upgini 1.2.124__py3-none-any.whl → 1.2.125__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- upgini/__about__.py +1 -1
- upgini/autofe/binary.py +4 -3
- upgini/dataset.py +3 -1
- upgini/features_enricher.py +103 -69
- upgini/metadata.py +1 -0
- upgini/normalizer/normalize_utils.py +2 -2
- upgini/search_task.py +12 -1
- upgini/utils/datetime_utils.py +103 -36
- upgini/utils/deduplicate_utils.py +2 -2
- {upgini-1.2.124.dist-info → upgini-1.2.125.dist-info}/METADATA +2 -1
- {upgini-1.2.124.dist-info → upgini-1.2.125.dist-info}/RECORD +13 -13
- {upgini-1.2.124.dist-info → upgini-1.2.125.dist-info}/WHEEL +0 -0
- {upgini-1.2.124.dist-info → upgini-1.2.125.dist-info}/licenses/LICENSE +0 -0
upgini/__about__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "1.2.
|
1
|
+
__version__ = "1.2.125"
|
upgini/autofe/binary.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1
1
|
import abc
|
2
2
|
from typing import Optional
|
3
|
+
|
3
4
|
import Levenshtein
|
4
5
|
import numpy as np
|
5
6
|
import pandas as pd
|
@@ -201,7 +202,7 @@ class JaroWinklerSim1(StringSim):
|
|
201
202
|
has_symmetry_importance: bool = True
|
202
203
|
|
203
204
|
def _prepare_value(self, value: Optional[str]) -> Optional[str]:
|
204
|
-
return value
|
205
|
+
return value if value is not None and len(value) > 0 else None
|
205
206
|
|
206
207
|
def _similarity(self, left: str, right: str) -> float:
|
207
208
|
return jarowinkler_similarity(left, right)
|
@@ -216,7 +217,7 @@ class JaroWinklerSim2(StringSim):
|
|
216
217
|
has_symmetry_importance: bool = True
|
217
218
|
|
218
219
|
def _prepare_value(self, value: Optional[str]) -> Optional[str]:
|
219
|
-
return value[::-1] if value is not None else None
|
220
|
+
return value[::-1] if value is not None and len(value) > 0 else None
|
220
221
|
|
221
222
|
def _similarity(self, left: str, right: str) -> float:
|
222
223
|
return jarowinkler_similarity(left, right)
|
@@ -231,7 +232,7 @@ class LevenshteinSim(StringSim):
|
|
231
232
|
has_symmetry_importance: bool = True
|
232
233
|
|
233
234
|
def _prepare_value(self, value: Optional[str]) -> Optional[str]:
|
234
|
-
return value
|
235
|
+
return value if value is not None and len(value) > 0 else None
|
235
236
|
|
236
237
|
def _similarity(self, left: str, right: str) -> float:
|
237
238
|
return 1 - Levenshtein.distance(left, right) / max(len(left), len(right))
|
upgini/dataset.py
CHANGED
@@ -151,7 +151,9 @@ class Dataset:
|
|
151
151
|
def etalon_def_checked(self) -> Dict[str, str]:
|
152
152
|
if self.etalon_def is None:
|
153
153
|
self.etalon_def = {
|
154
|
-
v.value: k
|
154
|
+
v.value: k
|
155
|
+
for k, v in self.meaning_types_checked.items()
|
156
|
+
if v not in [FileColumnMeaningType.FEATURE, FileColumnMeaningType.DATE_FEATURE]
|
155
157
|
}
|
156
158
|
|
157
159
|
return self.etalon_def
|
upgini/features_enricher.py
CHANGED
@@ -76,7 +76,7 @@ from upgini.utils.custom_loss_utils import (
|
|
76
76
|
)
|
77
77
|
from upgini.utils.cv_utils import CVConfig, get_groups
|
78
78
|
from upgini.utils.datetime_utils import (
|
79
|
-
|
79
|
+
DateTimeConverter,
|
80
80
|
is_blocked_time_series,
|
81
81
|
is_dates_distribution_valid,
|
82
82
|
is_time_series,
|
@@ -220,7 +220,9 @@ class FeaturesEnricher(TransformerMixin):
|
|
220
220
|
cv: CVType | None = None,
|
221
221
|
loss: str | None = None,
|
222
222
|
autodetect_search_keys: bool = True,
|
223
|
+
# deprecated, use text_features instead
|
223
224
|
generate_features: list[str] | None = None,
|
225
|
+
text_features: list[str] | None = None,
|
224
226
|
columns_for_online_api: list[str] | None = None,
|
225
227
|
round_embeddings: int | None = None,
|
226
228
|
logs_enabled: bool = True,
|
@@ -305,10 +307,8 @@ class FeaturesEnricher(TransformerMixin):
|
|
305
307
|
search_task = SearchTask(search_id, rest_client=self.rest_client, logger=self.logger)
|
306
308
|
|
307
309
|
print(self.bundle.get("search_by_task_id_start"))
|
308
|
-
trace_id =
|
309
|
-
|
310
|
-
print(f"https://app.datadoghq.eu/logs?query=%40trace_id%3A{trace_id}")
|
311
|
-
with MDC(trace_id=trace_id):
|
310
|
+
trace_id = time.time_ns()
|
311
|
+
with MDC(correlation_id=trace_id):
|
312
312
|
try:
|
313
313
|
self.logger.debug(f"FeaturesEnricher created from existing search: {search_id}")
|
314
314
|
self._search_task = search_task.poll_result(trace_id, quiet=True, check_fit=True)
|
@@ -342,14 +342,14 @@ class FeaturesEnricher(TransformerMixin):
|
|
342
342
|
self.shared_datasets = shared_datasets
|
343
343
|
if shared_datasets is not None:
|
344
344
|
self.runtime_parameters.properties["shared_datasets"] = ",".join(shared_datasets)
|
345
|
-
self.generate_features = generate_features
|
345
|
+
self.generate_features = text_features or generate_features
|
346
346
|
self.round_embeddings = round_embeddings
|
347
|
-
if generate_features is not None:
|
348
|
-
if len(generate_features) > self.GENERATE_FEATURES_LIMIT:
|
347
|
+
if self.generate_features is not None:
|
348
|
+
if len(self.generate_features) > self.GENERATE_FEATURES_LIMIT:
|
349
349
|
msg = self.bundle.get("too_many_generate_features").format(self.GENERATE_FEATURES_LIMIT)
|
350
350
|
self.logger.error(msg)
|
351
351
|
raise ValidationError(msg)
|
352
|
-
self.runtime_parameters.properties["generate_features"] = ",".join(generate_features)
|
352
|
+
self.runtime_parameters.properties["generate_features"] = ",".join(self.generate_features)
|
353
353
|
if round_embeddings is not None:
|
354
354
|
if not isinstance(round_embeddings, int) or round_embeddings < 0:
|
355
355
|
msg = self.bundle.get("invalid_round_embeddings")
|
@@ -484,9 +484,9 @@ class FeaturesEnricher(TransformerMixin):
|
|
484
484
|
stability_agg_func: str, optional (default="max")
|
485
485
|
Function to aggregate stability values. Can be "max", "min", "mean".
