upgini 1.1.290__py3-none-any.whl → 1.1.291__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- upgini/__about__.py +1 -1
- upgini/autofe/all_operands.py +2 -1
- upgini/autofe/binary.py +7 -0
- upgini/autofe/operand.py +1 -0
- upgini/autofe/unary.py +14 -0
- {upgini-1.1.290.dist-info → upgini-1.1.291.dist-info}/METADATA +1 -1
- {upgini-1.1.290.dist-info → upgini-1.1.291.dist-info}/RECORD +9 -9
- {upgini-1.1.290.dist-info → upgini-1.1.291.dist-info}/WHEEL +0 -0
- {upgini-1.1.290.dist-info → upgini-1.1.291.dist-info}/licenses/LICENSE +0 -0
upgini/__about__.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.1.
|
|
1
|
+
__version__ = "1.1.291"
|
upgini/autofe/all_operands.py
CHANGED
|
@@ -4,7 +4,7 @@ from upgini.autofe.binary import Add, Divide, Max, Min, Multiply, Sim, Subtract
|
|
|
4
4
|
from upgini.autofe.date import DateDiff, DateDiffType2, DateListDiff, DateListDiffBounded, DatePercentile
|
|
5
5
|
from upgini.autofe.groupby import GroupByThenAgg, GroupByThenRank
|
|
6
6
|
from upgini.autofe.operand import Operand
|
|
7
|
-
from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Sigmoid, Sqrt, Square
|
|
7
|
+
from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Norm, Sigmoid, Sqrt, Square
|
|
8
8
|
from upgini.autofe.vector import Mean, Sum
|
|
9
9
|
|
|
10
10
|
ALL_OPERANDS: Dict[str, Operand] = {
|
|
@@ -50,6 +50,7 @@ ALL_OPERANDS: Dict[str, Operand] = {
|
|
|
50
50
|
DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=45, upper_bound=60),
|
|
51
51
|
DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=60),
|
|
52
52
|
DatePercentile(),
|
|
53
|
+
Norm(),
|
|
53
54
|
]
|
|
54
55
|
}
|
|
55
56
|
|
upgini/autofe/binary.py
CHANGED
|
@@ -9,6 +9,7 @@ from upgini.autofe.operand import PandasOperand, VectorizableMixin
|
|
|
9
9
|
class Min(PandasOperand):
|
|
10
10
|
name = "min"
|
|
11
11
|
is_binary = True
|
|
12
|
+
is_symmetrical = True
|
|
12
13
|
has_symmetry_importance = True
|
|
13
14
|
|
|
14
15
|
def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
|
|
@@ -18,6 +19,7 @@ class Min(PandasOperand):
|
|
|
18
19
|
class Max(PandasOperand):
|
|
19
20
|
name = "max"
|
|
20
21
|
is_binary = True
|
|
22
|
+
is_symmetrical = True
|
|
21
23
|
has_symmetry_importance = True
|
|
22
24
|
|
|
23
25
|
def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
|
|
@@ -28,6 +30,7 @@ class Add(PandasOperand, VectorizableMixin):
|
|
|
28
30
|
name = "+"
|
|
29
31
|
alias = "add"
|
|
30
32
|
is_binary = True
|
|
33
|
+
is_symmetrical = True
|
|
31
34
|
has_symmetry_importance = True
|
|
32
35
|
is_vectorizable = True
|
|
33
36
|
|
|
@@ -46,6 +49,7 @@ class Subtract(PandasOperand, VectorizableMixin):
|
|
|
46
49
|
name = "-"
|
|
47
50
|
alias = "sub"
|
|
48
51
|
is_binary = True
|
|
52
|
+
is_symmetrical = True
|
|
49
53
|
has_symmetry_importance = True
|
|
50
54
|
is_vectorizable = True
|
|
51
55
|
|
|
@@ -64,6 +68,7 @@ class Multiply(PandasOperand, VectorizableMixin):
|
|
|
64
68
|
name = "*"
|
|
65
69
|
alias = "mul"
|
|
66
70
|
is_binary = True
|
|
71
|
+
is_symmetrical = True
|
|
67
72
|
has_symmetry_importance = True
|
|
68
73
|
is_vectorizable = True
|
|
69
74
|
|
|
@@ -112,6 +117,7 @@ class Combine(PandasOperand):
|
|
|
112
117
|
class CombineThenFreq(PandasOperand):
|
|
113
118
|
name = "CombineThenFreq"
|
|
114
119
|
is_binary = True
|
|
120
|
+
is_symmetrical = True
|
|
115
121
|
has_symmetry_importance = True
|
|
116
122
|
output_type = "float"
|
|
117
123
|
is_distribution_dependent = True
|
|
@@ -128,6 +134,7 @@ class Sim(PandasOperand):
|
|
|
128
134
|
name = "sim"
|
|
129
135
|
is_binary = True
|
|
130
136
|
output_type = "float"
|
|
137
|
+
is_symmetrical = True
|
|
131
138
|
has_symmetry_importance = True
|
|
132
139
|
|
|
133
140
|
