upgini 1.1.303a3511.dev11__py3-none-any.whl → 1.1.304__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.1.303a3511.dev11"
1
+ __version__ = "1.1.304"
@@ -1,38 +1,17 @@
1
1
  from typing import Dict
2
2
 
3
- from upgini.autofe.binary import (
4
- Add,
5
- Combine,
6
- CombineThenFreq,
7
- Distance,
8
- Divide,
9
- JaroWinklerSim1,
10
- JaroWinklerSim2,
11
- LevenshteinSim,
12
- Max,
13
- Min,
14
- Multiply,
15
- Sim,
16
- Subtract,
17
- )
3
+ from upgini.autofe.binary import Add, Divide, Max, Min, Multiply, Sim, Subtract
18
4
  from upgini.autofe.date import (
19
- (
20
5
  DateDiff,
21
-
22
6
  DateDiffType2,
23
-
24
7
  DateListDiff,
25
-
26
8
  DateListDiffBounded,
27
9
  DatePercentile,
28
-
29
- DatePercentileMethod2,
30
- ),
31
10
  DatePercentileMethod2,
32
11
  )
33
- from upgini.autofe.groupby import GroupByThenAgg, GroupByThenFreq, GroupByThenNUnique, GroupByThenRank
12
+ from upgini.autofe.groupby import GroupByThenAgg, GroupByThenRank
34
13
  from upgini.autofe.operand import Operand
35
- from upgini.autofe.unary import Abs, Embeddings, Floor, Freq, Log, Residual, Norm, Sigmoid, Sqrt, Square
14
+ from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Norm, Sigmoid, Sqrt, Square
36
15
  from upgini.autofe.vector import Mean, Sum
37
16
 
38
17
  ALL_OPERANDS: Dict[str, Operand] = {
@@ -60,10 +39,10 @@ ALL_OPERANDS: Dict[str, Operand] = {
60
39
  GroupByThenAgg(name="GroupByThenMedian", agg="median"),
61
40
  GroupByThenAgg(name="GroupByThenStd", output_type="float", agg="std"),
62
41
  GroupByThenRank(),
63
- Combine(),
64
- CombineThenFreq(),
65
- GroupByThenNUnique(),
66
- GroupByThenFreq(),
42
+ Operand(name="Combine", has_symmetry_importance=True, output_type="object", is_categorical=True),
43
+ Operand(name="CombineThenFreq", has_symmetry_importance=True, output_type="float"),
44
+ Operand(name="GroupByThenNUnique", output_type="int", is_vectorizable=True, is_grouping=True),
45
+ Operand(name="GroupByThenFreq", output_type="float", is_grouping=True),
67
46
  Sim(),
68
47
  DateDiff(),
69
48
  DateDiffType2(),
@@ -80,11 +59,6 @@ ALL_OPERANDS: Dict[str, Operand] = {
80
59
  DatePercentile(),
81
60
  DatePercentileMethod2(),
82
61
  Norm(),
83
- JaroWinklerSim1(),
84
- JaroWinklerSim2(),
85
- LevenshteinSim(),
86
- Distance(),
87
- Embeddings(),
88
62
  ]
89
63
  }
90
64
 
upgini/autofe/binary.py CHANGED
@@ -1,11 +1,7 @@
1
- import abc
2
- from typing import Optional
3
- import Levenshtein
4
1
  import numpy as np
5
2
  import pandas as pd
6
3
  from numpy import dot
7
4
  from numpy.linalg import norm
8
- from jarowinkler import jarowinkler_similarity
9
5
 
10
6
  from upgini.autofe.operand import PandasOperand, VectorizableMixin
11
7
 
@@ -134,27 +130,7 @@ class CombineThenFreq(PandasOperand):
134
130
  self._loc(temp, value_counts)
135
131
 