|
486
486
|
"""
|
487
|
-
trace_id =
|
487
|
+
trace_id = time.time_ns()
|
488
488
|
if self.print_trace_id:
|
489
|
-
print(f"https://app.datadoghq.eu/logs?query=%
|
489
|
+
print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
|
490
490
|
start_time = time.time()
|
491
491
|
auto_fe_parameters = AutoFEParameters() if auto_fe_parameters is None else auto_fe_parameters
|
492
492
|
search_progress = SearchProgress(0.0, ProgressStage.START_FIT)
|
@@ -498,7 +498,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
498
498
|
progress_bar.progress = search_progress.to_progress_bar()
|
499
499
|
progress_bar.display()
|
500
500
|
|
501
|
-
with MDC(
|
501
|
+
with MDC(correlation_id=trace_id):
|
502
502
|
if len(args) > 0:
|
503
503
|
msg = f"WARNING: Unsupported positional arguments for fit: {args}"
|
504
504
|
self.logger.warning(msg)
|
@@ -643,11 +643,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
643
643
|
|
644
644
|
self.warning_counter.reset()
|
645
645
|
auto_fe_parameters = AutoFEParameters() if auto_fe_parameters is None else auto_fe_parameters
|
646
|
-
trace_id =
|
646
|
+
trace_id = time.time_ns()
|
647
647
|
if self.print_trace_id:
|
648
|
-
print(f"https://app.datadoghq.eu/logs?query=%
|
648
|
+
print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
|
649
649
|
start_time = time.time()
|
650
|
-
with MDC(
|
650
|
+
with MDC(correlation_id=trace_id):
|
651
651
|
if len(args) > 0:
|
652
652
|
msg = f"WARNING: Unsupported positional arguments for fit_transform: {args}"
|
653
653
|
self.logger.warning(msg)
|
@@ -745,8 +745,8 @@ class FeaturesEnricher(TransformerMixin):
|
|
745
745
|
def transform(
|
746
746
|
self,
|
747
747
|
X: pd.DataFrame,
|
748
|
-
*args,
|
749
748
|
y: pd.Series | None = None,
|
749
|
+
*args,
|
750
750
|
exclude_features_sources: list[str] | None = None,
|
751
751
|
keep_input: bool = True,
|
752
752
|
trace_id: str | None = None,
|
@@ -787,9 +787,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
787
787
|
progress_bar.progress = search_progress.to_progress_bar()
|
788
788
|
if new_progress:
|
789
789
|
progress_bar.display()
|
790
|
-
trace_id = trace_id or
|
790
|
+
trace_id = trace_id or time.time_ns()
|
791
|
+
if self.print_trace_id:
|
792
|
+
print(f"https://app.datadoghq.eu/logs?query=%40correlation_id%3A{trace_id}")
|
791
793
|
search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
|
792
|
-
with MDC(
|
794
|
+
with MDC(correlation_id=trace_id, search_id=search_id):
|
793
795
|
self.dump_input(trace_id, X)
|
794
796
|
if len(args) > 0:
|
795
797
|
msg = f"WARNING: Unsupported positional arguments for transform: {args}"
|
@@ -904,10 +906,10 @@ class FeaturesEnricher(TransformerMixin):
|
|
904
906
|
Dataframe with metrics calculated on train and validation datasets.
|
905
907
|
"""
|
906
908
|
|
907
|
-
trace_id = trace_id or
|
909
|
+
trace_id = trace_id or time.time_ns()
|
908
910
|
start_time = time.time()
|
909
911
|
search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
|
910
|
-
with MDC(
|
912
|
+
with MDC(correlation_id=trace_id, search_id=search_id):
|
911
913
|
self.logger.info("Start calculate metrics")
|
912
914
|
if len(args) > 0:
|
913
915
|
msg = f"WARNING: Unsupported positional arguments for calculate_metrics: {args}"
|
@@ -1415,13 +1417,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
1415
1417
|
# Find latest eval set or earliest if all eval sets are before train set
|
1416
1418
|
date_column = self._get_date_column(search_keys)
|
1417
1419
|
|
1418
|
-
date_converter =
|
1420
|
+
date_converter = DateTimeConverter(
|
1419
1421
|
date_column, self.date_format, self.logger, self.bundle, generate_cyclical_features=False
|
1420
1422
|
)
|
1421
1423
|
|
1422
|
-
|
1423
|
-
|
1424
|
-
x_date = X[date_column].dropna()
|
1424
|
+
x_date = date_converter.to_date_ms(X).dropna()
|
1425
1425
|
if len(x_date) == 0:
|
1426
1426
|
self.logger.warning("Empty date column in X")
|
1427
1427
|
return []
|
@@ -1434,8 +1434,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
1434
1434
|
if date_column not in eval_x.columns:
|
1435
1435
|
self.logger.warning(f"Date column not found in eval_set {i + 1}")
|
1436
1436
|
continue
|
1437
|
-
|
1438
|
-
eval_x_date = eval_x[date_column].dropna()
|
1437
|
+
eval_x_date = date_converter.to_date_ms(eval_x).dropna()
|
1439
1438
|
if len(eval_x_date) < 1000:
|
1440
1439
|
self.logger.warning(f"Eval_set {i} has less than 1000 rows. It will be ignored for stability check")
|
1441
1440
|
continue
|
@@ -1472,8 +1471,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
1472
1471
|
)
|
1473
1472
|
checking_eval_set_df = checking_eval_set_df.copy()
|
1474
1473
|
|
1475
|
-
checking_eval_set_df[date_column] = eval_set_dates[selected_eval_set_idx]
|
1476
|
-
checking_eval_set_df = date_converter.convert(checking_eval_set_df)
|
1474
|
+
checking_eval_set_df[date_column] = date_converter.to_date_ms(eval_set_dates[selected_eval_set_idx].to_frame())