def calculate_binary(self, left: pd.Series, right: pd.Series) -> pd.Series:
|
upgini/autofe/operand.py
CHANGED
upgini/autofe/unary.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
import pandas as pd
|
|
3
|
+
from sklearn.preprocessing import Normalizer
|
|
3
4
|
|
|
4
5
|
from upgini.autofe.operand import PandasOperand, VectorizableMixin
|
|
5
6
|
|
|
@@ -111,3 +112,16 @@ class Freq(PandasOperand):
|
|
|
111
112
|
def calculate_unary(self, data: pd.Series) -> pd.Series:
|
|
112
113
|
value_counts = data.value_counts(normalize=True)
|
|
113
114
|
return self._loc(data, value_counts)
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
class Norm(PandasOperand):
|
|
118
|
+
name = "norm"
|
|
119
|
+
is_unary = True
|
|
120
|
+
output_type = "float"
|
|
121
|
+
|
|
122
|
+
def calculate_unary(self, data: pd.Series) -> pd.Series:
|
|
123
|
+
data_dropna = data.dropna()
|
|
124
|
+
normalized_data = Normalizer().transform(data_dropna.to_frame().T).T
|
|
125
|
+
normalized_data = pd.Series(normalized_data[:, 0], index=data_dropna.index, name=data.name)
|
|
126
|
+
normalized_data = normalized_data.reindex(data.index)
|
|
127
|
+
return normalized_data
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
upgini/__about__.py,sha256=
|
|
1
|
+
upgini/__about__.py,sha256=Y_w5IYxoaPcBsQIRm0fDAaxQvtgLtjb90RMIAJCUnbM,24
|
|
2
2
|
upgini/__init__.py,sha256=asENHgEVHQBIkV-e_0IhE_ZWqkCG6398U3ZLrNzAH6k,407
|
|
3
3
|
upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
|
|
4
4
|
upgini/dataset.py,sha256=7TLVVhGtjgx_9yaiaIUK3kZSe_R9wg5dY0d4F5qCGM4,45636
|
|
@@ -13,13 +13,13 @@ upgini/version_validator.py,sha256=ddSKUK_-eGJB3NgrqOMoWJU-OxQ253WsNLp8aqJkaIM,1
|
|
|
13
13
|
upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
|
|
14
14
|
upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
|
|
15
15
|
upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
16
|
-
upgini/autofe/all_operands.py,sha256=
|
|
17
|
-
upgini/autofe/binary.py,sha256=
|
|
16
|
+
upgini/autofe/all_operands.py,sha256=cpwUfhZWF9QBfrUyJ0xZ72iGYyt1eXIZQ46FB-7ZDI4,2421
|
|
17
|
+
upgini/autofe/binary.py,sha256=8FXPJxN7fnC5wphO0Dp1tQCa0lFMSDGQGvBMkSIVAcE,4155
|
|
18
18
|
upgini/autofe/date.py,sha256=qzk0NT332Q0vR1eRwTuNiMSrGE3ulh6Ic3QLBZqSdvw,7284
|
|
19
19
|
upgini/autofe/feature.py,sha256=_V9B74B3ue7eAYXSOt9JKhVC9klkAKks22MwnBRye_w,12487
|
|
20
20
|
upgini/autofe/groupby.py,sha256=4WjDzQxqpZxB79Ih4ihMMI5GDxaFqiH6ZelfV82ClT4,3091
|
|
21
|
-
upgini/autofe/operand.py,sha256=
|
|
22
|
-
upgini/autofe/unary.py,sha256=
|
|
21
|
+
upgini/autofe/operand.py,sha256=MKEsl3zxpWzRDpTkE0sNJxTu62U20sWOvEKhPjUWS6s,2915
|
|
22
|
+
upgini/autofe/unary.py,sha256=ZWjLd-CUkNt_PpM8YuWLLipW1v_RdBlsl4JxXIVo9aM,3652
|
|
23
23
|
upgini/autofe/vector.py,sha256=dLxfAstJs-gw_OQ1xxoxcM6pVzORlV0HVzdzt7cLXVQ,606
|
|
24
24
|
upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
25
25
|
upgini/data_source/data_source_publisher.py,sha256=B4fJ1owDCF5ZZ0Ca9ywi_CXVt4iPvABh5BGTnXdXmHk,16635
|
|
@@ -56,7 +56,7 @@ upgini/utils/sklearn_ext.py,sha256=13jQS_k7v0aUtudXV6nGUEWjttPQzAW9AFYL5wgEz9k,4
|
|
|
56
56
|
upgini/utils/target_utils.py,sha256=Y96_PJ5cC-WsEbeqg20v9uqywDQobLoTb-xoP7S3o4E,7807
|
|
57
57
|
upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
|
|
58
58
|
upgini/utils/warning_counter.py,sha256=dIWBB4dI5XRRJZudvIlqlIYKEiwLLPcXarsZuYRt338,227
|
|
59
|
-
upgini-1.1.
|
|
60
|
-
upgini-1.1.
|
|
61
|
-
upgini-1.1.
|
|
62
|
-
upgini-1.1.
|
|
59
|
+
upgini-1.1.291.dist-info/METADATA,sha256=Te_7fjcuJJN1jrnzgzT9tHRZyQeiVDS9EGusXmnpjvw,48117
|
|
60
|
+
upgini-1.1.291.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
|
|
61
|
+
upgini-1.1.291.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
|
|
62
|
+
upgini-1.1.291.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|