136
132
 
137
- class Distance(PandasOperand):
138
- name = "dist"
139
- is_binary = True
140
- output_type = "float"
141
- is_symmetrical = True
142
- has_symmetry_importance = True
143
-
144
- def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
145
- return pd.Series(
146
- 1 - self.__dot(left, right) / (self.__dot(left, left) * self.__dot(right, right)), index=left.index
147
- )
148
-
149
- # row-wise dot product
150
- def __dot(self, left: pd.Series, right: pd.Series) -> pd.Series:
151
- res = (left.dropna() * right.dropna()).apply(np.sum)
152
- res = res.reindex(left.index.union(right.index))
153
- return res
154
-
155
-
156
- # Left for backward compatibility
157
- class Sim(Distance):
133
+ class Sim(PandasOperand):
158
134
  name = "sim"
159
135
  is_binary = True
160
136
  output_type = "float"
@@ -162,71 +138,4 @@ class Sim(Distance):
162
138
  has_symmetry_importance = True
163
139
 
164
140
  def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
165
- return 1 - super().calculate_binary(left, right)
166
-
167
-
168
- class StringSim(PandasOperand, abc.ABC):
169
- def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
170
- sims = []
171
- for i in left.index:
172
- left_i = self._prepare_value(left.get(i))
173
- right_i = self._prepare_value(right.get(i))
174
- if left_i is not None and right_i is not None:
175
- sims.append(self._similarity(left_i, right_i))
176
- else:
177
- sims.append(None)
178
-
179
- return pd.Series(sims, index=left.index)
180
-
181
- @abc.abstractmethod
182
- def _prepare_value(self, value: Optional[str]) -> Optional[str]:
183
- pass
184
-
185
- @abc.abstractmethod
186
- def _similarity(self, left: str, right: str) -> float:
187
- pass
188
-
189
-
190
- class JaroWinklerSim1(StringSim):
191
- name = "sim_jw1"
192
- is_binary = True
193
- input_type = "string"
194
- output_type = "float"
195
- is_symmetrical = True
196
- has_symmetry_importance = True
197
-
198
- def _prepare_value(self, value: Optional[str]) -> Optional[str]:
199
- return value
200
-
201
- def _similarity(self, left: str, right: str) -> float:
202
- return jarowinkler_similarity(left, right)
203
-
204
-
205
- class JaroWinklerSim2(StringSim):
206
- name = "sim_jw2"
207
- is_binary = True
208
- input_type = "string"
209
- output_type = "float"
210
- is_symmetrical = True
211
- has_symmetry_importance = True
212
-
213
- def _prepare_value(self, value: Optional[str]) -> Optional[str]:
214
- return value[::-1] if value is not None else None
215
-
216
- def _similarity(self, left: str, right: str) -> float:
217
- return jarowinkler_similarity(left, right)
218
-
219
-
220
- class LevenshteinSim(StringSim):
221
- name = "sim_lv"
222
- is_binary = True
223
- input_type = "string"
224
- output_type = "float"
225
- is_symmetrical = True
226
- has_symmetry_importance = True
227
-
228
- def _prepare_value(self, value: Optional[str]) -> Optional[str]:
229
- return value
230
-
231
- def _similarity(self, left: str, right: str) -> float:
232
- return 1 - Levenshtein.distance(left, right) / max(len(left), len(right))
141
+ return dot(left, right) / (norm(left) * norm(right))
upgini/autofe/date.py CHANGED
@@ -20,7 +20,7 @@ class DateDiffMixin(BaseModel):
20
20
  if isinstance(x, pd.DataFrame):
21
21
  return x.apply(lambda y: self._convert_to_date(y, unit), axis=1)
22
22
 
23
- return pd.to_datetime(x, unit=unit, errors='coerce')
23
+ return pd.to_datetime(x, unit=unit)
24
24
 
25
25
  def _convert_diff_to_unit(self, diff: Union[pd.Series, TimedeltaArray]) -> Union[pd.Series, TimedeltaArray]:
26
26
  if self.diff_unit == "D":
@@ -43,8 +43,6 @@ class DateDiff(PandasOperand, DateDiffMixin):
43
43
  is_binary = True
44
44
  has_symmetry_importance = True
45
45
 
