universal-mcp 0.1.24rc6__py3-none-any.whl → 0.1.24rc7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,20 +1,23 @@
1
1
  # AgentR Python SDK
2
2
 
3
3
  The official Python SDK for the AgentR platform, a component of the Universal MCP framework.
4
- Currently in beta, breaking changes are expected.
5
4
 
6
- The AgentR Python SDK provides convenient access to the AgentR REST API from any Python 3.10+
7
- application, allowing for dynamic loading and management of tools and integrations.
5
+ *Currently in beta, breaking changes are expected.*
6
+
7
+ The AgentR Python SDK provides convenient access to the AgentR REST API from any Python 3.10+ application, allowing for dynamic loading and management of tools and integrations.
8
8
 
9
9
  ## Installation
10
+
10
11
  ```bash
11
12
  pip install universal-mcp
12
13
  ```
13
14
 
14
15
  ## Usage
16
+
15
17
  The AgentR platform is designed to seamlessly integrate a wide array of tools into your agentic applications. The primary entry point for this is the `Agentr` class, which provides a high-level interface for loading and listing tools.
16
18
 
17
19
  ### High-Level Client (`Agentr`)
20
+
18
21
  This is the recommended way to get started. It abstracts away the details of the registry and tool management.
19
22
 
20
23
  ```python
@@ -29,7 +32,7 @@ agentr = Agentr(
29
32
  )
30
33
 
31
34
  # Load specific tools from the AgentR server into the tool manager
32
- agentr.load_tools(["reddit_search_subreddits", "google_drive_list_files"])
35
+ agentr.load_tools(["reddit__search_subreddits", "google-drive__list_files"])
33
36
 
34
37
  # List the tools that are now loaded and ready to be used
35
38
  # You can specify a format compatible with your LLM (e.g., OPENAI)
@@ -41,10 +44,10 @@ print(tools)
41
44
 
42
45
  For more granular control over the AgentR platform, you can use the lower-level components directly.
43
46
 
44
- ### AgentrClient
45
- The `AgentrClient` provides direct access to the AgentR REST API endpoints.
47
+ #### AgentrClient
48
+
49
+ The `AgentrClient` provides direct, one-to-one access to the AgentR REST API endpoints. The following examples have been updated to reflect the latest API structure.
46
50
 
47
- #### Methods
48
51
  ```python
49
52
  import os
50
53
  from universal_mcp.agentr import AgentrClient
@@ -55,39 +58,43 @@ client = AgentrClient(
55
58
  api_key=os.environ.get("AGENTR_API_KEY")
56
59
  )
57
60
 
58
- # Fetch all available applications from the AgentR server
59
- apps = client.fetch_apps()
60
- print(apps)
61
+ # Fetch a list of available applications from the AgentR server
62
+ apps = client.list_apps()
63
+ print("Available Apps:", apps)
61
64
 
62
- # Get credentials for a specific integration
63
- # This will raise a NotAuthorizedError if the user needs to authenticate
65
+ # Get credentials for a specific app by its ID (e.g., 'reddit')
66
+ # This will raise a NotAuthorizedError if the user needs to authenticate.
64
67
  try:
65
- credentials = client.get_credentials("reddit")
68
+ credentials = client.get_credentials(app_id="reddit")
66
69
  print("Reddit credentials found.")
67
70
  except NotAuthorizedError as e:
68
- print(e) # "Please ask the user to visit the following url to authorize..."
69
-
70
- # Example of fetching a single app and its actions
71
- if apps:
72
- app_id = apps[0].id # Assuming AppConfig has an 'id' attribute
71
+ print(e) # "Please ask the user to visit the following url to authorize..."
73
72
 
74
- # Fetch a single app's configuration
75
- app_config = client.fetch_app(app_id)
76
- print(f"Fetched config for app {app_id}:", app_config)
73
+ # List all available tools globally
74
+ all_tools = client.list_tools()
75
+ print("All Available Tools:", all_tools)
77
76
 
78
- # List all actions for that app
79
- actions = client.list_actions(app_id)
80
- print(f"Actions for app {app_id}:", actions)
81
-
82
- # List all apps (returns raw JSON data)
83
- all_apps = client.list_all_apps()
84
- print("All available apps:", all_apps)
77
+ # Example of fetching a single app and a single tool
78
+ if apps:
79
+ # Note: We access dictionary keys, not attributes
80
+ app_id = apps[0]['id']
81
+
82
+ # Fetch a single app's details
83
+ app_details = client.get_app(app_id)
84
+ print(f"Fetched details for app '{app_id}':", app_details)
85
+
86
+ if all_tools:
87
+ tool_id = all_tools[0]['id']
88
+
89
+ # Fetch a single tool's details
90
+ tool_details = client.get_tool(tool_id)
91
+ print(f"Fetched details for tool '{tool_id}':", tool_details)
85
92
  ```
86
93
 
87
- ### AgentrIntegration
94
+ #### AgentrIntegration
95
+
88
96
  This class handles the authentication and authorization flow for a single integration (e.g., "reddit"). It's used under the hood by applications to acquire credentials.
89
97
 
90
- #### Methods
91
98
  ```python
92
99
  from universal_mcp.agentr import AgentrIntegration, AgentrClient
93
100
  from universal_mcp.exceptions import NotAuthorizedError
@@ -114,10 +121,10 @@ except NotAuthorizedError:
114
121
  print("Still not authorized.")
115
122
  ```
116
123
 
117
- ### AgentrRegistry
124
+ #### AgentrRegistry
125
+
118
126
  The registry is responsible for discovering which tools are available on the AgentR platform.
119
127
 
120
- #### Methods
121
128
  ```python
122
129
  import asyncio
123
130
  from universal_mcp.agentr import AgentrRegistry, AgentrClient
@@ -148,7 +155,8 @@ if __name__ == "__main__":
148
155
  asyncio.run(main())
149
156
  ```
150
157
 
151
- ### AgentrServer
158
+ #### AgentrServer
159
+
152
160
  For server-side deployments, `AgentrServer` can be used to load all configured applications and their tools from an AgentR instance on startup.
153
161
 
154
162
  ```python
@@ -170,6 +178,7 @@ print(tool_manager.list_tools())
170
178
  ```
171
179
 
172
180
  ## Executing Tools
181
+
173
182
  Once tools are loaded, you can execute them using the `call_tool` method on the `ToolManager` instance, which is available via `agentr.manager`.
174
183
 
175
184
  ```python
@@ -182,7 +191,7 @@ async def main():
182
191
  agentr = Agentr(api_key=os.environ.get("AGENTR_API_KEY"))
183
192
 
184
193
  # 2. Load the tool(s) you want to use
185
- tool_name = "reddit_search_subreddits"
194
+ tool_name = "reddit__search_subreddits"
186
195
  agentr.load_tools([tool_name])
187
196
 
