upgini 1.2.119__py3-none-any.whl → 1.2.120__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.2.119"
1
+ __version__ = "1.2.120"
@@ -1028,13 +1028,7 @@ class FeaturesEnricher(TransformerMixin):
1028
1028
  columns_renaming,
1029
1029
  _,
1030
1030
  ) = prepared_data
1031
-
1032
- # rename baseline_score_column
1033
- reversed_renaming = {v: k for k, v in columns_renaming.items()}
1034
- baseline_score_column = self.baseline_score_column
1035
- if baseline_score_column is not None:
1036
- baseline_score_column = reversed_renaming[baseline_score_column]
1037
-
1031
+
1038
1032
  gc.collect()
1039
1033
 
1040
1034
  if fitting_X.shape[1] == 0 and fitting_enriched_X.shape[1] == 0:
@@ -1089,7 +1083,7 @@ class FeaturesEnricher(TransformerMixin):
1089
1083
  has_time=has_time,
1090
1084
  )
1091
1085
  baseline_cv_result = baseline_estimator.cross_val_predict(
1092
- fitting_X, y_sorted, baseline_score_column
1086
+ fitting_X, y_sorted, self.baseline_score_column
1093
1087
  )
1094
1088
  baseline_metric = baseline_cv_result.get_display_metric()
1095
1089
  if baseline_metric is None:
@@ -1192,7 +1186,7 @@ class FeaturesEnricher(TransformerMixin):
1192
1186
  f"on client features: {eval_X_sorted.columns.to_list()}"
1193
1187
  )
1194
1188
  etalon_eval_results = baseline_estimator.calculate_metric(
1195
- eval_X_sorted, eval_y_sorted, baseline_score_column
1189
+ eval_X_sorted, eval_y_sorted, self.baseline_score_column
1196
1190
  )
1197
1191
  etalon_eval_metric = etalon_eval_results.get_display_metric()
1198
1192
  self.logger.info(
@@ -2502,6 +2496,9 @@ if response.status_code == 200:
2502
2496
  ) -> tuple[pd.DataFrame, dict[str, str], list[str], dict[str, SearchKey]]:
2503
2497
  if self._search_task is None:
2504
2498
  raise NotFittedError(self.bundle.get("transform_unfitted_enricher"))
2499
+ features_meta = self._search_task.get_all_features_metadata_v2()
2500
+ if features_meta is None:
2501
+ raise NotFittedError(self.bundle.get("transform_unfitted_enricher"))
2505
2502
 
2506
2503
  start_time = time.time()
2507
2504
  search_id = self.search_id or (self._search_task.search_task_id if self._search_task is not None else None)
@@ -2531,7 +2528,6 @@ if response.status_code == 200:
2531
2528
  self.__display_support_link(msg)
2532
2529
  return None, {}, [], self.search_keys
2533
2530
 
2534
- features_meta = self._search_task.get_all_features_metadata_v2()
2535
2531
  online_api_features = [fm.name for fm in features_meta if fm.from_online_api and fm.shap_value > 0]
2536
2532
  if len(online_api_features) > 0:
2537
2533
  self.logger.warning(
@@ -3382,6 +3378,7 @@ if response.status_code == 200:
3382
3378
  except KeyboardInterrupt as e:
3383
3379
  print(self.bundle.get("search_stopping"))
3384
3380
  self.rest_client.stop_search_task_v2(trace_id, self._search_task.search_task_id)
3381
+ self._search_task = None
3385
3382
  self.logger.warning(f"Search {self._search_task.search_task_id} stopped by user")
3386
3383
  print(self.bundle.get("search_stopped"))
3387
3384
  raise e
@@ -1301,6 +1301,7 @@ def _encode_cat_features(X_train, y_train, X_test, y_test, cat_features, estimat
1301
1301
  encoder = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1)
1302
1302
  encoder.fit(X_train[cat_features], y_train)
1303
1303
 
1304
+ # OrdinalEncoder doesn't support progressive encoding with target
1304
1305
  X_train[cat_features] = encoder.transform(X_train[cat_features]).astype(int)
1305
1306
  X_test[cat_features] = encoder.transform(X_test[cat_features]).astype(int)
1306
1307
 
@@ -1314,10 +1315,8 @@ def _encode_cat_features(X_train, y_train, X_test, y_test, cat_features, estimat
1314
1315
  encoder = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1)
1315
1316
  encoder.fit(X_train[cat_features], y_train)
1316
1317
 