|
1477
1475
|
|
1478
1476
|
psi_values_sparse = calculate_sparsity_psi(
|
1479
1477
|
checking_eval_set_df, cat_features, date_column, self.logger, model_task_type
|
@@ -1481,7 +1479,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
1481
1479
|
|
1482
1480
|
self.logger.info(f"PSI values by sparsity: {psi_values_sparse}")
|
1483
1481
|
|
1484
|
-
unstable_by_sparsity = [
|
1482
|
+
unstable_by_sparsity = [
|
1483
|
+
feature
|
1484
|
+
for feature, psi in psi_values_sparse.items()
|
1485
|
+
if psi > stability_threshold
|
1486
|
+
]
|
1485
1487
|
if unstable_by_sparsity:
|
1486
1488
|
self.logger.info(f"Unstable by sparsity features ({stability_threshold}): {sorted(unstable_by_sparsity)}")
|
1487
1489
|
|
@@ -1491,7 +1493,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
1491
1493
|
|
1492
1494
|
self.logger.info(f"PSI values by value: {psi_values}")
|
1493
1495
|
|
1494
|
-
unstable_by_value = [
|
1496
|
+
unstable_by_value = [
|
1497
|
+
feature
|
1498
|
+
for feature, psi in psi_values.items()
|
1499
|
+
if psi > stability_threshold
|
1500
|
+
]
|
1495
1501
|
if unstable_by_value:
|
1496
1502
|
self.logger.info(f"Unstable by value features ({stability_threshold}): {sorted(unstable_by_value)}")
|
1497
1503
|
|
@@ -1745,9 +1751,11 @@ class FeaturesEnricher(TransformerMixin):
|
|
1745
1751
|
not in (
|
1746
1752
|
excluding_search_keys
|
1747
1753
|
+ list(self.fit_dropped_features)
|
1748
|
-
+ [
|
1754
|
+
+ [DateTimeConverter.DATETIME_COL, SYSTEM_RECORD_ID, ENTITY_SYSTEM_RECORD_ID]
|
1749
1755
|
)
|
1750
1756
|
]
|
1757
|
+
if self.baseline_score_column is not None and self.baseline_score_column not in client_features:
|
1758
|
+
client_features.append(self.baseline_score_column)
|
1751
1759
|
self.logger.info(f"Client features column on prepare data for metrics: {client_features}")
|
1752
1760
|
|
1753
1761
|
selected_enriched_features = [c for c in self.feature_names_ if c not in client_features]
|
@@ -1995,7 +2003,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
1995
2003
|
date_column = self._get_date_column(search_keys)
|
1996
2004
|
generated_features = []
|
1997
2005
|
if date_column is not None:
|
1998
|
-
converter =
|
2006
|
+
converter = DateTimeConverter(
|
1999
2007
|
date_column,
|
2000
2008
|
self.date_format,
|
2001
2009
|
self.logger,
|
@@ -2004,6 +2012,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
2004
2012
|
)
|
2005
2013
|
# Leave original date column values
|
2006
2014
|
df_with_date_features = converter.convert(df, keep_time=True)
|
2015
|
+
# TODO check if this is correct
|
2007
2016
|
df_with_date_features[date_column] = df[date_column]
|
2008
2017
|
df = df_with_date_features
|
2009
2018
|
generated_features = converter.generated_features
|
@@ -2035,8 +2044,8 @@ class FeaturesEnricher(TransformerMixin):
|
|
2035
2044
|
# Sample after sorting by system_record_id for idempotency
|
2036
2045
|
df.sort_values(by=SYSTEM_RECORD_ID, inplace=True)
|
2037
2046
|
|
2038
|
-
if
|
2039
|
-
df = df.drop(columns=
|
2047
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
2048
|
+
df = df.drop(columns=DateTimeConverter.DATETIME_COL)
|
2040
2049
|
|
2041
2050
|
df = df.rename(columns=columns_renaming)
|
2042
2051
|
generated_features = [columns_renaming.get(c, c) for c in generated_features]
|
@@ -2388,7 +2397,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
2388
2397
|
def get_progress(self, trace_id: str | None = None, search_task: SearchTask | None = None) -> SearchProgress:
|
2389
2398
|
search_task = search_task or self._search_task
|
2390
2399
|
if search_task is not None:
|
2391
|
-
trace_id = trace_id or
|
2400
|
+
trace_id = trace_id or time.time_ns()
|
2392
2401
|
return search_task.get_progress(trace_id)
|
2393
2402
|
|
2394
2403
|
def display_transactional_transform_api(self, only_online_sources=False):
|
@@ -2416,7 +2425,7 @@ class FeaturesEnricher(TransformerMixin):
|
|
2416
2425
|
return "12345678"
|
2417
2426
|
return "test_value"
|
2418
2427
|
|
2419
|
-
file_metadata = self._search_task.get_file_metadata(
|
2428
|
+
file_metadata = self._search_task.get_file_metadata(time.time_ns())
|
2420
2429
|
|
2421
2430
|
def get_column_meta(column_name: str) -> FileColumnMetadata:
|
2422
2431
|
for c in file_metadata.columns:
|
@@ -2510,7 +2519,7 @@ if response.status_code == 200:
|
|
2510
2519
|
|
2511
2520
|
start_time = time.time()
|
2512
2521
|
search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
|
2513
|
-
with MDC(
|
2522
|
+
with MDC(correlation_id=trace_id, search_id=search_id):
|
2514
2523
|
self.logger.info("Start transform")
|
2515
2524
|
|
2516
2525
|
validated_X, validated_y, validated_eval_set = self._validate_train_eval(
|
@@ -2599,7 +2608,7 @@ if response.status_code == 200:
|
|
2599
2608
|
generated_features = []
|
2600
2609
|
date_column = self._get_date_column(search_keys)
|
2601
2610
|
if date_column is not None:
|
2602
|
-
converter =