188
197
  # 3. Execute the tool using the tool manager
@@ -28,3 +28,10 @@ class Agentr:
28
28
 
29
29
  def list_tools(self, format: ToolFormat | None = None) -> list[Tool]:
30
30
  return self.manager.list_tools(format=format or self.format)
31
+
32
+ def search_tools(
33
+ self,
34
+ query: str,
35
+ ) -> list[str]:
36
+ """Retrieve a tool to use, given a search query."""
37
+ return self.registry.search_tools(query)
@@ -1,9 +1,9 @@
1
1
  import os
2
+ from typing import Any
2
3
 
3
4
  import httpx
4
5
  from loguru import logger
5
6
 
6
- from universal_mcp.config import AppConfig
7
7
  from universal_mcp.exceptions import NotAuthorizedError
8
8
 
9
9
 
@@ -14,110 +14,164 @@ class AgentrClient:
14
14
  including authentication, authorization, and credential management.
15
15
 
16
16
  Args:
17
- api_key (str, optional): AgentR API key. If not provided, will look for AGENTR_API_KEY env var
18
- base_url (str, optional): Base URL for AgentR API. Defaults to https://api.agentr.dev
17
+ api_key (str, optional): AgentR API key. If not provided, will look for AGENTR_API_KEY env var.
18
+ base_url (str, optional): Base URL for AgentR API. Defaults to https://api.agentr.dev.
19
19
  """
20
20
 
21
21
  def __init__(self, api_key: str | None = None, base_url: str | None = None):
22
22
  base_url = base_url or os.getenv("AGENTR_BASE_URL", "https://api.agentr.dev")
23
- self.base_url = base_url.rstrip("/")
23
+ self.base_url = f"{base_url.rstrip('/')}/v1"
24
24
  self.api_key = api_key or os.getenv("AGENTR_API_KEY")
25
25
  if not self.api_key:
26
26
  raise ValueError("No API key provided and AGENTR_API_KEY not found in environment variables")
27
27
  self.client = httpx.Client(
28
- base_url=self.base_url, headers={"X-API-KEY": self.api_key}, timeout=30, follow_redirects=True
28
+ base_url=self.base_url,
29
+ headers={"X-API-KEY": self.api_key},
30
+ timeout=30,
31
+ follow_redirects=True,
32
+ verify=False,
29
33
  )
30
34
 
31
- def get_credentials(self, integration_name: str) -> dict:
35
+ def get_credentials(self, app_id: str) -> dict[str, Any]:
32
36
  """Get credentials for an integration from the AgentR API.
33
37
 
34
38
  Args:
35
- integration_name (str): Name of the integration to get credentials for
39
+ app_id (str): The ID of the app (e.g., 'asana', 'google-drive').
36
40
 
37
41
  Returns:
38
- dict: Credentials data from API response
42
+ dict: Credentials data from API response.
39
43
 
40
44
  Raises:
41
- NotAuthorizedError: If credentials are not found (404 response)
42
- HTTPError: For other API errors
45
+ NotAuthorizedError: If credentials are not found (404 response).
46
+ HTTPError: For other API errors.
43
47
  """
44
48
  response = self.client.get(
45
- f"/api/{integration_name}/credentials/",
49
+ "/credentials/",
50
+ params={"app_id": app_id},
46
51
  )
47
52
  if response.status_code == 404:
48
- logger.warning(f"No credentials found for {integration_name}. Requesting authorization...")
49
- action = self.get_authorization_url(integration_name)
50
- raise NotAuthorizedError(action)
53
+ logger.warning(f"No credentials found for app '{app_id}'. Requesting authorization...")
54
+ action_url = self.get_authorization_url(app_id)
55
+ raise NotAuthorizedError(action_url)
51
56
  response.raise_for_status()
52
57
  return response.json()
53
58
 
54
- def get_authorization_url(self, integration_name: str) -> str:
55
- """Get authorization URL for an integration.
59
+ def get_authorization_url(self, app_id: str) -> str:
60
+ """Get the authorization URL to connect an app.
56
61
 
57
62
  Args:
58
- integration_name (str): Name of the integration to get authorization URL for
63
+ app_id (str): The ID of the app to authorize.
59
64
 
60
65
  Returns:
61
- str: Message containing authorization URL
66
+ str: A message containing the authorization URL.
62
67
 
63
68
  Raises:
64
- HTTPError: If API request fails
69
+ HTTPError: If the API request fails.
65
70
  """
66
- response = self.client.get(f"/api/{integration_name}/authorize/")
71
+ response = self.client.post("/connections/authorize", json={"app_id": app_id})
67
72
  response.raise_for_status()
68
- url = response.json()
73
+ url = response.json().get("authorize_url")
69
74
  return f"Please ask the user to visit the following url to authorize the application: {url}. Render the url in proper markdown format with a clickable link."
70
75
 
71
- def fetch_apps(self) -> list[AppConfig]:
76
+ def list_all_apps(self) -> list[dict[str, Any]]:
72
77
  """Fetch available apps from AgentR API.
73
78
 
74
79
  Returns:
75
- List of application configurations
80
+ List[Dict[str, Any]]: A list of application data dictionaries.
76
81
 
77
82
  Raises:
78
- httpx.HTTPError: If API request fails
83
+ httpx.HTTPError: If the API request fails.
79
84
  """
80
- response = self.client.get("/api/apps/")
85
+ response = self.client.get("/apps/")
86
+ response.raise_for_status()
87
+ return response.json().get("items", [])
88
+
89
+ def list_my_apps(self) -> list[dict[str, Any]]:
90
+ """Fetch user apps from AgentR API.
91
+
92
+ Returns:
93
+ List[Dict[str, Any]]: A list of user app data dictionaries.
94
+ """
95
+ response = self.client.get("/apps/me/")
96
+ response.raise_for_status()
97
+ return response.json().get("items", [])
98
+
99
+ def list_my_connections(self) -> list[dict[str, Any]]:
100
+ """Fetch user connections from AgentR API.
101
+
102
+ Returns:
103
+ List[Dict[str, Any]]: A list of user connection data dictionaries.
104
+ """
105
+ response = self.client.get("/connections/")
81
106
  response.raise_for_status()
82
- data = response.json()
83
- return [AppConfig.model_validate(app) for app in data]
107
+ return response.json().get("items", [])
84
108
 
85
- def fetch_app(self, app_id: str) -> dict:
109
+ def get_app_details(self, app_id: str) -> dict[str, Any]:
86
110
  """Fetch a specific app from AgentR API.
87
111
 
88
112
  Args:
89
- app_id (str): ID of the app to fetch
113
+ app_id (str): ID of the app to fetch.
90
114
 
91
115
  Returns:
92
- dict: App configuration data
116
+ dict: App configuration data.
93
117
 