1317
- # Progressive encoding on train (using y)
1318
- X_train[cat_features] = encoder.transform(X_train[cat_features], y_train).astype(int)
1319
-
1320
- # Static encoding on validation (no y)
1318
+ # OrdinalEncoder doesn't support progressive encoding with target
1319
+ X_train[cat_features] = encoder.transform(X_train[cat_features]).astype(int)
1321
1320
  X_test[cat_features] = encoder.transform(X_test[cat_features]).astype(int)
1322
1321
 
1323
1322
  return X_train, y_train, X_test, y_test, [], encoder
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.2.119
3
+ Version: 1.2.120
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,9 +1,9 @@
1
- upgini/__about__.py,sha256=dGQsiLpbGOBMNMjbBQebmAujqSJwdzWvwm3Nkl_FFhk,24
1
+ upgini/__about__.py,sha256=C4MPkUjPY8txHqkpCAHzv554Bvc9hUrOFMic1aakSTI,24
2
2
  upgini/__init__.py,sha256=LXSfTNU0HnlOkE69VCxkgIKDhWP-JFo_eBQ71OxTr5Y,261
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=pQ8JQe0cdygD-W9GefJmfE6bnj4EYzXsjlgWdIS9nS8,31578
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=C9pZKusj_QnG9coPVAa1a_88VC-lLR4Tre4uC10yt04,231852
6
+ upgini/features_enricher.py,sha256=Du1S72F55cqyKbHT3VGSPnJO3XicWABFVkA2-G3chdA,231696
7
7
  upgini/http.py,sha256=-J_wOpnwVnT0ebPC6sOs6fN3AWtCD0LJLu6nlYmxaqk,44348
8
8
  upgini/metadata.py,sha256=VzgtgEbPPtNxTrj9LM5qSDP3DujHwAXqbUSKBjPcb9c,12477
9
9
  upgini/metrics.py,sha256=KCPE_apPN-9BIdv6GqASbJVaB_gBcy8wzNApAcyaGo4,46020
@@ -68,13 +68,13 @@ upgini/utils/postal_code_utils.py,sha256=5M0sUqH2DAr33kARWCTXR-ACyzWbjDq_-0mmEml
68
68
  upgini/utils/progress_bar.py,sha256=N-Sfdah2Hg8lXP_fV9EfUTXz_PyRt4lo9fAHoUDOoLc,1550
69
69
  upgini/utils/psi.py,sha256=vw8QEktXSx29IiMJMxmDeFU_4lJInJBXt_XL5Muekzo,11114
70
70
  upgini/utils/sample_utils.py,sha256=xpfYaZ2cYP7I2JrcooVc13QNBFawB81cJRuh38451Q4,15123
71
- upgini/utils/sklearn_ext.py,sha256=jLJWAKkqQinV15Z4y1ZnsN3c-fKFwXTsprs00COnyVU,49315
71
+ upgini/utils/sklearn_ext.py,sha256=Pcy8sWD6f4YcE5Bu0UmXD4j0ICmXtrT8DJlTArM-_a0,49356
72
72
  upgini/utils/sort.py,sha256=8uuHs2nfSMVnz8GgvbOmgMB1PgEIZP1uhmeRFxcwnYw,7039
73
73
  upgini/utils/target_utils.py,sha256=GCPn4QeJ83JJ_vyBJ3IhY5fyIRkLC9q9BE59S2FRO1I,10882
74
74
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
75
75
  upgini/utils/ts_utils.py,sha256=26vhC0pN7vLXK6R09EEkMK3Lwb9IVPH7LRdqFIQ3kPs,1383
76
76
  upgini/utils/warning_counter.py,sha256=-GRY8EUggEBKODPSuXAkHn9KnEQwAORC0mmz_tim-PM,254
77
- upgini-1.2.119.dist-info/METADATA,sha256=kYExWpX2yb4opF3KCsG2H0LdMS_mkSzspOgEhO6Jgtg,50743
78
- upgini-1.2.119.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
79
- upgini-1.2.119.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
80
- upgini-1.2.119.dist-info/RECORD,,
77
+ upgini-1.2.120.dist-info/METADATA,sha256=KFxeOoYvqFTE347dhf5EmvIskXqWMZvxYWy3AAwOyWI,50743
78
+ upgini-1.2.120.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
79
+ upgini-1.2.120.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
80
+ upgini-1.2.120.dist-info/RECORD,,