upgini 1.1.168__py3-none-any.whl → 1.1.169a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of upgini might be problematic. Click here for more details.

upgini/metrics.py CHANGED
@@ -1,6 +1,6 @@
1
1
  import logging
2
2
  from copy import deepcopy
3
- from typing import Callable, List, Optional, Tuple, Union, Dict, Any
3
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
4
4
 
5
5
  import numpy as np
6
6
  import pandas as pd
@@ -10,11 +10,15 @@ from numpy import log1p
10
10
  from pandas.api.types import is_numeric_dtype
11
11
  from sklearn.metrics import check_scoring, get_scorer, make_scorer
12
12
 
13
+ from upgini.utils.sklearn_ext import cross_validate
14
+
13
15
  try:
14
16
  from sklearn.metrics import get_scorer_names
17
+
15
18
  available_scorers = get_scorer_names()
16
19
  except ImportError:
17
20
  from sklearn.metrics._scorer import SCORERS
21
+
18
22
  available_scorers = SCORERS
19
23
 
20
24
  from sklearn.metrics._regression import (
@@ -22,7 +26,7 @@ from sklearn.metrics._regression import (
22
26
  check_consistent_length,
23
27
  mean_squared_error,
24
28
  )
25
- from sklearn.model_selection import BaseCrossValidator, cross_validate
29
+ from sklearn.model_selection import BaseCrossValidator
26
30
 
27
31
  from upgini.errors import ValidationError
28
32
  from upgini.metadata import ModelTaskType
@@ -37,6 +41,7 @@ CATBOOST_PARAMS = {
37
41
  "min_child_samples": 10,
38
42
  "max_depth": 5,
39
43
  "early_stopping_rounds": 20,
44
+ "use_best_model": True,
40
45
  "one_hot_max_size": 100,
41
46
  "verbose": False,
42
47
  "random_state": DEFAULT_RANDOM_STATE,
@@ -52,6 +57,8 @@ CATBOOST_MULTICLASS_PARAMS = {
52
57
  "loss_function": "MultiClass",
53
58
  "subsample": 0.5,
54
59
  "bootstrap_type": "Bernoulli",
60
+ "early_stopping_rounds": 20,
61
+ "use_best_model": True,
55
62
  "rsm": 0.1,
56
63
  "verbose": False,
57
64
  "random_state": DEFAULT_RANDOM_STATE,
@@ -98,6 +105,87 @@ NA_VALUES = [
98
105
 
99
106
  NA_REPLACEMENT = "NA"
100
107
 
108
+ SUPPORTED_CATBOOST_METRICS = {s.upper(): s for s in {
109
+ "Logloss",
110
+ "CrossEntropy",
111
+ "CtrFactor",
112
+ "Focal",
113
+ "RMSE",
114
+ "LogCosh",
115
+ "Lq",
116
+ "MAE",
117
+ "Quantile",
118
+ "MultiQuantile",
119
+ "Expectile",
120
+ "LogLinQuantile",
121
+ "MAPE",
122
+ "Poisson",
123
+ "MSLE",
124
+ "MedianAbsoluteError",
125
+ "SMAPE",
126
+ "Huber",
127
+ "Tweedie",
128
+ "Cox",
129
+ "RMSEWithUncertainty",
130
+ "MultiClass",
131
+ "MultiClassOneVsAll",
132
+ "PairLogit",
133
+ "PairLogitPairwise",
134
+ "YetiRank",
135
+ "YetiRankPairwise",
136
+ "QueryRMSE",
137
+ "QuerySoftMax",
138
+ "QueryCrossEntropy",
139
+ "StochasticFilter",
140
+ "LambdaMart",
141
+ "StochasticRank",
142
+ "PythonUserDefinedPerObject",
143
+ "PythonUserDefinedMultiTarget",
144
+ "UserPerObjMetric",
145
+ "UserQuerywiseMetric",
146
+ "R2",
147
+ "NumErrors",
148
+ "FairLoss",
149
+ "AUC",
150
+ "Accuracy",
151
+ "BalancedAccuracy",
152
+ "BalancedErrorRate",
153
+ "BrierScore",
154
+ "Precision",
155
+ "Recall",
156
+ "F1",
157
+ "TotalF1",
158
+ "F",
159
+ "MCC",
160
+ "ZeroOneLoss",
161
+ "HammingLoss",
162
+ "HingeLoss",
163
+ "Kappa",
164
+ "WKappa",
165
+ "LogLikelihoodOfPrediction",
166
+ "NormalizedGini",
167
+ "PRAUC",
168
+ "PairAccuracy",
169
+ "AverageGain",
170
+ "QueryAverage",
171
+ "QueryAUC",
172
+ "PFound",
173
+ "PrecisionAt",
174
+ "RecallAt",
175
+ "MAP",
176
+ "NDCG",
177
+ "DCG",
178
+ "FilteredDCG",
179
+ "MRR",
180
+ "ERR",
181
+ "SurvivalAft",
182
+ "MultiRMSE",
183
+ "MultiRMSEWithMissingValues",
184
+ "MultiLogloss",
185
+ "MultiCrossEntropy",
186
+ "Combination",
187
+ }}
188
+
101
189
 
102
190
  class EstimatorWrapper:
103
191
  def __init__(
@@ -174,7 +262,7 @@ class EstimatorWrapper:
174
262
  estimator=self.estimator,
175
263
  X=X,
176
264
  y=y,
177
- scoring={"score": scorer},
265
+ scoring=scorer,
178
266
  cv=self.cv,
179
267
  fit_params=fit_params,
180
268
  return_estimator=True,
@@ -212,14 +300,20 @@ class EstimatorWrapper:
212
300
  "target_type": target_type,
213
301
  }
214
302
  if estimator is None:
303
+ params = dict()
304
+ # if metric_name.upper() in SUPPORTED_CATBOOST_METRICS:
305
+ # params["eval_metric"] = SUPPORTED_CATBOOST_METRICS[metric_name.upper()]
215
306
  if target_type == ModelTaskType.MULTICLASS:
216
- params = _get_add_params(CATBOOST_MULTICLASS_PARAMS, add_params)
307
+ params = _get_add_params(params, CATBOOST_MULTICLASS_PARAMS)
308
+ params = _get_add_params(params, add_params)
217
309
  estimator = CatBoostWrapper(CatBoostClassifier(**params), **kwargs)
218
310
  elif target_type == ModelTaskType.BINARY:
219
- params = _get_add_params(CATBOOST_PARAMS, add_params)
311
+ params = _get_add_params(params, CATBOOST_PARAMS)
312
+ params = _get_add_params(params, add_params)
220
313
  estimator = CatBoostWrapper(CatBoostClassifier(**params), **kwargs)
221
314
  elif target_type == ModelTaskType.REGRESSION:
222
- params = _get_add_params(CATBOOST_PARAMS, add_params)
315
+ params = _get_add_params(params, CATBOOST_PARAMS)
316
+ params = _get_add_params(params, add_params)
223
317
  estimator = CatBoostWrapper(CatBoostRegressor(**params), **kwargs)
224
318
  else:
225
319
  raise Exception(bundle.get("metrics_unsupported_target_type").format(target_type))