universal-mcp 0.1.24rc13__py3-none-any.whl → 0.1.24rc17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. universal_mcp/agentr/registry.py +4 -4
  2. universal_mcp/applications/application.py +0 -2
  3. universal_mcp/applications/utils.py +52 -0
  4. universal_mcp/servers/server.py +4 -3
  5. universal_mcp/tools/manager.py +0 -3
  6. universal_mcp/types.py +1 -21
  7. universal_mcp/utils/prompts.py +0 -2
  8. universal_mcp/utils/testing.py +1 -1
  9. {universal_mcp-0.1.24rc13.dist-info → universal_mcp-0.1.24rc17.dist-info}/METADATA +2 -1
  10. universal_mcp-0.1.24rc17.dist-info/RECORD +54 -0
  11. universal_mcp/__init__.py +0 -0
  12. universal_mcp/agents/__init__.py +0 -9
  13. universal_mcp/agents/autoagent/__init__.py +0 -30
  14. universal_mcp/agents/autoagent/__main__.py +0 -25
  15. universal_mcp/agents/autoagent/context.py +0 -26
  16. universal_mcp/agents/autoagent/graph.py +0 -151
  17. universal_mcp/agents/autoagent/prompts.py +0 -9
  18. universal_mcp/agents/autoagent/state.py +0 -27
  19. universal_mcp/agents/autoagent/studio.py +0 -25
  20. universal_mcp/agents/autoagent/utils.py +0 -13
  21. universal_mcp/agents/base.py +0 -129
  22. universal_mcp/agents/bigtool/__init__.py +0 -54
  23. universal_mcp/agents/bigtool/__main__.py +0 -24
  24. universal_mcp/agents/bigtool/context.py +0 -24
  25. universal_mcp/agents/bigtool/graph.py +0 -166
  26. universal_mcp/agents/bigtool/prompts.py +0 -31
  27. universal_mcp/agents/bigtool/state.py +0 -27
  28. universal_mcp/agents/builder.py +0 -80
  29. universal_mcp/agents/cli.py +0 -27
  30. universal_mcp/agents/codeact/__init__.py +0 -243
  31. universal_mcp/agents/codeact/sandbox.py +0 -27
  32. universal_mcp/agents/codeact/test.py +0 -15
  33. universal_mcp/agents/codeact/utils.py +0 -61
  34. universal_mcp/agents/hil.py +0 -104
  35. universal_mcp/agents/llm.py +0 -45
  36. universal_mcp/agents/planner/__init__.py +0 -37
  37. universal_mcp/agents/planner/__main__.py +0 -24
  38. universal_mcp/agents/planner/graph.py +0 -82
  39. universal_mcp/agents/planner/prompts.py +0 -1
  40. universal_mcp/agents/planner/state.py +0 -12
  41. universal_mcp/agents/react.py +0 -84
  42. universal_mcp/agents/shared/agent_node.py +0 -34
  43. universal_mcp/agents/shared/tool_node.py +0 -235
  44. universal_mcp/agents/simple.py +0 -40
  45. universal_mcp/agents/tools.py +0 -35
  46. universal_mcp/agents/utils.py +0 -111
  47. universal_mcp/analytics.py +0 -111
  48. universal_mcp/applications/__init__.py +0 -70
  49. universal_mcp/utils/common.py +0 -278
  50. universal_mcp-0.1.24rc13.dist-info/RECORD +0 -92
  51. {universal_mcp-0.1.24rc13.dist-info → universal_mcp-0.1.24rc17.dist-info}/WHEEL +0 -0
  52. {universal_mcp-0.1.24rc13.dist-info → universal_mcp-0.1.24rc17.dist-info}/entry_points.txt +0 -0
  53. {universal_mcp-0.1.24rc13.dist-info → universal_mcp-0.1.24rc17.dist-info}/licenses/LICENSE +0 -0
@@ -1,129 +0,0 @@
1
- # agents/base.py
2
- from typing import cast
3
- from uuid import uuid4
4
-
5
- from langchain_core.messages import AIMessageChunk
6
- from langgraph.checkpoint.base import BaseCheckpointSaver
7
- from langgraph.types import Command
8
-
9
- from .utils import RichCLI
10
-
11
-
12
- class BaseAgent:
13
- def __init__(self, name: str, instructions: str, model: str, memory: BaseCheckpointSaver | None = None, **kwargs):
14
- self.name = name
15
- self.instructions = instructions
16
- self.model = model
17
- self.memory = memory
18
- self._graph = None
19
- self._initialized = False
20
- self.cli = RichCLI()
21
-
22
- async def ainit(self):
23
- if not self._initialized:
24
- self._graph = await self._build_graph()
25
- self._initialized = True
26
-
27
- async def _build_graph(self):
28
- raise NotImplementedError("Subclasses must implement this method")
29
-
30
- async def stream(self, thread_id: str, user_input: str):
31
- await self.ainit()
32
- aggregate = None
33
- async for event, metadata in self._graph.astream(
34
- {"messages": [{"role": "user", "content": user_input}]},
35
- config={"configurable": {"thread_id": thread_id}},
36
- context={"system_prompt": self.instructions, "model": self.model},
37
- stream_mode="messages",
38
- stream_usage=True,
39
- ):
40
- # Only forward assistant token chunks that are not tool-related.