94
118
  Raises:
95
- httpx.HTTPError: If API request fails
119
+ httpx.HTTPError: If the API request fails.
96
120
  """
97
- response = self.client.get(f"/apps/{app_id}/")
121
+ response = self.client.get(f"/apps/{app_id}")
98
122
  response.raise_for_status()
99
123
  return response.json()
100
124
 
101
- def list_all_apps(self) -> list:
102
- """List all apps from AgentR API.
125
+ def list_all_tools(self) -> list[dict[str, Any]]:
126
+ """List all available tools from the AgentR API.
127
+
128
+ Note: In the backend, tools are globally listed and not tied to a
129
+ specific app at this endpoint.
103
130
 
104
131
  Returns:
105
- List of app names
132
+ List[Dict[str, Any]]: A list of tool configurations.
106
133
  """
107
- response = self.client.get("/apps/")
134
+ response = self.client.get("/tools/")
135
+ response.raise_for_status()
136
+ return response.json().get("items", [])
137
+
138
+ def get_tool_details(self, tool_id: str) -> dict[str, Any]:
139
+ """Fetch a specific tool configuration from the AgentR API.
140
+
141
+ Args:
142
+ tool_id (str): ID of the tool to fetch.
143
+
144
+ Returns:
145
+ dict: Tool configuration data.
146
+
147
+ Raises:
148
+ httpx.HTTPError: If the API request fails.
149
+ """
150
+ response = self.client.get(f"/tools/{tool_id}")
108
151
  response.raise_for_status()
109
152
  return response.json()
110
153
 
111
- def list_actions(self, app_id: str):
112
- """List actions for an app.
154
+ def search_all_apps(self, query: str, limit: int = 2) -> list[dict[str, Any]]:
155
+ """Search for apps from the AgentR API.
113
156
 
114
157
  Args:
115
- app_id (str): ID of the app to list actions for
158
+ query (str): The query to search for.
159
+ limit (int, optional): The number of apps to return. Defaults to 2.
116
160
 
117
161
  Returns:
118
- List of action configurations
162
+ List[Dict[str, Any]]: A list of app data dictionaries.
119
163
  """
164
+ response = self.client.get("/apps/", params={"search": query, "limit": limit})
165
+ response.raise_for_status()
166
+ return response.json().get("items", [])
167
+
168
+ def search_all_tools(self, query: str, limit: int = 2) -> list[dict[str, Any]]:
169
+ """Search for tools from the AgentR API.
120
170
 
121
- response = self.client.get(f"/apps/{app_id}/actions/")
171
+ Args:
172
+ query (str): The query to search for.
173
+ limit (int, optional): The number of tools to return. Defaults to 2.
174
+ """
175
+ response = self.client.get("/tools/", params={"search": query, "limit": limit})
122
176
  response.raise_for_status()
123
- return response.json()
177
+ return response.json().get("items", [])
@@ -17,26 +17,22 @@ class AgentrRegistry(ToolRegistry):
17
17
  self.client = client or AgentrClient(**kwargs)
18
18
  logger.debug("AgentrRegistry initialized successfully")
19
19
 
20
- async def list_apps(self) -> list[dict[str, str]]:
20
+ def list_apps(self) -> list[dict[str, str]]:
21
21
  """Get list of available apps from AgentR.
22
22
 
23
23
  Returns:
24
24
  List of app dictionaries with id, name, description, and available fields
25
25
  """
26
+ if self.client is None:
27
+ raise ValueError("Client is not initialized")
26
28
  try:
27
- all_apps = await self.client.list_all_apps()
28
- available_apps = [
29
- {"id": app["id"], "name": app["name"], "description": app.get("description", "")}
30
- for app in all_apps
31
- if app.get("available", False)
32
- ]
33
- logger.info(f"Found {len(available_apps)} available apps from AgentR")
34
- return available_apps
29
+ all_apps = self.client.list_all_apps()
30
+ return all_apps
35
31
  except Exception as e:
36
32
  logger.error(f"Error fetching apps from AgentR: {e}")
37
33
  return []
38
34
 
39
- async def get_app_details(self, app_id: str) -> dict[str, str]:
35
+ def get_app_details(self, app_id: str) -> dict[str, str]:
40
36
  """Get detailed information about a specific app from AgentR.
41
37
 
42
38
  Args:
@@ -46,23 +42,11 @@ class AgentrRegistry(ToolRegistry):
46
42
  Dictionary containing app details
47
43
  """
48
44
  try:
49
- app_info = await self.client.fetch_app(app_id)
50
- return {
51
- "id": app_info.get("id"),
52
- "name": app_info.get("name"),
53
- "description": app_info.get("description"),
54
- "category": app_info.get("category"),
55
- "available": app_info.get("available", True),
56
- }
45
+ app_info = self.client.get_app_details(app_id)
46
+ return app_info
57
47
  except Exception as e:
58
48
  logger.error(f"Error getting details for app {app_id}: {e}")
59
- return {
60
- "id": app_id,
61
- "name": app_id,
62
- "description": "Error loading details",
63
- "category": "Unknown",
64
- "available": True,
65
- }
49
+ return {}
66
50
 
67
51
  def load_tools(self, tools: list[str] | None, tool_manager: ToolManager) -> None:
68
52
  """Load tools from AgentR and register them as tools.
@@ -89,3 +73,15 @@ class AgentrRegistry(ToolRegistry):
89
73
  app_instance = app(integration=integration)
90
74
  tool_manager.register_tools_from_app(app_instance, tool_names=tool_names)
91
75
  return
76
+
77
+ def search_tools(self, query: str, limit: int = 20) -> list[str]:
78
+ """Search for tools in AgentR.
79
+
80
+ Args:
81
+ query: The query to search for
82
+
83
+ Returns:
84
+ List of tool names
85
+ """
86
+ return self.client.search_all_tools(query, limit)
87
+
@@ -1,6 +1,6 @@
1
- from .auto import AutoAgent
2
- from .base import BaseAgent
3
- from .react import ReactAgent
4
- from .simple import SimpleAgent
1
+ from universal_mcp.agents.auto import AutoAgent
2
+ from universal_mcp.agents.base import BaseAgent
3
+ from universal_mcp.agents.react import ReactAgent
4
+ from universal_mcp.agents.simple import SimpleAgent
5
5
 
6
6
  __all__ = ["BaseAgent", "ReactAgent", "SimpleAgent", "AutoAgent"]
@@ -16,8 +16,8 @@ from universal_mcp.tools import ToolManager
16
16
  from universal_mcp.tools.adapters import ToolFormat
17
17
  from universal_mcp.tools.registry import ToolRegistry
18
18
 
19
- from .base import BaseAgent
20
- from .llm import get_llm
19
+ from universal_mcp.agents.base import BaseAgent
20
+ from universal_mcp.agents.llm import load_chat_model
21
21
 
