9er1k4,2129
32
32
  upgini/autofe/timeseries/volatility.py,sha256=SvZfhM_ZAWCNpTf87WjSnZsnlblARgruDlu4By4Zvhc,8078
33
33
  upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- upgini/data_source/data_source_publisher.py,sha256=qXQUYErhCmkWHm2FWgTL0FYZ2aJbxtSDV94OCM3eqUU,26653
34
+ upgini/data_source/data_source_publisher.py,sha256=CQi3fEukaStV-RiadSEvEFLThOlZJzA6PzleQQgGfGk,26286
35
35
  upgini/mdc/__init__.py,sha256=iHJlXQg6xRM1-ZOUtaPSJqw5SpQDszvxp4LyqviNLIQ,1027
36
36
  upgini/mdc/context.py,sha256=3u1B-jXt7tXEvNcV3qmR9SDCseudnY7KYsLclBdwVLk,1405
37
37
  upgini/normalizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
- upgini/normalizer/normalize_utils.py,sha256=mDh2mBW3aQMB4EFP2aHbf2dGMVkOcWnp4sKKvKDBh8w,8511
38
+ upgini/normalizer/normalize_utils.py,sha256=w9f_9udrwqbhXgFMTs2keuce-6X_j6h3D7EdNo_2X7g,8493
39
39
  upgini/resource_bundle/__init__.py,sha256=S5F2G47pnJd2LDpmFsjDqEwiKkP8Hm-hcseDbMka6Ko,8345
40
40
  upgini/resource_bundle/exceptions.py,sha256=5fRvx0_vWdE1-7HcSgF0tckB4A9AKyf5RiinZkInTsI,621
41
- upgini/resource_bundle/strings.properties,sha256=KcXm1Nl6c3zswL91tIbG0DjuuNpzxUdCg1cY9f2-9cg,29283
41
+ upgini/resource_bundle/strings.properties,sha256=3aK2sxXYuvSLuoOyLq8IcyekfINH0Il5nLvVXMsuEpY,29353
42
42
  upgini/resource_bundle/strings_widget.properties,sha256=gOdqvZWntP2LCza_tyVk1_yRYcG4c04K9sQOAVhF_gw,1577
43
43
  upgini/sampler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
44
  upgini/sampler/base.py,sha256=Fva2FEhLiNRPZ9Q6uOtJRtRzwsayjv7aphalAZO_4lc,6452
@@ -52,12 +52,12 @@ upgini/utils/config.py,sha256=zFdnjchykfp_1Tm3Qep7phLzXBpXIOzr2tIuXchRBLw,1754
52
52
  upgini/utils/country_utils.py,sha256=lY-eXWwFVegdVENFttbvLcgGDjFO17Sex8hd2PyJaRk,6937
53
53
  upgini/utils/custom_loss_utils.py,sha256=kieNZYBYZm5ZGBltF1F_jOSF4ea6C29rYuCyiDcqVNY,3857
54
54
  upgini/utils/cv_utils.py,sha256=w6FQb9nO8BWDx88EF83NpjPLarK4eR4ia0Wg0kLBJC4,3525
55
- upgini/utils/datetime_utils.py,sha256=UL1ernnawW0LV9mPDpCIc6sFy0HUhFscWVNwfH4V7rI,14366
56
- upgini/utils/deduplicate_utils.py,sha256=oZEiZeN-A92zwAPysV4OP9hO-niC2RLt-Dhc_hynBTU,11273
57
- upgini/utils/display_utils.py,sha256=uSG3JwpwCIgRJXsp-8ktuJ0Dh-WFti7IrRLMUfHfoDc,11973
55
+ upgini/utils/datetime_utils.py,sha256=l85UzSQLhtMeI2G6m-m8y8bCColCLSXNHb2-G6fKpLM,16988
56
+ upgini/utils/deduplicate_utils.py,sha256=6czbn1q0p-lOmrNvbAzueBpDHmfIP4TfV4poWqbjX5w,11255
57
+ upgini/utils/display_utils.py,sha256=p6o0VlYtGpU6bXv3B-fjQM9PeZEkl05OylHXSRyP0us,13219
58
58
  upgini/utils/email_utils.py,sha256=pZ2vCfNxLIPUhxr0-OlABNXm12jjU44isBk8kGmqQzA,5277
59
59
  upgini/utils/fallback_progress_bar.py,sha256=PDaKb8dYpVZaWMroNcOHsTc3pSjgi9mOm0--cOFTwJ0,1074
60
- upgini/utils/feature_info.py,sha256=6vihytwKma_TlXtTn4l6Aj4kqlOj0ouLy-yWVV6VUw8,7551
60
+ upgini/utils/feature_info.py,sha256=SQTRbSxJDkh2G2c0KGBmOv8f69gVzWbTtcXn0_2Qb-8,7945
61
61
  upgini/utils/features_validator.py,sha256=A_3AX7X5u5AH7RLgkTiS6dHxaOiq5vm8w4ijQWLGcMY,4871
62
62
  upgini/utils/format.py,sha256=Yv5cvvSs2bOLUzzNu96Pu33VMDNbabio92QepUj41jU,243
63
63
  upgini/utils/hash_utils.py,sha256=mP2yHyzvDNdpa5g3B4MHzulxBeEz_ZSoGl1YF_VnAyE,5538
@@ -74,7 +74,7 @@ upgini/utils/target_utils.py,sha256=GCPn4QeJ83JJ_vyBJ3IhY5fyIRkLC9q9BE59S2FRO1I,
74
74
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
75
75
  upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
76
76
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
77
- upgini-1.2.124.dist-info/METADATA,sha256=4oYOnQTr7xUDah86SaJL141wp3linADEiUVcY0X60Vk,50743
78
- upgini-1.2.124.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
79
- upgini-1.2.124.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
80
- upgini-1.2.124.dist-info/RECORD,,
77
+ upgini-1.2.127.dist-info/METADATA,sha256=KaZiSMDjzxqjhOoh3zY_EH9-kwLTMy71Us_ge2j-YyM,50781
78
+ upgini-1.2.127.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
79
+ upgini-1.2.127.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
80
+ upgini-1.2.127.dist-info/RECORD,,