|
2611
|
+
converter = DateTimeConverter(
|
2603
2612
|
date_column,
|
2604
2613
|
self.date_format,
|
2605
2614
|
self.logger,
|
@@ -2656,8 +2665,8 @@ if response.status_code == 200:
|
|
2656
2665
|
|
2657
2666
|
# Don't pass all features in backend on transform
|
2658
2667
|
runtime_parameters = self._get_copy_of_runtime_parameters()
|
2659
|
-
features_for_transform = self._search_task.get_features_for_transform()
|
2660
|
-
if
|
2668
|
+
features_for_transform = self._search_task.get_features_for_transform()
|
2669
|
+
if features_for_transform:
|
2661
2670
|
missing_features_for_transform = [
|
2662
2671
|
columns_renaming.get(f) or f for f in features_for_transform if f not in df.columns
|
2663
2672
|
]
|
@@ -2668,7 +2677,10 @@ if response.status_code == 200:
|
|
2668
2677
|
raise ValidationError(
|
2669
2678
|
self.bundle.get("missing_features_for_transform").format(missing_features_for_transform)
|
2670
2679
|
)
|
2671
|
-
|
2680
|
+
features_for_embeddings = self._search_task.get_features_for_embeddings()
|
2681
|
+
if features_for_embeddings:
|
2682
|
+
runtime_parameters.properties["features_for_embeddings"] = ",".join(features_for_embeddings)
|
2683
|
+
features_for_transform = [f for f in features_for_transform if f not in search_keys.keys()]
|
2672
2684
|
|
2673
2685
|
columns_for_system_record_id = sorted(list(search_keys.keys()) + features_for_transform)
|
2674
2686
|
|
@@ -2729,8 +2741,17 @@ if response.status_code == 200:
|
|
2729
2741
|
)
|
2730
2742
|
df = converter.convert(df)
|
2731
2743
|
|
2744
|
+
date_features = []
|
2745
|
+
for col in features_for_transform:
|
2746
|
+
if DateTimeConverter(col).is_datetime(df):
|
2747
|
+
df[col] = DateTimeConverter(col).to_date_string(df)
|
2748
|
+
date_features.append(col)
|
2749
|
+
|
2732
2750
|
meaning_types = {}
|
2733
|
-
meaning_types.update(
|
2751
|
+
meaning_types.update(
|
2752
|
+
{col: FileColumnMeaningType.FEATURE for col in features_for_transform if col not in date_features}
|
2753
|
+
)
|
2754
|
+
meaning_types.update({col: FileColumnMeaningType.DATE_FEATURE for col in date_features})
|
2734
2755
|
meaning_types.update({col: key.value for col, key in search_keys.items()})
|
2735
2756
|
|
2736
2757
|
features_not_to_pass.extend(
|
@@ -2743,8 +2764,8 @@ if response.status_code == 200:
|
|
2743
2764
|
]
|
2744
2765
|
)
|
2745
2766
|
|
2746
|
-
if
|
2747
|
-
df = df.drop(columns=
|
2767
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
2768
|
+
df = df.drop(columns=DateTimeConverter.DATETIME_COL)
|
2748
2769
|
|
2749
2770
|
# search keys might be changed after explode
|
2750
2771
|
columns_for_system_record_id = sorted(list(search_keys.keys()) + features_for_transform)
|
@@ -2926,6 +2947,7 @@ if response.status_code == 200:
|
|
2926
2947
|
or c in self.search_keys
|
2927
2948
|
or c in (self.id_columns or [])
|
2928
2949
|
or c in [EVAL_SET_INDEX, TARGET] # transform for metrics calculation
|
2950
|
+
or c == self.baseline_score_column
|
2929
2951
|
]
|
2930
2952
|
else:
|
2931
2953
|
selected_input_columns = []
|
@@ -3124,7 +3146,7 @@ if response.status_code == 200:
|
|
3124
3146
|
self.fit_generated_features = []
|
3125
3147
|
|
3126
3148
|
if has_date:
|
3127
|
-
converter =
|
3149
|
+
converter = DateTimeConverter(
|
3128
3150
|
maybe_date_column,
|
3129
3151
|
self.date_format,
|
3130
3152
|
self.logger,
|
@@ -3177,8 +3199,8 @@ if response.status_code == 200:
|
|
3177
3199
|
self.TARGET_NAME,
|
3178
3200
|
EVAL_SET_INDEX,
|
3179
3201
|
] + list(self.fit_search_keys.keys())
|
3180
|
-
if
|
3181
|
-
non_feature_columns.append(
|
3202
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
3203
|
+
non_feature_columns.append(DateTimeConverter.DATETIME_COL)
|
3182
3204
|
|
3183
3205
|
features_columns = [c for c in df.columns if c not in non_feature_columns]
|
3184
3206
|
|
@@ -3265,15 +3287,27 @@ if response.status_code == 200:
|
|
3265
3287
|
ENTITY_SYSTEM_RECORD_ID,
|
3266
3288
|
SEARCH_KEY_UNNEST,
|
3267
3289
|
] + list(self.fit_search_keys.keys())
|
3268
|
-
if
|
3269
|
-
non_feature_columns.append(
|
3290
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
3291
|
+
non_feature_columns.append(DateTimeConverter.DATETIME_COL)
|
3270
3292
|
|
3271
3293
|
features_columns = [c for c in df.columns if c not in non_feature_columns]
|
3272
3294
|
|
3295
|
+
# find date features
|
3296
|
+
date_features = []
|
3297
|
+
for col in features_columns:
|
3298
|
+
if DateTimeConverter(col).is_datetime(df):
|
3299
|
+
df[col] = DateTimeConverter(col).to_date_string(df)
|
3300
|
+
date_features.append(col)
|
3301
|
+
|
3273
3302
|
meaning_types = {
|
3274
3303
|
**{col: key.value for col, key in self.fit_search_keys.items()},
|
3275
|
-
**{
|
3304
|
+
**{
|
3305
|
+
str(c): FileColumnMeaningType.FEATURE
|
3306
|
+
for c in df.columns
|
3307
|
+
if c not in non_feature_columns and c not in date_features
|
3308
|
+
},
|
3276
3309
|
}
|
3310
|
+
