upgini 1.1.290a3232.post1__py3-none-any.whl → 1.1.291a3232.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.1.290a3232-1"
1
+ __version__ = "1.1.291a3232-2"
@@ -4,7 +4,7 @@ from upgini.autofe.binary import Add, Divide, Max, Min, Multiply, Sim, Subtract
4
4
  from upgini.autofe.date import DateDiff, DateDiffType2, DateListDiff, DateListDiffBounded, DatePercentile
5
5
  from upgini.autofe.groupby import GroupByThenAgg, GroupByThenRank
6
6
  from upgini.autofe.operand import Operand
7
- from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Scale, Sigmoid, Sqrt, Square
7
+ from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Norm, Sigmoid, Sqrt, Square
8
8
  from upgini.autofe.vector import Mean, Sum
9
9
 
10
10
  ALL_OPERANDS: Dict[str, Operand] = {
@@ -50,7 +50,7 @@ ALL_OPERANDS: Dict[str, Operand] = {
50
50
  DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=45, upper_bound=60),
51
51
  DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=60),
52
52
  DatePercentile(),
53
- Scale(),
53
+ Norm(),
54
54
  ]
55
55
  }
56
56
 
upgini/autofe/unary.py CHANGED
@@ -1,6 +1,6 @@
1
1
  import numpy as np
2
2
  import pandas as pd
3
- from sklearn.preprocessing import robust_scale
3
+ from sklearn.preprocessing import Normalizer
4
4
 
5
5
  from upgini.autofe.operand import PandasOperand, VectorizableMixin
6
6
 
@@ -114,13 +114,15 @@ class Freq(PandasOperand):
114
114
  return self._loc(data, value_counts)
115
115
 
116
116
 
117
- class Scale(PandasOperand, VectorizableMixin):
118
- name = "scale"
117
+ class Norm(PandasOperand, VectorizableMixin):
118
+ name = "norm"
119
119
  is_unary = True
120
120
  output_type = "float"
121
121
 
122
122
  def calculate_unary(self, data: pd.Series) -> pd.Series:
123
- return pd.Series(robust_scale(data), index=data.index, name=data.name)
123
+ normalized_data = Normalizer().transform(data.to_frame().T).T
124
+ return pd.Series(normalized_data[:, 0], index=data.index, name=data.name)
124
125
 
125
126
  def calculate_group(self, data: pd.DataFrame, **kwargs) -> pd.DataFrame:
126
- return pd.DataFrame(robust_scale(data), index=data.index, columns=data.columns)
127
+ normalized_data = Normalizer().transform(data.T).T
128
+ return pd.DataFrame(normalized_data, index=data.index, columns=data.columns)
@@ -82,19 +82,19 @@ class DateTimeSearchKeyConverter:
82
82
  elif isinstance(df[self.date_column].values[0], datetime.date):
83
83
  df[self.date_column] = pd.to_datetime(df[self.date_column], errors="coerce")
84
84
  elif is_period_dtype(df[self.date_column]):
85
- df[self.date_column] = pd.to_datetime(df[self.date_column].astype("string"))
85
+ df[self.date_column] = df[self.date_column].dt.to_timestamp()
86
86
  elif is_numeric_dtype(df[self.date_column]):
87
87
  # 315532801 - 2524608001 - seconds
88
88
  # 315532801000 - 2524608001000 - milliseconds
89
89
  # 315532801000000 - 2524608001000000 - microseconds
90
90
  # 315532801000000000 - 2524608001000000000 - nanoseconds
91
- if df[self.date_column].apply(lambda x: 10**16 < x).all():
91
+ if df[self.date_column].apply(lambda x: 10 ** 16 < x).all():
92
92
  df[self.date_column] = pd.to_datetime(df[self.date_column], unit="ns")
93
- elif df[self.date_column].apply(lambda x: 10**14 < x < 10**16).all():
93
+ elif df[self.date_column].apply(lambda x: 10 ** 14 < x < 10 ** 16).all():
94
94
  df[self.date_column] = pd.to_datetime(df[self.date_column], unit="us")
95
- elif df[self.date_column].apply(lambda x: 10**11 < x < 10**14).all():
95
+ elif df[self.date_column].apply(lambda x: 10 ** 11 < x < 10 ** 14).all():
96
96
  df[self.date_column] = pd.to_datetime(df[self.date_column], unit="ms")
97
- elif df[self.date_column].apply(lambda x: 0 < x < 10 * 11).all():
97
+ elif df[self.date_column].apply(lambda x: 0 < x < 10 ** 11).all():
98
98
  df[self.date_column] = pd.to_datetime(df[self.date_column], unit="s")
99
99
  else:
100
100
  msg = self.bundle.get("unsupported_date_type").format(self.date_column)
@@ -185,7 +185,10 @@ def is_time_series(df: pd.DataFrame, date_col: str) -> bool:
185
185
  def is_blocked_time_series(df: pd.DataFrame, date_col: str, search_keys: List[str]) -> bool:
186
186
  df = df.copy()
187
187
  seconds = "datetime_seconds"
188
- df[date_col] = pd.to_datetime(df[date_col])
188
+ if is_period_dtype(df[date_col]):
189
+ df[date_col] = df[date_col].dt.to_timestamp()
190
+ else:
191
+ df[date_col] = pd.to_datetime(df[date_col])
189
192
  df[date_col] = df[date_col].dt.tz_localize(None)
190
193
  df[seconds] = (df[date_col] - df[date_col].dt.floor("D")).dt.seconds
191
194
 