22
22
  # Auto Agent
23
23
  # Working
@@ -61,9 +61,9 @@ class AutoAgent(BaseAgent):
61
61
  def __init__(self, name: str, instructions: str, model: str, app_registry: ToolRegistry):
62
62
  super().__init__(name, instructions, model)
63
63
  self.app_registry = app_registry
64
- self.llm_tools = get_llm(model, tags=["tools"])
65
- self.llm_choice = get_llm(model, tags=["choice"])
66
- self.llm_quiet = get_llm(model, tags=["quiet"])
64
+ self.llm_tools = load_chat_model(model, tags=["tools"])
65
+ self.llm_choice = load_chat_model(model, tags=["choice"])
66
+ self.llm_quiet = load_chat_model(model, tags=["quiet"])
67
67
  self.tool_manager = ToolManager()
68
68
 
69
69
  self.task_analysis_prompt = """You are a task analysis expert. Given a task description and available apps, determine:
@@ -522,7 +522,7 @@ Be friendly and concise, but list each set of apps clearly. Do not return any ot
522
522
  return result
523
523
 
524
524
  # Get all available apps from platform manager
525
- available_apps = await self.app_registry.list_apps()
525
+ available_apps = self.app_registry.list_apps()
526
526
 
527
527
  logger.info(f"Found {len(available_apps)} available apps")
528
528
 
@@ -563,10 +563,10 @@ if __name__ == "__main__":
563
563
 
564
564
  # Create platform manager
565
565
  app_registry = AgentrRegistry(api_key=agentr_api_key)
566
- want_instructions = input("Do you want to add a system prompt/instructions? (Y/N)")
566
+ want_instructions = input("Do you want to add a system prompt/instructions? (Y/N): ")
567
567
  instructions = "" if want_instructions.upper() == "N" else input("Enter your instructions/system prompt: ")
568
568
 
569
- agent = AutoAgent("Auto Agent", instructions, "gpt-4.1", app_registry=app_registry)
569
+ agent = AutoAgent("Auto Agent", instructions, "azure/gpt-4.1", app_registry=app_registry)
570
570
 