meaning_types.update({col: FileColumnMeaningType.DATE_FEATURE for col in date_features})
|
3277
3311
|
meaning_types[self.TARGET_NAME] = FileColumnMeaningType.TARGET
|
3278
3312
|
meaning_types[ENTITY_SYSTEM_RECORD_ID] = FileColumnMeaningType.ENTITY_SYSTEM_RECORD_ID
|
3279
3313
|
if SEARCH_KEY_UNNEST in df.columns:
|
@@ -3294,8 +3328,8 @@ if response.status_code == 200:
|
|
3294
3328
|
self.bundle,
|
3295
3329
|
)
|
3296
3330
|
|
3297
|
-
if
|
3298
|
-
df = df.drop(columns=
|
3331
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
3332
|
+
df = df.drop(columns=DateTimeConverter.DATETIME_COL)
|
3299
3333
|
|
3300
3334
|
meaning_types[SYSTEM_RECORD_ID] = FileColumnMeaningType.SYSTEM_RECORD_ID
|
3301
3335
|
|
@@ -3332,7 +3366,9 @@ if response.status_code == 200:
|
|
3332
3366
|
dataset.columns_renaming = self.fit_columns_renaming
|
3333
3367
|
|
3334
3368
|
self.passed_features = [
|
3335
|
-
column
|
3369
|
+
column
|
3370
|
+
for column, meaning_type in meaning_types.items()
|
3371
|
+
if meaning_type in [FileColumnMeaningType.FEATURE, FileColumnMeaningType.DATE_FEATURE]
|
3336
3372
|
]
|
3337
3373
|
|
3338
3374
|
self._search_task = dataset.search(
|
@@ -3860,8 +3896,8 @@ if response.status_code == 200:
|
|
3860
3896
|
X = Xy.drop(columns=TARGET)
|
3861
3897
|
y = Xy[TARGET].copy()
|
3862
3898
|
|
3863
|
-
if
|
3864
|
-
X.drop(columns=
|
3899
|
+
if DateTimeConverter.DATETIME_COL in X.columns:
|
3900
|
+
X.drop(columns=DateTimeConverter.DATETIME_COL, inplace=True)
|
3865
3901
|
|
3866
3902
|
return X, y
|
3867
3903
|
|
@@ -3871,8 +3907,8 @@ if response.status_code == 200:
|
|
3871
3907
|
X: pd.DataFrame, y: pd.Series, search_keys: dict[str, SearchKey], cv: CVType | None
|
3872
3908
|
) -> tuple[pd.DataFrame, pd.Series]:
|
3873
3909
|
if cv not in [CVType.time_series, CVType.blocked_time_series]:
|
3874
|
-
if
|
3875
|
-
date_column =
|
3910
|
+
if DateTimeConverter.DATETIME_COL in X.columns:
|
3911
|
+
date_column = DateTimeConverter.DATETIME_COL
|
3876
3912
|
else:
|
3877
3913
|
date_column = FeaturesEnricher._get_date_column(search_keys)
|
3878
3914
|
sort_columns = [date_column] if date_column is not None else []
|
@@ -3900,8 +3936,8 @@ if response.status_code == 200:
|
|
3900
3936
|
|
3901
3937
|
y = Xy[TARGET].copy()
|
3902
3938
|
|
3903
|
-
if
|
3904
|
-
X.drop(columns=
|
3939
|
+
if DateTimeConverter.DATETIME_COL in X.columns:
|
3940
|
+
X.drop(columns=DateTimeConverter.DATETIME_COL, inplace=True)
|
3905
3941
|
|
3906
3942
|
return X, y
|
3907
3943
|
|
@@ -3980,12 +4016,10 @@ if response.status_code == 200:
|
|
3980
4016
|
maybe_date_col = SearchKey.find_key(self.search_keys, [SearchKey.DATE, SearchKey.DATETIME])
|
3981
4017
|
if X is not None and maybe_date_col is not None and maybe_date_col in X.columns:
|
3982
4018
|
# TODO cast date column to single dtype
|
3983
|
-
date_converter =
|
3984
|
-
|
3985
|
-
)
|
3986
|
-
|
3987
|
-
min_date = converted_X[maybe_date_col].min()
|
3988
|
-
max_date = converted_X[maybe_date_col].max()
|
4019
|
+
date_converter = DateTimeConverter(maybe_date_col, self.date_format, generate_cyclical_features=False)
|
4020
|
+
date_col_values = date_converter.to_date_ms(X)
|
4021
|
+
min_date = date_col_values.min()
|
4022
|
+
max_date = date_col_values.max()
|
3989
4023
|
self.logger.info(f"Dates interval is ({min_date}, {max_date})")
|
3990
4024
|
|
3991
4025
|
except Exception:
|
@@ -4022,7 +4056,7 @@ if response.status_code == 200:
|
|
4022
4056
|
self.__log_warning(bundle.get("current_date_added"))
|
4023
4057
|
df[FeaturesEnricher.CURRENT_DATE] = datetime.date.today()
|
4024
4058
|
search_keys[FeaturesEnricher.CURRENT_DATE] = SearchKey.DATE
|
4025
|
-
converter =
|
4059
|
+
converter = DateTimeConverter(FeaturesEnricher.CURRENT_DATE, generate_cyclical_features=False)
|
4026
4060
|
df = converter.convert(df)
|
4027
4061
|
return df
|
4028
4062
|
|
@@ -4153,8 +4187,8 @@ if response.status_code == 200:
|
|
4153
4187
|
"__target",
|
4154
4188
|
ENTITY_SYSTEM_RECORD_ID,
|
4155
4189
|
]
|
4156
|
-
if
|
4157
|
-
date_column =
|
4190
|
+
if DateTimeConverter.DATETIME_COL in df.columns:
|
4191
|
+
date_column = DateTimeConverter.DATETIME_COL
|
4158
4192
|
sort_exclude_columns.append(FeaturesEnricher._get_date_column(search_keys))
|
4159
4193
|
else:
|
4160
4194
|
date_column = FeaturesEnricher._get_date_column(search_keys)
|
@@ -4954,7 +4988,7 @@ if response.status_code == 200:
|
|
4954
4988
|
eval_set: tuple | None = None,
|
4955
4989
|
):
|
4956
4990
|
def dump_task(X_, y_, eval_set_):
|
4957
|
-
with MDC(
|
4991
|
+
with MDC(correlation_id=trace_id):
|
4958
4992
|
try:
|
4959
4993
|
if isinstance(X_, pd.Series):
|
4960
4994
|
X_ = X_.to_frame()
|
upgini/metadata.py
CHANGED
@@ -25,7 +25,7 @@ from upgini.metadata import (
|
|
25
25
|
from upgini.resource_bundle import ResourceBundle, get_custom_bundle
|
26
26
|
from upgini.utils import find_numbers_with_decimal_comma
|
27
27
|
from upgini.utils.country_utils import CountrySearchKeyConverter