@@ -248,7 +251,9 @@ def validate_dates_distribution(
248
251
  if col in search_keys:
249
252
  continue
250
253
  try:
251
- if pd.__version__ >= "2.0.0":
254
+ if is_period_dtype(X[col]):
255
+ pass
256
+ elif pd.__version__ >= "2.0.0":
252
257
  # Format mixed to avoid massive warnings
253
258
  pd.to_datetime(X[col], format="mixed")
254
259
  else:
@@ -261,7 +266,9 @@ def validate_dates_distribution(
261
266
  if maybe_date_col is None:
262
267
  return
263
268
 
264
- if pd.__version__ >= "2.0.0":
269
+ if is_period_dtype(X[maybe_date_col]):
270
+ dates = X[maybe_date_col].dt.to_timestamp().dt.date
271
+ elif pd.__version__ >= "2.0.0":
265
272
  dates = pd.to_datetime(X[maybe_date_col], format="mixed").dt.date
266
273
  else:
267
274
  dates = pd.to_datetime(X[maybe_date_col]).dt.date
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.1.290a3232.post1
3
+ Version: 1.1.291a3232.post2
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,4 +1,4 @@
1
- upgini/__about__.py,sha256=SDsUMCDGdgycHBSyFToeEcF3TmvsEtCl-63CS7TpVBc,31
1
+ upgini/__about__.py,sha256=NDKX9IuV2pdIZkRYTIgATj5g363dzYp_jZstuneiJ5o,31
2
2
  upgini/__init__.py,sha256=asENHgEVHQBIkV-e_0IhE_ZWqkCG6398U3ZLrNzAH6k,407
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=7TLVVhGtjgx_9yaiaIUK3kZSe_R9wg5dY0d4F5qCGM4,45636
@@ -13,13 +13,13 @@ upgini/version_validator.py,sha256=ddSKUK_-eGJB3NgrqOMoWJU-OxQ253WsNLp8aqJkaIM,1
13
13
  upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
14
14
  upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
15
15
  upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
- upgini/autofe/all_operands.py,sha256=RHz7uLrcrcXeli8R4DhGZ2NhwGhNyWJhmSpFT_F3l5A,2423
16
+ upgini/autofe/all_operands.py,sha256=cpwUfhZWF9QBfrUyJ0xZ72iGYyt1eXIZQ46FB-7ZDI4,2421
17
17
  upgini/autofe/binary.py,sha256=441BRuqMsxlxuw4c8rMZB6h5EpRdVMk-bVa03U7T5Hg,3973
18
18
  upgini/autofe/date.py,sha256=qzk0NT332Q0vR1eRwTuNiMSrGE3ulh6Ic3QLBZqSdvw,7284
19
19
  upgini/autofe/feature.py,sha256=_V9B74B3ue7eAYXSOt9JKhVC9klkAKks22MwnBRye_w,12487
20
20
  upgini/autofe/groupby.py,sha256=4WjDzQxqpZxB79Ih4ihMMI5GDxaFqiH6ZelfV82ClT4,3091
21
21
  upgini/autofe/operand.py,sha256=JjEVT1U3kY9NDjUPMdoki7Oa8hMDG0-_h_NklVjIFyc,2882
22