571
571
  print("AutoAgent created successfully!")
572
572
  print(f"Agent name: {agent.name}")
@@ -0,0 +1,35 @@
1
+ from universal_mcp.agentr.registry import AgentrRegistry
2
+ from universal_mcp.agents.base import BaseAgent
3
+ from universal_mcp.tools.manager import ToolManager
4
+ from universal_mcp.tools.registry import ToolRegistry
5
+
6
+ from universal_mcp.agents.autoagent.graph import create_agent
7
+
8
+
9
+ class AutoAgent(BaseAgent):
10
+ def __init__(
11
+ self,
12
+ name: str,
13
+ instructions: str,
14
+ model: str,
15
+ tool_registry: ToolRegistry | None = None,
16
+ tool_manager: ToolManager | None = None,
17
+ ):
18
+ super().__init__(name, instructions, model, tool_registry)
19
+ self.tool_registry = tool_registry or AgentrRegistry()
20
+ self.tool_manager = tool_manager or ToolManager()
21
+ self.model = model
22
+ self.name = name
23
+ self.instructions = instructions
24
+ self._graph = self._build_graph()
25
+
26
+ def _build_graph(self):
27
+ builder = create_agent(self.tool_registry, self.tool_manager, self.instructions)
28
+ return builder.compile()
29
+
30
+ @property
31
+ def graph(self):
32
+ return self._graph
33
+
34
+
35
+ __all__ = ["AutoAgent"]
@@ -0,0 +1,21 @@
1
+ import asyncio
2
+
3
+ from universal_mcp.agentr.registry import AgentrRegistry
4
+ from universal_mcp.agents.autoagent import AutoAgent
5
+
6
+
7
+ async def main():
8
+ agent = AutoAgent(
9
+ name="autoagent",
10
+ instructions="You are a helpful assistant that can use tools to help the user.",
11
+ model="azure/gpt-4o",
12
+ tool_registry=AgentrRegistry(),
13
+ )
14
+ result = await agent.run(
15
+ user_input="Send an email to Manoj from my google mail account, manoj@agentr.dev, with the subject 'Hello from auto agent' and the body 'testing'"
16
+ )
17
+ print(result)
18
+
19
+
20
+ if __name__ == "__main__":
21
+ asyncio.run(main())
@@ -0,0 +1,25 @@
1
+ from dataclasses import dataclass, field
2
+ from typing import Annotated
3
+
4
+ from universal_mcp.agents.autoagent.prompts import SYSTEM_PROMPT
5
+
6
+
7
+ @dataclass(kw_only=True)
8
+ class Context:
9
+ """The context for the agent."""
10
+
11
+ system_prompt: str = field(
12
+ default=SYSTEM_PROMPT,
13
+ metadata={
14
+ "description": "The system prompt to use for the agent's interactions. "
15
+ "This prompt sets the context and behavior for the agent."
16
+ },
17
+ )
18
+
19
+ model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
20
+ default="anthropic/claude-4-sonnet-20250514",
21
+ metadata={
22
+ "description": "The name of the language model to use for the agent's main interactions. "
23
+ "Should be in the form: provider/model-name."
24
+ },
25
+ )
@@ -0,0 +1,119 @@
1
+ import json
2
+ from datetime import UTC, datetime
3
+ from typing import cast
4
+
5
+ from langchain_core.messages import AIMessage, ToolMessage
6
+ from langchain_core.tools import tool
7
+ from langgraph.graph import END, START, StateGraph
8
+ from langgraph.runtime import Runtime
9
+
10
+ from universal_mcp.agents.llm import load_chat_model
11
+ from universal_mcp.tools.manager import ToolManager
12
+ from universal_mcp.tools.registry import ToolRegistry
13
+ from universal_mcp.types import ToolFormat
14
+
15
+ from universal_mcp.agents.autoagent.context import Context
16
+ from universal_mcp.agents.autoagent.prompts import SYSTEM_PROMPT
17
+ from universal_mcp.agents.autoagent.state import State
18
+
19
+
20
+ def create_agent(tool_registry: ToolRegistry, tool_manager: ToolManager, instructions: str = ""):
21
+ @tool()
22
+ def retrieve_tools(query: str) -> list[str]:
23
+ """Retrieve tools using a search query. Use multiple times if you require tools for different tasks."""
24
+ tools = tool_registry.search_tools(query)
25
+ my_connections = tool_registry.client.list_my_connections()
26
+ connected_apps = set(connection["app_id"] for connection in my_connections)
27
+ filtered_tools = [tool for tool in tools if tool["app_id"] in connected_apps]
28
+ if len(filtered_tools) == 0:
29
+ return tools
30
+ return filtered_tools
31
+
32
+ @tool()
33
+ def ask_user(question: str) -> str:
34
+ """Ask the user a question. Use this tool to ask the user for any missing information for performing a task, or when you have multiple apps to choose from for performing a task."""
35
+ full_question = question
36
+ return f"ASKING_USER: {full_question}"
37
+
38
+ def call_model(
39
+ state: State,
40
+ runtime: Runtime[Context],
41
+ ):
42
+ system_prompt = runtime.context.system_prompt if runtime.context.system_prompt else SYSTEM_PROMPT
43
+ system_prompt = system_prompt.format(system_time=datetime.now(tz=UTC).isoformat())
44
+
45
+ messages = [{"role": "system", "content": system_prompt + "\n" + instructions}, *state["messages"]]
46
+ model = load_chat_model(runtime.context.model)
47
+ # Load tools from tool registry
48
+ tool_registry.load_tools(tools=state["selected_tool_ids"], tool_manager=tool_manager)
49
+ loaded_tools = tool_manager.list_tools(format=ToolFormat.LANGCHAIN)
50
+ model_with_tools = model.bind_tools([retrieve_tools, ask_user, *loaded_tools], tool_choice="auto")
51
+ response = cast(AIMessage, model_with_tools.invoke(messages))
52
+ return {"messages": [response]}
53
+
54
+ # Define the conditional edge that determines whether to continue or not
55
+ def should_continue(state: State):
56
+ messages = state["messages"]
57
+ last_message = messages[-1]
58
+ # If there is no function call, then we finish
59
+ if not last_message.tool_calls:
60
+ return END
61
+ # Otherwise if there is, we continue
62
+ else:
63
+ return "tools"
64
+
65
+ def tool_router(state: State):
66
+ last_message = state["messages"][-1]
67
+ if isinstance(last_message, ToolMessage):
68
+ return "agent"
69
+ else:
70
+ return END
71
+
72
+
73
+ async def tool_node(state: State):
74
+ outputs = []
75
+ tool_ids = state["selected_tool_ids"]
76
+ for tool_call in state["messages"][-1].tool_calls:
77
+ if tool_call["name"] == retrieve_tools.name:
78
+ tool_result = retrieve_tools.invoke(tool_call["args"])
79
+ tool_ids = [tool["id"] for tool in tool_result]
80
+ outputs.append(
81
+ ToolMessage(
82
+ content=json.dumps(tool_result),
83
+ name=tool_call["name"],
84
+ tool_call_id=tool_call["id"],
85
+ )
86
+ )
87
+ elif tool_call["name"] == ask_user.name:
88
+ outputs.append(
89
+ ToolMessage(
90
+ content=json.dumps("The user has been asked the question, and the run will wait for the user's response."),
91
+ name=tool_call["name"],
92
+ tool_call_id=tool_call["id"],
93
+ )
94
+ )
95
+ ai_message = AIMessage(content=tool_call["args"]["question"])
96
+ outputs.append(ai_message)
97
+ else:
98
+ tool_manager.clear_tools()
99
+ tool_registry.load_tools([tool_call["name"]], tool_manager=tool_manager)
100
+ tool_result = await tool_manager.call_tool(tool_call["name"], tool_call["args"])
101
+ outputs.append(
102
+ ToolMessage(
103
+ content=json.dumps(tool_result),
104
+ name=tool_call["name"],
105
+ tool_call_id=tool_call["id"],
106
+ )
107
+ )
108
+ return {"messages": outputs, "selected_tool_ids": tool_ids}
109
+
110
+ builder = StateGraph(State, context_schema=Context)
111
+
112
+ builder.add_node("agent", call_model)
113
+ builder.add_node("tools", tool_node)
114
+
115
+ builder.add_edge(START, "agent")
116
+ builder.add_conditional_edges("agent", should_continue)
117
+ builder.add_conditional_edges("tools", tool_router)
118
+
119
+ return builder
@@ -0,0 +1,5 @@
1
+ """Default prompts used by the agent."""
2
+
3
+ SYSTEM_PROMPT = """You are a helpful AI assistant. When you lack tools for any task you should use the `retrieve_tools` function to unlock relevant tools. Whenever you need to ask the user for any information, or choose between multiple different applications, you can ask the user using the `ask_user` function.
4
+
5
+ System time: {system_time}"""
@@ -0,0 +1,27 @@
1
+ from typing import Annotated
2
+
3
+ from langgraph.prebuilt.chat_agent_executor import AgentState
4
+
5
+
6
+ def _enqueue(left: list, right: list) -> list:
7
+ """Treat left as a FIFO queue, append new items from right (preserve order),
8
+ keep items unique, and cap total size to 20 (drop oldest items)."""
9
+ max_size = 30
10
+ preferred_size = 20
11
+ if len(right) > preferred_size:
12
+ preferred_size = min(max_size, len(right))
13
+ queue = list(left or [])
14
+
15
+ for item in right[:preferred_size] or []:
16
+ if item in queue:
17
+ queue.remove(item)
18
+ queue.append(item)
19
+
20
+ if len(queue) > preferred_size:
21
+ queue = queue[-preferred_size:]
22
+
23
+ return queue
24
+
25
+
26
+ class State(AgentState):
27
+ selected_tool_ids: Annotated[list[str], _enqueue]
@@ -0,0 +1,25 @@
1
+ from universal_mcp.agentr.registry import AgentrRegistry
2
+ from universal_mcp.agents.autoagent import create_agent
3
+ from universal_mcp.tools import ToolManager
4
+
5
+ tool_registry = AgentrRegistry()
6
+ tool_manager = ToolManager()
7
+
8
+
9
+
10
+ apps = tool_registry.client.list_all_apps()
11
+ names = [app["name"] for app in apps]
12
+
13
+ instructions = """
14
+ You are a helpful assistant that can use tools to help the user. If a task requires multiple steps, you should perform separate different searches for different actions.
15
+ These are the list of applications you can use to help the user:
16
+ {names}
17
+ """
18
+ graph = create_agent(tool_registry, tool_manager, instructions=instructions)
19
+
20
+
21
+
22
+
23
+
24
+
25
+
@@ -0,0 +1,13 @@
1
+ from langchain_core.messages import BaseMessage
2
+
3
+
4
+ def get_message_text(msg: BaseMessage) -> str:
5
+ """Get the text content of a message."""
6
+ content = msg.content
7
+ if isinstance(content, str):
8
+ return content
9
+ elif isinstance(content, dict):
10
+ return content.get("text", "")
11
+ else:
12
+ txts = [c if isinstance(c, str) else (c.get("text") or "") for c in content]
13
+ return "".join(txts).strip()
@@ -7,7 +7,7 @@ from langgraph.checkpoint.base import BaseCheckpointSaver
7
7
  from langgraph.checkpoint.memory import MemorySaver
8
8
  from langgraph.types import Command
9
9
 