|
28
|
-
from upgini.utils.datetime_utils import
|
28
|
+
from upgini.utils.datetime_utils import DateTimeConverter
|
29
29
|
from upgini.utils.ip_utils import IpSearchKeyConverter
|
30
30
|
from upgini.utils.phone_utils import PhoneSearchKeyConverter
|
31
31
|
from upgini.utils.postal_code_utils import PostalCodeSearchKeyConverter
|
@@ -89,7 +89,7 @@ class Normalizer:
|
|
89
89
|
SYSTEM_RECORD_ID,
|
90
90
|
ENTITY_SYSTEM_RECORD_ID,
|
91
91
|
SEARCH_KEY_UNNEST,
|
92
|
-
|
92
|
+
DateTimeConverter.DATETIME_COL,
|
93
93
|
]:
|
94
94
|
self.columns_renaming[column] = column
|
95
95
|
new_columns.append(column)
|
upgini/search_task.py
CHANGED
@@ -165,10 +165,21 @@ class SearchTask:
|
|
165
165
|
|
166
166
|
return list(zero_hit_search_keys)
|
167
167
|
|
168
|
-
def
|
168
|
+
def get_features_for_embeddings(self) -> Optional[List[str]]:
|
169
169
|
if self.provider_metadata_v2 is None:
|
170
170
|
return None
|
171
171
|
|
172
|
+
features_for_transform = set()
|
173
|
+
for meta in self.provider_metadata_v2:
|
174
|
+
if meta.features_used_for_embeddings is not None:
|
175
|
+
features_for_transform.update(meta.features_used_for_embeddings)
|
176
|
+
|
177
|
+
return list(features_for_transform)
|
178
|
+
|
179
|
+
def get_features_for_transform(self) -> List[str]:
|
180
|
+
if self.provider_metadata_v2 is None:
|
181
|
+
return []
|
182
|
+
|
172
183
|
features_for_transform = set()
|
173
184
|
for meta in self.provider_metadata_v2:
|
174
185
|
if meta.features_used_for_embeddings is not None:
|
upgini/utils/datetime_utils.py
CHANGED
@@ -30,7 +30,7 @@ DATE_FORMATS = [
|
|
30
30
|
DATETIME_PATTERN = r"^[\d\s\.\-:T/+]+$"
|
31
31
|
|
32
32
|
|
33
|
-
class
|
33
|
+
class DateTimeConverter:
|
34
34
|
DATETIME_COL = "_date_time"
|
35
35
|
# MIN_SUPPORTED_DATE_TS = datetime.datetime(1999, 12, 31) # 946684800000 # 2000-01-01
|
36
36
|
MIN_SUPPORTED_DATE_TS = pd.to_datetime(datetime.datetime(1999, 12, 31)).tz_localize(None)
|
@@ -73,41 +73,99 @@ class DateTimeSearchKeyConverter:
|
|
73
73
|
except Exception:
|
74
74
|
return None
|
75
75
|
|
76
|
-
def
|
77
|
-
if len(df) == 0:
|
78
|
-
return
|
76
|
+
def is_datetime(self, df: pd.DataFrame) -> bool:
|
77
|
+
if len(df) == 0 or df[self.date_column].isna().all():
|
78
|
+
return False
|
79
|
+
|
80
|
+
if pd.api.types.is_datetime64_any_dtype(df[self.date_column]):
|
81
|
+
return True
|
82
|
+
|
83
|
+
parsed = self.parse_datetime(df, raise_errors=False)
|
84
|
+
return parsed is not None and not parsed.isna().all()
|
79
85
|
|
86
|
+
def parse_datetime(self, df: pd.DataFrame, raise_errors=True) -> pd.Series | None:
|
80
87
|
df = df.copy()
|
81
|
-
if df[self.date_column].
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
88
|
+
if len(df) == 0 or df[self.date_column].isna().all():
|
89
|
+
return None
|
90
|
+
|
91
|
+
try:
|
92
|
+
if df[self.date_column].apply(lambda x: isinstance(x, datetime.datetime)).all():
|
93
|
+
parsed_datetime = df[self.date_column].apply(lambda x: x.replace(tzinfo=None))
|
94
|
+
elif isinstance(df[self.date_column].dropna().values[0], datetime.date):
|
95
|
+
parsed_datetime = pd.to_datetime(df[self.date_column], errors="coerce")
|
96
|
+
elif isinstance(df[self.date_column].dtype, pd.PeriodDtype):
|
97
|
+
parsed_datetime = df[self.date_column].dt.to_timestamp()
|
98
|
+
elif is_numeric_dtype(df[self.date_column]):
|
99
|
+
# 315532801 - 2524608001 - seconds
|
100
|
+
# 315532801000 - 2524608001000 - milliseconds
|
101
|
+
# 315532801000000 - 2524608001000000 - microseconds
|
102
|
+
# 315532801000000000 - 2524608001000000000 - nanoseconds
|
103
|
+
if df[self.date_column].apply(lambda x: 10**16 < x).all():
|
104
|
+
parsed_datetime = pd.to_datetime(df[self.date_column], unit="ns")
|
105
|
+
elif df[self.date_column].apply(lambda x: 10**14 < x < 10**16).all():
|
106
|
+
parsed_datetime = pd.to_datetime(df[self.date_column], unit="us")
|
107
|
+
elif df[self.date_column].apply(lambda x: 10**11 < x < 10**14).all():
|
108
|
+
parsed_datetime = pd.to_datetime(df[self.date_column], unit="ms")
|
109
|
+
elif df[self.date_column].apply(lambda x: 10**8 < x < 10**11).all():
|
110
|
+
parsed_datetime = pd.to_datetime(df[self.date_column], unit="s")
|
111
|
+
else:
|
112
|
+
msg = self.bundle.get("unsupported_date_type").format(self.date_column)
|
113
|
+
if raise_errors:
|
114
|
+
raise ValidationError(msg)
|
115
|
+
else:
|
116
|
+
return None
|
117
|
+
else:
|
118
|
+
df[self.date_column] = df[self.date_column].astype("string").apply(self.clean_date)
|
119
|
+
parsed_datetime = self.parse_string_date(df, raise_errors)
|
120
|
+
parsed_datetime = parsed_datetime.dt.tz_localize(None)
|
121
|
+
return parsed_datetime
|
122
|
+
except Exception as e:
|
123
|
+
if raise_errors:
|
124
|
+
raise ValidationError(e)
|
100
125
|
else:
|
101
|
-
|
102
|
-
|
126
|
+
return None
|
127
|
+
|
128
|
+
def to_date_string(self, df: pd.DataFrame) -> pd.Series:
