upgini 1.1.289__py3-none-any.whl → 1.1.290a3232.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
upgini/__about__.py CHANGED
@@ -1 +1 @@
1
- __version__ = "1.1.289"
1
+ __version__ = "1.1.290a3232-1"
@@ -4,7 +4,7 @@ from upgini.autofe.binary import Add, Divide, Max, Min, Multiply, Sim, Subtract
4
4
  from upgini.autofe.date import DateDiff, DateDiffType2, DateListDiff, DateListDiffBounded, DatePercentile
5
5
  from upgini.autofe.groupby import GroupByThenAgg, GroupByThenRank
6
6
  from upgini.autofe.operand import Operand
7
- from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Sigmoid, Sqrt, Square
7
+ from upgini.autofe.unary import Abs, Floor, Freq, Log, Residual, Scale, Sigmoid, Sqrt, Square
8
8
  from upgini.autofe.vector import Mean, Sum
9
9
 
10
10
  ALL_OPERANDS: Dict[str, Operand] = {
@@ -50,6 +50,7 @@ ALL_OPERANDS: Dict[str, Operand] = {
50
50
  DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=45, upper_bound=60),
51
51
  DateListDiffBounded(diff_unit="Y", aggregation="count", lower_bound=60),
52
52
  DatePercentile(),
53
+ Scale(),
53
54
  ]
54
55
  }
55
56
 
upgini/autofe/unary.py CHANGED
@@ -1,5 +1,6 @@
1
1
  import numpy as np
2
2
  import pandas as pd
3
+ from sklearn.preprocessing import robust_scale
3
4
 
4
5
  from upgini.autofe.operand import PandasOperand, VectorizableMixin
5
6
 
@@ -111,3 +112,15 @@ class Freq(PandasOperand):
111
112
  def calculate_unary(self, data: pd.Series) -> pd.Series:
112
113
  value_counts = data.value_counts(normalize=True)
113
114
  return self._loc(data, value_counts)
115
+
116
+
117
+ class Scale(PandasOperand, VectorizableMixin):
118
+ name = "scale"
119
+ is_unary = True
120
+ output_type = "float"
121
+
122
+ def calculate_unary(self, data: pd.Series) -> pd.Series:
123
+ return pd.Series(robust_scale(data), index=data.index, name=data.name)
124
+
125
+ def calculate_group(self, data: pd.DataFrame, **kwargs) -> pd.DataFrame:
126
+ return pd.DataFrame(robust_scale(data), index=data.index, columns=data.columns)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: upgini
3
- Version: 1.1.289
3
+ Version: 1.1.290a3232.post1
4
4
  Summary: Intelligent data search & enrichment for Machine Learning
5
5
  Project-URL: Bug Reports, https://github.com/upgini/upgini/issues
6
6
  Project-URL: Homepage, https://upgini.com/
@@ -1,4 +1,4 @@
1
- upgini/__about__.py,sha256=Jiaon0JMWxRKkeeFE5ISmocy70sAJiK9QTQUy8moQLw,24
1
+ upgini/__about__.py,sha256=SDsUMCDGdgycHBSyFToeEcF3TmvsEtCl-63CS7TpVBc,31
2
2
  upgini/__init__.py,sha256=asENHgEVHQBIkV-e_0IhE_ZWqkCG6398U3ZLrNzAH6k,407
3
3
  upgini/ads.py,sha256=nvuRxRx5MHDMgPr9SiU-fsqRdFaBv8p4_v1oqiysKpc,2714
4
4
  upgini/dataset.py,sha256=7TLVVhGtjgx_9yaiaIUK3kZSe_R9wg5dY0d4F5qCGM4,45636
@@ -13,13 +13,13 @@ upgini/version_validator.py,sha256=ddSKUK_-eGJB3NgrqOMoWJU-OxQ253WsNLp8aqJkaIM,1
13
13
  upgini/ads_management/__init__.py,sha256=qzyisOToVRP-tquAJD1PblZhNtMrOB8FiyF9JvfkvgE,50
14
14
  upgini/ads_management/ads_manager.py,sha256=igVbN2jz80Umb2BUJixmJVj-zx8unoKpecVo-R-nGdw,2648
15
15
  upgini/autofe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
- upgini/autofe/all_operands.py,sha256=7UyvmmqGSqQu4kDgoFwQRKY__b9xKDk3Fpp2-H8A7AA,2399
16
+ upgini/autofe/all_operands.py,sha256=RHz7uLrcrcXeli8R4DhGZ2NhwGhNyWJhmSpFT_F3l5A,2423
17
17
  upgini/autofe/binary.py,sha256=441BRuqMsxlxuw4c8rMZB6h5EpRdVMk-bVa03U7T5Hg,3973
18
18
  upgini/autofe/date.py,sha256=qzk0NT332Q0vR1eRwTuNiMSrGE3ulh6Ic3QLBZqSdvw,7284
19
19
  upgini/autofe/feature.py,sha256=_V9B74B3ue7eAYXSOt9JKhVC9klkAKks22MwnBRye_w,12487
20
20
  upgini/autofe/groupby.py,sha256=4WjDzQxqpZxB79Ih4ihMMI5GDxaFqiH6ZelfV82ClT4,3091
21
21
  upgini/autofe/operand.py,sha256=JjEVT1U3kY9NDjUPMdoki7Oa8hMDG0-_h_NklVjIFyc,2882
22
- upgini/autofe/unary.py,sha256=v-l3aiE5hj6kurvh6adCQL8W3X9u9a7RVbS_WPR2qlw,3146
22
+ upgini/autofe/unary.py,sha256=1EgesKM8M1Lm2Z5VrlgXj3aI0Z88hZnJDbuPaYJyyj4,3614
23
23
  upgini/autofe/vector.py,sha256=dLxfAstJs-gw_OQ1xxoxcM6pVzORlV0HVzdzt7cLXVQ,606
24
24
  upgini/data_source/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  upgini/data_source/data_source_publisher.py,sha256=B4fJ1owDCF5ZZ0Ca9ywi_CXVt4iPvABh5BGTnXdXmHk,16635
@@ -56,7 +56,7 @@ upgini/utils/sklearn_ext.py,sha256=13jQS_k7v0aUtudXV6nGUEWjttPQzAW9AFYL5wgEz9k,4
56
56
  upgini/utils/target_utils.py,sha256=Y96_PJ5cC-WsEbeqg20v9uqywDQobLoTb-xoP7S3o4E,7807
57
57
  upgini/utils/track_info.py,sha256=G5Lu1xxakg2_TQjKZk4b5SvrHsATTXNVV3NbvWtT8k8,5663
58
58
  upgini/utils/warning_counter.py,sha256=dIWBB4dI5XRRJZudvIlqlIYKEiwLLPcXarsZuYRt338,227
59
- upgini-1.1.289.dist-info/METADATA,sha256=yWmfmZ6gx9v2cPwts1r71oPo6-KOfaPab0K1bR_XgWY,48117
60
- upgini-1.1.289.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
61
- upgini-1.1.289.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
62
- upgini-1.1.289.dist-info/RECORD,,
59
+ upgini-1.1.290a3232.post1.dist-info/METADATA,sha256=xp8PeULHddcPJBU_-5296G5KMf3gU03lRwqlYErPD2Q,48128
60
+ upgini-1.1.290a3232.post1.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
61
+ upgini-1.1.290a3232.post1.dist-info/licenses/LICENSE,sha256=5RRzgvdJUu3BUDfv4bzVU6FqKgwHlIay63pPCSmSgzw,1514
62
+ upgini-1.1.290a3232.post1.dist-info/RECORD,,