46
- replace_negative: bool = False
47
-
48
46
  def get_params(self) -> Dict[str, Optional[str]]:
49
47
  res = super().get_params()
50
48
  res.update(
@@ -52,7 +50,6 @@ class DateDiff(PandasOperand, DateDiffMixin):
52
50
  "diff_unit": self.diff_unit,
53
51
  "left_unit": self.left_unit,
54
52
  "right_unit": self.right_unit,
55
- "replace_negative": self.replace_negative,
56
53
  }
57
54
  )
58
55
  return res
@@ -64,8 +61,7 @@ class DateDiff(PandasOperand, DateDiffMixin):
64
61
  return self.__replace_negative(diff)
65
62
 
66
63
  def __replace_negative(self, x: Union[pd.DataFrame, pd.Series]):
67
- if self.replace_negative:
68
- x[x < 0] = None
64
+ x[x < 0] = None
69
65
  return x
70
66
 
71
67
 
@@ -89,7 +85,7 @@ class DateDiffType2(PandasOperand, DateDiffMixin):
89
85
  left = self._convert_to_date(left, self.left_unit)
90
86
  right = self._convert_to_date(right, self.right_unit)
91
87
  future = right + (left.dt.year - right.dt.year).apply(
92
- lambda y: pd.tseries.offsets.DateOffset(years=0 if np.isnan(y) else y)
88
+ lambda y: np.datetime64("NaT") if np.isnan(y) else pd.tseries.offsets.DateOffset(years=y)
93
89
  )
94
90
  future = pd.to_datetime(future)
95
91
  before = future[future < left]
@@ -105,19 +101,13 @@ _ext_aggregations = {"nunique": (lambda x: len(np.unique(x)), 0), "count": (len,
105
101
  class DateListDiff(PandasOperand, DateDiffMixin):
106
102
  is_binary = True
107
103
  has_symmetry_importance = True
108
-
109
104
  aggregation: str
110
- replace_negative: bool = False
111
105
 
112
106
  def get_params(self) -> Dict[str, Optional[str]]:
113
107
  res = super().get_params()
114
108
  res.update(
115
109
  {
116
110
  "aggregation": self.aggregation,
117
- "diff_unit": self.diff_unit,
118
- "left_unit": self.left_unit,
119
- "right_unit": self.right_unit,
120
- "replace_negative": self.replace_negative,
121
111
  }
122
112
  )
123
113
  return res
@@ -135,7 +125,7 @@ class DateListDiff(PandasOperand, DateDiffMixin):
135
125
 
136
126
  def _diff(self, x: TimedeltaArray):
137
127
  x = self._convert_diff_to_unit(x)
138
- return x[x > 0] if self.replace_negative else x
128
+ return x[x > 0]
139
129
 
140
130
  def _agg(self, x):
141
131
  method = getattr(np, self.aggregation, None)
@@ -167,10 +157,7 @@ class DateListDiffBounded(DateListDiff):
167
157
  super().__init__(**data)
168
158
 
169
159
  def _agg(self, x):
170
- x = x[
171
- (x >= (self.lower_bound if self.lower_bound is not None else -np.inf))
172
- & (x < (self.upper_bound if self.upper_bound is not None else np.inf))
173
- ]
160
+ x = x[(x >= (self.lower_bound or -np.inf)) & (x < (self.upper_bound or np.inf))]
174
161
  return super()._agg(x)
175
162
 
176
163
 
upgini/autofe/feature.py CHANGED
@@ -138,17 +138,15 @@ class Feature:
138
138
  if self.cached_display_name is not None and cache:
139
139
  return self.cached_display_name
140
140
 