|
129
|
+
parsed_datetime = self.parse_datetime(df)
|
130
|
+
if parsed_datetime is None:
|
131
|
+
return df[self.date_column]
|
132
|
+
return parsed_datetime.dt.strftime("%Y-%m-%d")
|
133
|
+
|
134
|
+
def to_date_ms(self, df: pd.DataFrame) -> pd.Series:
|
135
|
+
parsed_datetime = self.parse_datetime(df)
|
136
|
+
if parsed_datetime is None:
|
137
|
+
return df[self.date_column]
|
138
|
+
return self.convert_datetime_to_date_ms(parsed_datetime)
|
139
|
+
|
140
|
+
def convert_datetime_to_datetime_ms(self, date_col: pd.Series) -> pd.Series:
|
141
|
+
if date_col.dt.unit == "ns":
|
142
|
+
date_col = date_col.astype(np.int64) // 1_000_000
|
143
|
+
elif date_col.dt.unit == "us":
|
144
|
+
date_col = date_col.astype(np.int64) // 1_000
|
145
|
+
elif date_col.dt.unit == "ms":
|
146
|
+
date_col = date_col.astype(np.int64)
|
147
|
+
elif date_col.dt.unit == "s":
|
148
|
+
date_col = date_col.astype(np.int64) * 1_000
|
103
149
|
else:
|
104
|
-
|
105
|
-
|
150
|
+
raise ValueError(f"Unsupported date unit: {date_col.dt.unit}")
|
151
|
+
|
152
|
+
return date_col.apply(self._int_to_opt).astype("Int64")
|
153
|
+
|
154
|
+
def convert_datetime_to_date_ms(self, date_col: pd.Series) -> pd.Series:
|
155
|
+
date_col = date_col.dt.floor("D")
|
156
|
+
return self.convert_datetime_to_datetime_ms(date_col)
|
157
|
+
|
158
|
+
def convert(self, df: pd.DataFrame, keep_time=False) -> pd.DataFrame:
|
159
|
+
df = df.copy()
|
160
|
+
parsed_datetime = self.parse_datetime(df)
|
161
|
+
if parsed_datetime is None:
|
162
|
+
return df
|
163
|
+
|
164
|
+
df[self.date_column] = parsed_datetime
|
106
165
|
|
107
166
|
# If column with date is datetime then extract seconds of the day and minute of the hour
|
108
167
|
# as additional features
|
109
168
|
seconds = "datetime_seconds"
|
110
|
-
df[self.date_column] = df[self.date_column].dt.tz_localize(None)
|
111
169
|
|
112
170
|
df = self.clean_old_dates(df)
|
113
171
|
|
@@ -182,21 +240,22 @@ class DateTimeSearchKeyConverter:
|
|
182
240
|
df.drop(columns=seconds, inplace=True)
|
183
241
|
|
184
242
|
if keep_time:
|
185
|
-
df[self.DATETIME_COL] = df[self.date_column]
|
186
|
-
|
187
|
-
df[self.date_column] = df[self.date_column].dt.floor("D").astype(np.int64) // 1_000_000
|
188
|
-
df[self.date_column] = df[self.date_column].apply(self._int_to_opt).astype("Int64")
|
243
|
+
df[self.DATETIME_COL] = self.convert_datetime_to_datetime_ms(df[self.date_column])
|
244
|
+
df[self.date_column] = self.convert_datetime_to_date_ms(df[self.date_column])
|
189
245
|
|
190
246
|
self.logger.info(f"Date after convertion to timestamp: {df[self.date_column]}")
|
191
247
|
|
192
248
|
return df
|
193
249
|
|
194
|
-
def
|
250
|
+
def parse_string_date(self, df: pd.DataFrame, raise_errors=True) -> pd.Series | None:
|
195
251
|
if self.date_format is not None:
|
196
252
|
try:
|
197
253
|
return pd.to_datetime(df[self.date_column], format=self.date_format)
|
198
254
|
except ValueError as e:
|
199
|
-
|
255
|
+
if raise_errors:
|
256
|
+
raise ValidationError(e)
|
257
|
+
else:
|
258
|
+
return None
|
200
259
|
else:
|
201
260
|
for date_format in DATE_FORMATS:
|
202
261
|
try:
|
@@ -204,9 +263,17 @@ class DateTimeSearchKeyConverter:
|
|
204
263
|
except ValueError:
|
205
264
|
pass
|
206
265
|
try:
|
207
|
-
|
266
|
+
# Suppress warning for intentional fallback to dateutil parsing
|
267
|
+
import warnings
|
268
|
+
|
269
|
+
with warnings.catch_warnings():
|
270
|
+
warnings.filterwarnings("ignore", message="Could not infer format")
|
271
|
+
return pd.to_datetime(df[self.date_column])
|
208
272
|
except ValueError:
|
209
|
-
|
273
|
+
if raise_errors:
|
274
|
+
raise ValidationError(self.bundle.get("invalid_date_format").format(self.date_column))
|
275
|
+
else:
|
276
|
+
return None
|
210
277
|
|
211
278
|
def clean_old_dates(self, df: pd.DataFrame) -> pd.DataFrame:
|
212
279
|
condition = df[self.date_column] <= self.MIN_SUPPORTED_DATE_TS
|
@@ -14,7 +14,7 @@ from upgini.metadata import (
|
|
14
14
|
SearchKey,
|
15
15
|
)
|
16
16
|
from upgini.resource_bundle import ResourceBundle, get_custom_bundle
|
17
|
-
from upgini.utils.datetime_utils import
|
17
|
+
from upgini.utils.datetime_utils import DateTimeConverter
|
18
18
|
from upgini.utils.target_utils import define_task
|
19
19
|
|
20
20
|
|
@@ -104,7 +104,7 @@ def remove_fintech_duplicates(
|
|
104
104
|
sub_df = pd.merge(sub_df, nonunique_target_rows, on=personal_cols)
|
105
105
|
|
106
106
|
# Convert date columns for further checks
|
107
|
-
sub_df =
|
107
|
+
sub_df = DateTimeConverter(
|
108
108
|
date_col, date_format=date_format, logger=logger, bundle=bundle, generate_cyclical_features=False
|
109
109
|
).convert(sub_df)
|
110
110
|
grouped_by_personal_cols = sub_df.groupby(personal_cols, group_keys=False)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: upgini
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.125
|
4
4
|