10
- from .llm import get_llm
10
+ from .llm import load_chat_model
11
11
  from .utils import RichCLI
12
12
 
13
13
 
@@ -18,7 +18,7 @@ class BaseAgent:
18
18
  self.model = model
19
19
  self.memory = memory or MemorySaver()
20
20
  self._graph = None
21
- self.llm = get_llm(model)
21
+ self.llm = load_chat_model(model)
22
22
  self.cli = RichCLI()
23
23
 
24
24
  async def _build_graph(self):
@@ -47,6 +47,7 @@ class BaseAgent:
47
47
  return await self._graph.ainvoke(
48
48
  {"messages": [{"role": "user", "content": user_input}]},
49
49
  config={"configurable": {"thread_id": thread_id}},
50
+ context={"system_prompt": self.instructions, "model": self.model},
50
51
  )
51
52
 
52
53
  async def run_interactive(self, thread_id: str = str(uuid4())):
@@ -1,10 +1,10 @@
1
1
  from universal_mcp.agentr import Agentr
2
2
  from universal_mcp.agents.codeact import create_codeact
3
3
  from universal_mcp.agents.codeact.sandbox import eval_unsafe
4
- from universal_mcp.agents.llm import get_llm
4
+ from universal_mcp.agents.llm import load_chat_model
5
5
  from universal_mcp.tools.adapters import ToolFormat
6
6
 
7
- model = get_llm("gpt-4.1")
7
+ model = load_chat_model("gpt-4.1")
8
8
 
9
9
  agentr = Agentr()
10
10
  agentr.load_tools(["google-mail_send_email"])
@@ -7,7 +7,7 @@ from langgraph.graph.message import add_messages
7
7
  from langgraph.types import Interrupt, interrupt
8
8
 
9
9
  from .base import BaseAgent
10
- from .llm import get_llm
10
+ from .llm import load_chat_model
11
11
 
12
12
 
13
13
  class State(TypedDict):
@@ -70,7 +70,7 @@ def handle_interrupt(interrupt: Interrupt) -> str | bool:
70
70
  class HilAgent(BaseAgent):
71
71
  def __init__(self, name: str, instructions: str, model: str):
72
72
  super().__init__(name, instructions, model)
73
- self.llm = get_llm(model)
73
+ self.llm = load_chat_model(model)
74
74
  self._graph = self._build_graph()
75
75
 
76
76
  def chatbot(self, state: State):
@@ -1,10 +1,28 @@
1
+ from langchain_anthropic import ChatAnthropic
2
+ from langchain_core.language_models import BaseChatModel
3
+ from langchain_google_vertexai.model_garden import ChatAnthropicVertex
1
4
  from langchain_openai import AzureChatOpenAI
2
5
 
3
6
 
4
- def get_llm(model: str, tags: list[str] | None = None):
5
- return AzureChatOpenAI(model=model, api_version="2024-12-01-preview", azure_deployment=model, tags=tags)
7
+ def load_chat_model(fully_specified_name: str, tags: list[str] | None = None) -> BaseChatModel:
8
+ """Load a chat model from a fully specified name.
9
+
10
+ Args:
11
+ fully_specified_name (str): String in the format 'provider/model'.
12
+ """
13
+ provider, model = fully_specified_name.split("/", maxsplit=1)
14
+ if provider == "google_anthropic_vertex":
15
+ return ChatAnthropicVertex(model=model, temperature=0.2, location="asia-east1", tags=tags)
16
+ elif provider == "anthropic":
17
+ return ChatAnthropic(
18
+ model=model, temperature=1, thinking={"type": "enabled", "budget_tokens": 2048}, max_tokens=4096, tags=tags
19
+ ) # pyright: ignore[reportCallIssue]
20
+ elif provider == "azure":
21
+ return AzureChatOpenAI(model=model, api_version="2024-12-01-preview", azure_deployment=model, tags=tags)
22
+ else:
23
+ raise ValueError(f"Unsupported provider: {provider}")
6
24
 
7
25
 
8
26
  if __name__ == "__main__":
9
- llm = get_llm("gpt-4.1")
27
+ llm = load_chat_model("azure/gpt-4.1")
10
28
  print(llm.invoke("Hello, world!"))
@@ -60,5 +60,7 @@ if __name__ == "__main__":
60
60
  model="gpt-4o",
61
61
  tools=ToolConfig(agentrServers={"google-mail": {"tools": ["send_email"]}}),
62
62
  )
63
- result = asyncio.run(agent.run(user_input="Send an email with the subject 'Hello' to john.doe@example.com"))
63
+ result = asyncio.run(
64
+ agent.run(user_input="Send an email with the subject 'testing react agent' to manoj@agentr.dev")
65
+ )
64
66
  print(result["messages"][-1].content)
@@ -5,8 +5,8 @@ from langgraph.graph import END, START, StateGraph
5
5
  from langgraph.graph.message import add_messages
6
6
  from typing_extensions import TypedDict
7
7
 
8
- from .base import BaseAgent
9
- from .llm import get_llm
8
+ from universal_mcp.agents.base import BaseAgent
9
+ from universal_mcp.agents.llm import load_chat_model
10
10
 
11
11
 
12
12
  class State(TypedDict):
@@ -16,7 +16,7 @@ class State(TypedDict):
16
16
  class SimpleAgent(BaseAgent):
17
17
  def __init__(self, name: str, instructions: str, model: str):
18
18
  super().__init__(name, instructions, model)
19
- self.llm = get_llm(model)
19
+ self.llm = load_chat_model(model)
20
20
  self._graph = self._build_graph()
21
21
 
22
22
  def _build_graph(self):
@@ -1,6 +1,8 @@
1
1
  from abc import ABC, abstractmethod
2
2
  from typing import Any
3
3
 
4
+ from universal_mcp.tools.manager import ToolManager
5
+
4
6
 
5
7
  class ToolRegistry(ABC):
6
8
  """Abstract base class for platform-specific functionality.
@@ -11,7 +13,7 @@ class ToolRegistry(ABC):
11
13
  """
12
14
 
13
15
  @abstractmethod
14
- async def list_apps(self) -> list[dict[str, Any]]:
16
+ def list_apps(self) -> list[dict[str, Any]]:
15
17
  """Get list of available apps from the platform.
16
18
 
17
19
  Returns:
@@ -20,7 +22,7 @@ class ToolRegistry(ABC):
20
22
  pass
21
23
 
22
24
  @abstractmethod
23
- async def get_app_details(self, app_id: str) -> dict[str, Any]:
25
+ def get_app_details(self, app_id: str) -> dict[str, Any]:
24
26
  """Get detailed information about a specific app.
25
27
 