141
- should_stack_op = not isinstance(self.children[0], Column) if self.op.is_unary else False
142
- prev_name = [self.children[0].get_op_display_name()] if should_stack_op else []
143
-
144
141
  if self.alias:
145
142
  components = ["f_autofe", self.alias]
146
- elif shorten and (not self.op.is_unary or should_stack_op):
147
- components = ["f_autofe"] + prev_name + [self.get_op_display_name()]
143
+ elif shorten and not self.op.is_unary:
144
+ components = ["f_autofe", self.get_op_display_name()]
148
145
  else:
149
- components = (
150
- ["f_" + "_f_".join(self.get_columns(**kwargs))] + ["autofe"] + prev_name + [self.get_op_display_name()]
151
- )
146
+ components = ["f_" + "_f_".join(self.get_columns(**kwargs))] + [
147
+ "autofe",
148
+ self.get_op_display_name(),
149
+ ]
152
150
  components.extend([str(self.display_index)] if self.display_index is not None else [])
153
151
  display_name = "_".join(components)
154
152
 
@@ -239,18 +237,12 @@ class Feature:
239
237
 
240
238
  @staticmethod
241
239
  def from_formula(string: str) -> Union[Column, "Feature"]:
240
+ if string[-1] != ")":
241
+ return Column(string)
242
242
 
243
243
  def is_trivial_char(c: str) -> bool:
244
244
  return c not in "()+-*/,"
245
245
 
246
- if string[-1] != ")":
247
- if all(is_trivial_char(c) for c in string):
248
- return Column(string)
249
- else:
250
- raise ValueError(
251
- f"Unsupported column name: {string}. Column names should not have characters: ['(', ')', '+', '-', '*', '/', ',']"
252
- )
253
-
254
246
  def find_prev(string: str) -> int:
255
247
  if string[-1] != ")":
256
248
  return max([(0 if is_trivial_char(c) else i + 1) for i, c in enumerate(string)])
@@ -272,11 +264,8 @@ class Feature:
272
264
  return Feature(find_op(string[: p2 - 1]), [Feature.from_formula(string[p2:-1])])
273
265
  p1 = find_prev(string[: p2 - 1])
274
266
  if string[0] == "(":
275
- op = find_op(string[p2 - 1])
276
- if op is None:
277
- raise ValueError(f"Unsupported operand: {string[p2 - 1]}")
278
267
  return Feature(
279
- op,
268
+ find_op(string[p2 - 1]),
280
269
  [Feature.from_formula(string[p1 : p2 - 1]), Feature.from_formula(string[p2:-1])],
281
270
  )
282
271
  else:
@@ -287,8 +276,6 @@ class Feature:
287
276
  [Feature.from_formula(string[p1 : p2 - 1]), Feature.from_formula(string[p2:-1])],
288
277
  )
289
278
  else:
290
- if string[p1 - 1] == "(":
291
- raise ValueError(f"Unsupported operand: {string[: p1 - 1]}")
292
279
  base_features = [
293
280
  Feature.from_formula(string[p2:-1]),
294
281
  Feature.from_formula(string[p1 : p2 - 1]),
@@ -334,10 +321,10 @@ class FeatureGroup:
334
321
  lower_order_names = [ch.get_display_name() for ch in lower_order_children]
335
322
  if any(isinstance(f, Feature) for f in lower_order_children):
336
323
  child_data = pd.concat(
337
- [data[main_column or []]] + [ch.calculate(data) for ch in lower_order_children],
324
+ [data[main_column]] + [ch.calculate(data) for ch in lower_order_children],
338
325
  axis=1,
339
326
  )
340
- child_data.columns = ([main_column] if main_column is not None else []) + lower_order_names
327
+ child_data.columns = [main_column] + lower_order_names
341
328
  else:
342
329
  child_data = data[columns]
343
330
 
upgini/autofe/unary.py CHANGED
@@ -125,10 +125,3 @@ class Norm(PandasOperand):
125
125
  normalized_data = pd.Series(normalized_data[:, 0], index=data_dropna.index, name=data.name)
126
126
  normalized_data = normalized_data.reindex(data.index)
127
127
  return normalized_data
128
-
129
-
130
- class Embeddings(PandasOperand):
131
- name = "emb"
132
- is_unary = True
133
- input_type = "string"
134
- output_type = "vector"
@@ -866,6 +866,13 @@ class FeaturesEnricher(TransformerMixin):
866
866
  if X is not None and y is None:
867
867
  raise ValidationError("X passed without y")
868
868
 