Summary: Intelligent data search & enrichment for Machine Learning
|
5
5
|
Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
|
6
6
|
Project-URL: Homepage, https://upgini.com/
|
@@ -30,6 +30,7 @@ Requires-Dist: ipywidgets>=8.1.0
|
|
30
30
|
Requires-Dist: jarowinkler>=2.0.0
|
31
31
|
Requires-Dist: levenshtein>=0.25.1
|
32
32
|
Requires-Dist: lightgbm>=4.6.0
|
33
|
+
Requires-Dist: more-itertools==10.7.0
|
33
34
|
Requires-Dist: numpy<3.0.0,>=1.19.0
|
34
35
|
Requires-Dist: pandas<3.0.0,>=1.1.0
|
35
36
|
Requires-Dist: psutil>=5.9.0
|
@@ -1,20 +1,20 @@
|
|
1
|
-
upgini/__about__.py,sha256=
|
1
|
+
upgini/__about__.py,sha256=khvL6Ma3KHnaaXtUCPR9kKBJFG5qg7emKoKVlrbEt0k,24
|
2
2
|
upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
|
3
3
|
upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
|
4
|
-
upgini/dataset.py,sha256=
|
4
|
+
upgini/dataset.py,sha256=Nm2ZmwyQqvTnymYpGUwyJWy7y2ebXlHMyYmGeGcyA_s,31652
|
5
5
|
upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
|
6
|
-
upgini/features_enricher.py,sha256=
|
6
|
+
upgini/features_enricher.py,sha256=tmKeERG2b0YfJ47g-UXQQ3S-9tyagwUOhI4oqN3kG2w,233058
|
7
7
|
upgini/http.py,sha256=-J_wOpnwVnT0ebPC6sOs6fN3AWtCD0LJLu6nlYmxaqk,44348
|
8
|
-
upgini/metadata.py,sha256=
|
8
|
+
upgini/metadata.py,sha256=CL9bFytdUZlbQYtTgNgAkt_sxO9klARQtULDBgb2Hlg,12575
|
9
9
|
upgini/metrics.py,sha256=KCPE_apPN-9BIdv6GqASbJVaB_gBcy8wzNApAcyaGo4,46020
|
10
|
-
upgini/search_task.py,sha256=
|
10
|
+
upgini/search_task.py,sha256=5mL_qV5mVtDkIumM9xCOgfa9Lc2B8mxJ1qI21iaScnQ,18656
|
11
11
|
upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
|
12
12
|
upgini/version_validator.py,sha256=DvbaAvuYFoJqYt0fitpsk6Xcv-H1BYDJYHUMxaKSH_Y,1509
|
13
13
|
upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
|
14
14
|
upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
|
15
15
|
upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
16
16
|
upgini/autofe/all_operators.py,sha256=rdjF5eaE4bC6Q4eu_el5Z7ekYt8DjOFermz2bePPbUc,333
|
17
|
-
upgini/autofe/binary.py,sha256=
|
17
|
+
upgini/autofe/binary.py,sha256=o3TQuP3EnECAVIeToGczu4yJ4vX7BJ2iSCN9Ra1SZJI,7829
|
18
18
|
upgini/autofe/date.py,sha256=RvexgrL1_6ISYPVrl9HUQmPgpVSGQsTNv8YhNQWs-5M,11329
|
19
19
|
upgini/autofe/feature.py,sha256=W9sZHdz5Vi0H_oPyY5saZAPjyd5wunpULnCqrGLpQc4,16879
|
20
20
|
upgini/autofe/groupby.py,sha256=IYmQV9uoCdRcpkeWZj_kI3ObzoNCNx3ff3h8sTL01tk,3603
|
@@ -35,7 +35,7 @@ upgini/data_source/data_source_publisher.py,sha256=qXQUYErhCmkWHm2FWgTL0FYZ2aJbx
|
|
35
35
|
upgini/mdc/__init__.py,sha256=iHJlXQg6xRM1-ZOUtaPSJqw5SpQDszvxp4LyqviNLIQ,1027
|
36
36
|
upgini/mdc/context.py,sha256=3u1B-jXt7tXEvNcV3qmR9SDCseudnY7KYsLclBdwVLk,1405
|
37
37
|
upgini/normalizer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
38
|
-
upgini/normalizer/normalize_utils.py,sha256=
|
38
|
+
upgini/normalizer/normalize_utils.py,sha256=w9f_9udrwqbhXgFMTs2keuce-6X_j6h3D7EdNo_2X7g,8493
|
39
39
|
upgini/resource_bundle/__init__.py,sha256=S5F2G47pnJd2LDpmFsjDqEwiKkP8Hm-hcseDbMka6Ko,8345
|
40
40
|
upgini/resource_bundle/exceptions.py,sha256=5fRvx0_vWdE1-7HcSgF0tckB4A9AKyf5RiinZkInTsI,621
|
41
41
|
upgini/resource_bundle/strings.properties,sha256=KcXm1Nl6c3zswL91tIbG0DjuuNpzxUdCg1cY9f2-9cg,29283
|
@@ -52,8 +52,8 @@ upgini/utils/config.py,sha256=zFdnjchykfp_1Tm3Qep7phLzXBpXIOzr2tIuXchRBLw,1754
|
|
52
52
|
upgini/utils/country_utils.py,sha256=lY-eXWwFVegdVENFttbvLcgGDjFO17Sex8hd2PyJaRk,6937
|
53
53
|
upgini/utils/custom_loss_utils.py,sha256=kieNZYBYZm5ZGBltF1F_jOSF4ea6C29rYuCyiDcqVNY,3857
|
54
54
|
upgini/utils/cv_utils.py,sha256=w6FQb9nO8BWDx88EF83NpjPLarK4eR4ia0Wg0kLBJC4,3525
|
55
|
-
upgini/utils/datetime_utils.py,sha256=
|
56
|
-
upgini/utils/deduplicate_utils.py,sha256=
|
55
|
+
upgini/utils/datetime_utils.py,sha256=l85UzSQLhtMeI2G6m-m8y8bCColCLSXNHb2-G6fKpLM,16988
|
56
|
+
upgini/utils/deduplicate_utils.py,sha256=6czbn1q0p-lOmrNvbAzueBpDHmfIP4TfV4poWqbjX5w,11255
|
57
57
|
upgini/utils/display_utils.py,sha256=uSG3JwpwCIgRJXsp-8ktuJ0Dh-WFti7IrRLMUfHfoDc,11973
|
58
58
|
upgini/utils/email_utils.py,sha256=pZ2vCfNxLIPUhxr0-OlABNXm12jjU44isBk8kGmqQzA,5277
|
59
59
|
upgini/utils/fallback_progress_bar.py,sha256=PDaKb8dYpVZaWMroNcOHsTc3pSjgi9mOm0--cOFTwJ0,1074
|
@@ -74,7 +74,7 @@ upgini/utils/target_utils.py,sha256=GCPn4QeJ83JJ_vyBJ3IhY5fyIRkLC9q9BE59S2FRO1I,
|
|
74
74
|
upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
|
75
75
|
upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
|
76
76
|
upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
|
77
|
-
upgini-1.2.
|
78
|
-
upgini-1.2.
|
79
|
-
upgini-1.2.
|
80
|
-
upgini-1.2.
|
77
|
+
upgini-1.2.125.dist-info/METADATA,sha256=CAoP8m15syLZEVmnYuUjUMI1Jo-XvMCGhz-CZnRYwy4,50781
|
78
|
+
upgini-1.2.125.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
79
|
+
upgini-1.2.125.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
|
80
|
+
upgini-1.2.125.dist-info/RECORD,,
|
File without changes
|
File without changes
|