- upgini/autofe/unary.py,sha256=1EgesKM8M1Lm2Z5VrlgXj3aI0Z88hZnJDbuPaYJyyj4,3614
22
+ upgini/autofe/unary.py,sha256=_BjdjPRFCZSL42hX_MSzQeIvtTVZ_FnvasRZKMtuayc,3739
23
23
  upgini/autofe/vector.py,sha256=dLxfAstJs-gw_OQ1xxoxcM6pVzORlV0HVzdzt7cLXVQ,606
24
24
  upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  upgini/data_source/data_source_publisher.py,sha256=B4fJ1owDCF5ZZ0Ca9ywi_CXVt4iPvABh5BGTnXdXmHk,16635
@@ -41,7 +41,7 @@ upgini/utils/blocked_time_series.py,sha256=Uqr3vp4YqNclj2-PzEYqVy763GSXHn86sbpIl
41
41
  upgini/utils/country_utils.py,sha256=yE8oRgMpXuJxPfQm4fioY6dg6700HgVnHSk4Cv9sUyM,6511
42
42
  upgini/utils/custom_loss_utils.py,sha256=kieNZYBYZm5ZGBltF1F_jOSF4ea6C29rYuCyiDcqVNY,3857
43
43
  upgini/utils/cv_utils.py,sha256=w6FQb9nO8BWDx88EF83NpjPLarK4eR4ia0Wg0kLBJC4,3525
44
- upgini/utils/datetime_utils.py,sha256=-LsDTThsGKsTZ57V1uNiHtLcoTtqktk5tui4WnqggJo,10673
44
+ upgini/utils/datetime_utils.py,sha256=Ujmu1ouwSFtG5SywQXJlmtDnGigAnIWPdE5Vx5NvgUM,10951
45
45
  upgini/utils/deduplicate_utils.py,sha256=6AbARehUCghJZ4PppFtrej2s3gFRruh41MEm6mzakHs,8607
46
46
  upgini/utils/display_utils.py,sha256=A2ouB5eiZ-Kyt9ykYxkLQwyoRPrdYeJymwNTiajtFXs,10990
47
47
  upgini/utils/email_utils.py,sha256=PLufTO97Pg9PPsNqB9agcM6M98MIxKUgIgNn2mVwSQ0,3520
@@ -56,7 +56,7 @@ upgini/utils/sklearn_ext.py,sha256=13jQS_k7v0aUtudXV6nGUEWjttPQzAW9AFYL5wgEz9k,4
56
56
  upgini/utils/target_utils.py,sha256=Y96_PJ5cC-WsEbeqg20v9uqywDQobLoTb-xoP7S3o4E,7807
57
57
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
58
58
  upgini/utils/warning_counter.py,sha256=dIWBB4dI5XRRJZudvIlqlIYKEiwLLPcXarsZuYRt338,227
59
- upgini-1.1.290a3232.post1.dist-info/METADATA,sha256=xp8PeULHddcPJBU_-5296G5KMf3gU03lRwqlYErPD2Q,48128
60
- upgini-1.1.290a3232.post1.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
61
- upgini-1.1.290a3232.post1.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
62
- upgini-1.1.290a3232.post1.dist-info/RECORD,,
59
+ upgini-1.1.291a3232.post2.dist-info/METADATA,sha256=OF0DTUQMj_NmawrZdz1kHqPvmTT4SWiKb7pQc_afuEI,48128
60
+ upgini-1.1.291a3232.post2.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
61
+ upgini-1.1.291a3232.post2.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
62
+ upgini-1.1.291a3232.post2.dist-info/RECORD,,