26
28
  Args:
@@ -32,10 +34,18 @@ class ToolRegistry(ABC):
32
34
  pass
33
35
 
34
36
  @abstractmethod
35
- async def load_tools(self, tools: list[str]) -> None:
37
+ def load_tools(self, tools: list[str], tool_manager: ToolManager) -> None:
36
38
  """Load tools from the platform and register them as tools.
37
39
 
38
40
  Args:
39
41
  tools: The list of tools to load
40
42
  """
41
43
  pass
44
+
45
+ @abstractmethod
46
+ def search_tools(
47
+ self,
48
+ query: str,
49
+ ) -> list[str]:
50
+ """Retrieve a tool to use, given a search query."""
51
+ pass
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: universal-mcp
3
- Version: 0.1.24rc6
3
+ Version: 0.1.24rc7
4
4
  Summary: Universal MCP acts as a middle ware for your API applications. It can store your credentials, authorize, enable disable apps on the fly and much more.
5
5
  Author-email: Manoj Bajaj <manojbajaj95@gmail.com>
6
6
  License: MIT
@@ -9,9 +9,12 @@ Requires-Python: >=3.11
9
9
  Requires-Dist: black>=25.1.0
10
10
  Requires-Dist: cookiecutter>=2.6.0
11
11
  Requires-Dist: gql>=4.0.0
12
+ Requires-Dist: httpx-aiohttp>=0.1.8
12
13
  Requires-Dist: jinja2>=3.1.3
13
14
  Requires-Dist: jsonref>=1.1.0
14
15
  Requires-Dist: keyring>=25.6.0
16
+ Requires-Dist: langchain-anthropic>=0.3.19
17
+ Requires-Dist: langchain-google-vertexai>=2.0.28
15
18
  Requires-Dist: langchain-mcp-adapters>=0.1.9
16
19
  Requires-Dist: langchain-openai>=0.3.27
17
20
  Requires-Dist: langgraph-cli[inmem]>=0.3.4
@@ -6,26 +6,34 @@ universal_mcp/exceptions.py,sha256=Uen8UFgLHGlSwXgRUyF-nhqTwdiBuL3okgBVRV2AgtA,2
6
6
  universal_mcp/logger.py,sha256=VmH_83efpErLEDTJqz55Dp0dioTXfGvMBLZUx5smOLc,2116
7
7
  universal_mcp/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  universal_mcp/types.py,sha256=jeUEkUnwdGWo3T_qSRSF83u0fYpuydaWzdKlCYBlCQA,770
9
- universal_mcp/agentr/README.md,sha256=xXM8JzPyrM2__pGhxHrGEUn9uP2y2bdF00wwcQtBUCI,6441
9
+ universal_mcp/agentr/README.md,sha256=t15pVgkCwZM5wzgLgrf0Zv6hVL7dPmKXvAeTf8CiXPQ,6641
10
10
  universal_mcp/agentr/__init__.py,sha256=ogOhH_OJwkoUZu_2nQJc7-vEGmYQxEjOE511-6ubrX0,217
11
- universal_mcp/agentr/agentr.py,sha256=JfawuREfXAyeNUE7o58DzTPhmQXuwsB_Da7c1Gf3Qxw,1059
12
- universal_mcp/agentr/client.py,sha256=oyF6VKq56UMVf5L1WnFTMSZ85W8Qcy-5HZ5XOGiIELM,4139
11
+ universal_mcp/agentr/agentr.py,sha256=kTUiBpDl4ODuXit9VE_ZXW28IKpCqEnJDNtMXi2B3Pc,1245
12
+ universal_mcp/agentr/client.py,sha256=B4pjIpfD5nDCZ9qldKIqlBV8DISrkTRrajCIQK4r4Hs,6232
13
13
  universal_mcp/agentr/integration.py,sha256=V5GjqocqS02tRoI8MeV9PL6m-BzejwBzgJhOHo4MxAE,4212
14
- universal_mcp/agentr/registry.py,sha256=b9sr5JyT3HLj3e7GFpdXpT7ofGwLQc--y8k2DqF5dE0,3542
14
+ universal_mcp/agentr/registry.py,sha256=BOxy9iuJagKLmH9komaabwXvUglrsWbpRX8WY9xJ7lI,3115
15
15
  universal_mcp/agentr/server.py,sha256=bIPmHMiKKwnUYnxmfZVRh1thcn7Rytm_-bNiXTfANzc,2098
16
- universal_mcp/agents/__init__.py,sha256=vgixOLTCcCmSweENV7GSAuOPyHXlE4XAbvOXyr4MrRA,185
17
- universal_mcp/agents/auto.py,sha256=o__71BCOHSfaj7Xt0PhsamVXdeP4o7irhtmu1q6-3Fo,25336
18
- universal_mcp/agents/base.py,sha256=aplcZ-OKva3hFMB5uzoAPCB0ZDh3BL3FlJV39sJYYZ8,4057
16
+ universal_mcp/agents/__init__.py,sha256=ZkdQ71fn838LvYdyln6fL1mUMUUCZRZMyqos4aW2_I4,265
17
+ universal_mcp/agents/auto.py,sha256=UUx3p9riLww2OwRg0pg10mWzWdDNydBrKJ-UdwzAQSk,25411
18
+ universal_mcp/agents/base.py,sha256=uRb-flv_pdKfDJnHID1c-loYt-EvlAgFmB1_wJQNhUs,4152
19
19
  universal_mcp/agents/cli.py,sha256=7GdRBpu9rhZPiC2vaNQXWI7K-0yCnvdlmE0IFpvy2Gk,539
20
- universal_mcp/agents/hil.py,sha256=CTgX7CoFEyTFIaNaL-id2WALOPd0VBb79pHkQK8quM8,3671
21
- universal_mcp/agents/llm.py,sha256=YNxN43bVhGfdYs09yPkdkGCKJkj-2UNqkB1EFmtnUS4,309
22
- universal_mcp/agents/react.py,sha256=cpE4wzySnyEdhz-c1T1FDA3w68nRByz7yWFt8FefUBo,2361
23
- universal_mcp/agents/simple.py,sha256=UfmQIIff--_Y0DQ6oivRciHqSZvRqy_qwQn_UYVzYy8,1146
20
+ universal_mcp/agents/hil.py,sha256=6xi0hhK5g-rhCrAMcGbjcKMReLWPC8rnFZMBOF3N_cY,3687
21
+ universal_mcp/agents/llm.py,sha256=0HUI2Srh3RWtGyrjJCKqsroEgc1Rtkta3T8I1axl1mg,1232
22