869
+ if self.X is None:
870
+ self.X = X
871
+ if self.y is None:
872
+ self.y = y
873
+ if self.eval_set is None:
874
+ self.eval_set = effective_eval_set
875
+
869
876
  validate_scoring_argument(scoring)
870
877
 
871
878
  self._validate_baseline_score(effective_X, effective_eval_set)
upgini/metadata.py CHANGED
@@ -191,7 +191,7 @@ class FileColumnMetadata(BaseModel):
191
191
  # is this column contains keys from multiple key columns like msisdn1, msisdn2
192
192
  isUnnest: bool = False
193
193
  # list of original etalon key column names like msisdn1, msisdn2
194
- unnestKeyNames: Optional[list[str]]
194
+ unnestKeyNames: Optional[List[str]]
195
195
 
196
196
 
197
197
  class FileMetadata(BaseModel):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.1.303a3511.dev11
3
+ Version: 1.1.304
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -26,8 +26,6 @@ Requires-Python: <3.11,>=3.8
26
26
  Requires-Dist: catboost>=1.0.3
27
27
  Requires-Dist: fastparquet>=0.8.1
28
28
  Requires-Dist: ipywidgets>=8.1.0
29
- Requires-Dist: jarowinkler>=2.0.0
30
- Requires-Dist: levenshtein>=0.25.1
31
29
  Requires-Dist: lightgbm>=3.3.2
32
30
  Requires-Dist: numpy>=1.19.0
33
31
  Requires-Dist: pandas<3.0.0,>=1.1.0
@@ -1,12 +1,12 @@
1
- upgini/__about__.py,sha256=2Z09LPlD7umwajxtx3m7tbIaXtOdYwkQJcxjAvo3jrk,35
1
+ upgini/__about__.py,sha256=PDyjaC3wseenkkhwm3_tnxMhBdoVhLFOxy21fepSTGU,24
2
2
  upgini/__init__.py,sha256=ObEtjFkIssl83qeKNMLpIQygfwK8TzztwiI43YTsAP0,353
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=MOzBVsvzlHLxNfPWtMaXC_jIPeW7_gUvbSGeXnsPgNI,46158
5
5
  upgini/errors.py,sha256=2b_Wbo0OYhLUbrZqdLIx5jBnAsiD1Mcenh-VjR4HCTw,950
6
- upgini/features_enricher.py,sha256=PRiQGAmnm9jPXN4Uqus5l8RQIPAWPxsIBnIoEMnh6g8,183342
6
+ upgini/features_enricher.py,sha256=8grYkWdix0NogYAY7YjUVe2Tqfra6NAxM78N9MlLF30,183572
7
7
  upgini/http.py,sha256=bp6jWl422Icy3AhHMdCcJv5NjExE45gSMmzMTPJjPuk,42600
8
8
  upgini/lazy_import.py,sha256=EwoM0msNGbSmWBhGbrLDny1DSnOlvTxCjmMKPxYlDms,610
9
- upgini/metadata.py,sha256=wOFCJruDBhC4Hiiiqf8GeHZnnm6rhJy8t6fg5B0Z4TQ,10209
9
+ upgini/metadata.py,sha256=E5WWZ_MkjGyYNQh_LnwMIBHyqPx1fxk-qhEfQIJnzq8,10209
10
10
  upgini/metrics.py,sha256=Tu5cN8RlhOSSMWUTXRSkdl8SWBqR1N_2eJpBum9pZxc,30926
11
11
  upgini/search_task.py,sha256=LtRJ9bCPjMo1gJ-sUDKERhDwGcWKImrzwVFHjkMSQHQ,17071
12
12
  upgini/spinner.py,sha256=4iMd-eIe_BnkqFEMIliULTbj6rNI2HkN_VJ4qYe0cUc,1118
@@ -14,13 +14,13 @@ upgini/version_validator.py,sha256=ddSKUK_-eGJB3NgrqOMoWJU-OxQ253WsNLp8aqJkaIM,1
14
14
  upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
15
15
  upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
16
16
  upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
- upgini/autofe/all_operands.py,sha256=LZfcfRqYTrrRbUsTEiY6O7TImr0NR4Idn-WoJongrTM,2594
18
- upgini/autofe/binary.py,sha256=9W1DL2kZEmgV1P-0BEy8JYj9u_xhiDPKfeEsFQfrlkU,6860
19
- upgini/autofe/date.py,sha256=INgiSfhkEiK3s6JL47O9EQrXITwqFrXo-KoihCdO5B4,8440
20
- upgini/autofe/feature.py,sha256=99xakEK6kQKoduAtblIAAkCsG8fezfHQA4eji8c1i8E,14200
17
+ upgini/autofe/all_operands.py,sha256=XbvgX2IU4aee9rJZ--d5MdmrfKhON_emle5-RU1qlEY,2506
18
+ upgini/autofe/binary.py,sha256=8FXPJxN7fnC5wphO0Dp1tQCa0lFMSDGQGvBMkSIVAcE,4155
19
+ upgini/autofe/date.py,sha256=8zYVhjl7jVS4xt-IjCgk9px2LHnACX2YlMlmDELlRTc,7943
20
+ upgini/autofe/feature.py,sha256=ayxiF8Ip1ww_pt_BC9Pk127fAHZ_3fuluulS1EYLolk,13423
21
21
  upgini/autofe/groupby.py,sha256=4WjDzQxqpZxB79Ih4ihMMI5GDxaFqiH6ZelfV82ClT4,3091
22
22
  upgini/autofe/operand.py,sha256=MKEsl3zxpWzRDpTkE0sNJxTu62U20sWOvEKhPjUWS6s,2915
23
- upgini/autofe/unary.py,sha256=B4wp8oKnlJ0nUng-DRMKSiF8MHlhAFYbgmo9Nd_0ZaA,3777
23
+ upgini/autofe/unary.py,sha256=ZWjLd-CUkNt_PpM8YuWLLipW1v_RdBlsl4JxXIVo9aM,3652
24
24
  upgini/autofe/vector.py,sha256=dLxfAstJs-gw_OQ1xxoxcM6pVzORlV0HVzdzt7cLXVQ,606
25
25
  upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
26
  upgini/data_source/data_source_publisher.py,sha256=aCVpZ3RGlYToRYYNHjC2BxIxnnKUyrrF29MncCXhVlE,19716
@@ -57,7 +57,7 @@ upgini/utils/sklearn_ext.py,sha256=13jQS_k7v0aUtudXV6nGUEWjttPQzAW9AFYL5wgEz9k,4
57
57
  upgini/utils/target_utils.py,sha256=Y96_PJ5cC-WsEbeqg20v9uqywDQobLoTb-xoP7S3o4E,7807
58
58
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
59
59
  upgini/utils/warning_counter.py,sha256=dIWBB4dI5XRRJZudvIlqlIYKEiwLLPcXarsZuYRt338,227
60
- upgini-1.1.303a3511.dev11.dist-info/METADATA,sha256=kqtHRAbhs1cVxNYm1aHGo4CAtO6ELYfJFbVkjAegNPw,48233
61
- upgini-1.1.303a3511.dev11.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
62
- upgini-1.1.303a3511.dev11.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
63
- upgini-1.1.303a3511.dev11.dist-info/RECORD,,
60
+ upgini-1.1.304.dist-info/METADATA,sha256=bUqzSMk7DiQg63iyx5VkzYtnprrN4Z9jUbJghZ1JnM0,48153
61
+ upgini-1.1.304.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
62
+ upgini-1.1.304.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
63
+ upgini-1.1.304.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.24.2
2
+ Generator: hatchling 1.25.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any