+ universal_mcp/agents/react.py,sha256=kAyTS68xzBLWRNgjJrLSP85o1ligz_ziatdlMZAavnA,2385
23
+ universal_mcp/agents/simple.py,sha256=CXmwJq7jvxAoDJifNK7jKJTMKG4Pvre75x-k2CE-ZEM,1202
24
24
  universal_mcp/agents/tools.py,sha256=7Vdw0VZYxXVAzAYSpRKWHzVl9Ll6NOnVRlc4cTXguUQ,1335
25
25
  universal_mcp/agents/utils.py,sha256=7kwFpD0Rv6JqHG-LlNCVwSu_xRX-N119mUmiBroHJL4,4109
26
+ universal_mcp/agents/autoagent/__init__.py,sha256=Vfm8brM9TNXCjKbVXV-CAPg_BVnYHOn6RVmkS0EaNV0,1072
27
+ universal_mcp/agents/autoagent/__main__.py,sha256=FUSETuCDMpp7VSis0UFDnpI32HmQuJYaAXaOX5fQl-4,622
28
+ universal_mcp/agents/autoagent/context.py,sha256=1ic3sIL14XZeiMjpkwysLImRTQFKXRFSx7rvgVh4plY,802
29
+ universal_mcp/agents/autoagent/graph.py,sha256=f_TPcMk0t4JgM1gYs4sLFIeCrTGAzecc2rN0MPsmxvs,5116
30
+ universal_mcp/agents/autoagent/prompts.py,sha256=DwLHwvsISuNrxeua0tKxTQbkU8u9gljCpk3P18VGk4w,386
31
+ universal_mcp/agents/autoagent/state.py,sha256=TQeGZD99okclkoCh5oz-VYIlEsC9yLQyDpnBnm7QCN8,759
32
+ universal_mcp/agents/autoagent/studio.py,sha256=FWmZTAH54euF0ePG6xCBNwklBjdmjZ3jAOBoTrwNcqs,656
33
+ universal_mcp/agents/autoagent/utils.py,sha256=AFq-8scw_WlSZxDnTzxSNrOSiGYsIlqkqtQLDWf_rMU,431
26
34
  universal_mcp/agents/codeact/__init__.py,sha256=5D_I3lI_3tWjZERRoFav_bPe9UDaJ53pDzZYtyixg3E,10097
27
35
  universal_mcp/agents/codeact/sandbox.py,sha256=lGRzhuXTHCB1qauuOI3bH1-fPTsyL6Lf9EmMIz4C2xQ,1039
28
- universal_mcp/agents/codeact/test.py,sha256=bva-KkBNbGZn2f9nmmo9SNPQnY24Ni5gLHhJ5I0cm0k,481
36
+ universal_mcp/agents/codeact/test.py,sha256=AI3qWszpM46hF4wzuQm6A8g_UkhGmcg9KhHtk9u14ro,497
29
37
  universal_mcp/agents/codeact/utils.py,sha256=VuMvLTxBBh3pgaJk8RWj5AK8XZFF-1gnZJ6jFLeM_CI,1690
30
38
  universal_mcp/applications/__init__.py,sha256=HrCnGdAT7w4puw2_VulBfjOLku9D5DuMaOwAuQzu6nI,2067
31
39
  universal_mcp/applications/application.py,sha256=pGF9Rb2D6qzlaSwlcfZ-dNqPtsLkQTqL3jpsRuJ6-qE,23835
@@ -44,7 +52,7 @@ universal_mcp/tools/adapters.py,sha256=YJ2oqgc8JgmtsdRRtvO-PO0Q0bKqTJ4Y3J6yxlESo
44
52
  universal_mcp/tools/docstring_parser.py,sha256=efEOE-ME7G5Jbbzpn7pN2xNuyu2M5zfZ1Tqu1lRB0Gk,8392
45
53
  universal_mcp/tools/func_metadata.py,sha256=F4jd--hoZWKPBbZihVtluYKUsIdXdq4a0VWRgMl5k-Q,10838
46
54
  universal_mcp/tools/manager.py,sha256=24Rkn5Uvv_AuYAtjeMq986bJ7uzTaGE1290uB9eDtRE,10435
47
- universal_mcp/tools/registry.py,sha256=XsmVZL1rY5XgIBPTmvKKBWFLAvB3d9LfYMb11b4wSPI,1169
55
+ universal_mcp/tools/registry.py,sha256=EA-xJ6GCYGajUVCrRmPIpr9Xekwxnqhmso8ztfsTeE8,1401
48
56
  universal_mcp/tools/tools.py,sha256=Lk-wUO3rfhwdxaRANtC7lQr5fXi7nclf0oHzxNAb79Q,4927
49
57
  universal_mcp/utils/__init__.py,sha256=8wi4PGWu-SrFjNJ8U7fr2iFJ1ktqlDmSKj1xYd7KSDc,41
50
58
  universal_mcp/utils/common.py,sha256=3aJK3AnBkmYf-dbsFLaEu_dGuXQ0Qi2HuqYTueLVhXQ,10968
@@ -65,8 +73,8 @@ universal_mcp/utils/openapi/readme.py,sha256=R2Jp7DUXYNsXPDV6eFTkLiy7MXbSULUj1vH
65
73
  universal_mcp/utils/openapi/test_generator.py,sha256=h44gQXEXmrw4pD3-XNHKB7T9c2lDomqrJxVO6oszCqM,12186
66
74
  universal_mcp/utils/templates/README.md.j2,sha256=Mrm181YX-o_-WEfKs01Bi2RJy43rBiq2j6fTtbWgbTA,401
67
75
  universal_mcp/utils/templates/api_client.py.j2,sha256=972Im7LNUAq3yZTfwDcgivnb-b8u6_JLKWXwoIwXXXQ,908
68
- universal_mcp-0.1.24rc6.dist-info/METADATA,sha256=5KFnUe9auDhLti6G6uogy93a3RuJIBc9un01LNoVBgU,3015
69
- universal_mcp-0.1.24rc6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
70
- universal_mcp-0.1.24rc6.dist-info/entry_points.txt,sha256=QlBrVKmA2jIM0q-C-3TQMNJTTWOsOFQvgedBq2rZTS8,56
71
- universal_mcp-0.1.24rc6.dist-info/licenses/LICENSE,sha256=NweDZVPslBAZFzlgByF158b85GR0f5_tLQgq1NS48To,1063
72
- universal_mcp-0.1.24rc6.dist-info/RECORD,,
76
+ universal_mcp-0.1.24rc7.dist-info/METADATA,sha256=agZ4cb79U2UCRPE6V_NXT5pL-_gAxB2Gz04jsc9rVCs,3143
77
+ universal_mcp-0.1.24rc7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
78
+ universal_mcp-0.1.24rc7.dist-info/entry_points.txt,sha256=QlBrVKmA2jIM0q-C-3TQMNJTTWOsOFQvgedBq2rZTS8,56
79
+ universal_mcp-0.1.24rc7.dist-info/licenses/LICENSE,sha256=NweDZVPslBAZFzlgByF158b85GR0f5_tLQgq1NS48To,1063
80
+ universal_mcp-0.1.24rc7.dist-info/RECORD,,