41
- type_ = type(event)
42
- if type_ != AIMessageChunk:
43
- continue
44
- event = cast(AIMessageChunk, event)
45
- aggregate = event if aggregate is None else aggregate + event
46
- tags = metadata.get("tags", []) if isinstance(metadata, dict) else []
47
- is_quiet = isinstance(tags, list) and ("quiet" in tags)
48
-
49
- if is_quiet:
50
- continue
51
- if "finish_reason" in event.response_metadata:
52
- # Got LLM finish reason ignore it
53
- # logger.debug(f"Finish event: {event}, Metadata: {metadata}")
54
- pass
55
- else:
56
- # logger.debug(f"Event: {event}, Metadata: {metadata}")
57
- yield event
58
- # Send a final finished message
59
- # The last event would be finish
60
- event = cast(AIMessageChunk, event)
61
- yield event
62
-
63
- async def stream_interactive(self, thread_id: str, user_input: str):
64
- await self.ainit()
65
- with self.cli.display_agent_response_streaming(self.name) as stream_updater:
66
- async for event in self.stream(thread_id, user_input):
67
- stream_updater.update(event.content)
68
-
69
- async def invoke(self, user_input: str, thread_id: str = str(uuid4())):
70
- """Run the agent"""
71
- await self.ainit()
72
- return await self._graph.ainvoke(
73
- {"messages": [{"role": "user", "content": user_input}]},
74
- config={"configurable": {"thread_id": thread_id}},
75
- context={"system_prompt": self.instructions, "model": self.model},
76
- )
77
-
78
- async def run_interactive(self, thread_id: str = str(uuid4())):
79
- """Main application loop"""
80
-
81
- await self.ainit()
82
- # Display welcome
83
- self.cli.display_welcome(self.name)
84
-
85
- # Main loop
86
- while True:
87
- try:
88
- state = self._graph.get_state(config={"configurable": {"thread_id": thread_id}})
89
- if state.interrupts:
90
- value = self.cli.handle_interrupt(state.interrupts[0])
91
- self._graph.invoke(Command(resume=value), config={"configurable": {"thread_id": thread_id}})
92
- continue
93
-
94
- user_input = self.cli.get_user_input()
95
- if not user_input.strip():
96
- continue
97
-
98
- # Process commands
99
- if user_input.startswith("/"):
100
- command = user_input.lower().lstrip("/")
101
- if command == "about":
102
- self.cli.display_info(f"Agent is {self.name}. {self.instructions}")
103
- continue
104
- elif command == "exit" or command == "quit" or command == "q":
105
- self.cli.display_info("Goodbye! 👋")
106
- break
107
- elif command == "reset":
108
- self.cli.clear_screen()
109
- self.cli.display_info("Resetting agent...")
110
- thread_id = str(uuid4())
111
- continue
112
- elif command == "help":
113
- self.cli.display_info("Available commands: /about, /exit, /quit, /q, /reset")
114
- continue
115
- else:
116
- self.cli.display_error(f"Unknown command: {command}")
117
- continue
118
-
119
- # Process with agent
120
- await self.stream_interactive(thread_id, user_input)
121
-
122
- except KeyboardInterrupt:
123
- self.cli.display_info("\nGoodbye! 👋")
124
- break
125
- except Exception as e:
126
- import traceback
127
-
128
- traceback.print_exc()
129
- self.cli.display_error(f"An error occurred: {str(e)}")
@@ -1,54 +0,0 @@
1
- from langgraph.checkpoint.base import BaseCheckpointSaver
2
-
3
- from universal_mcp.agents.base import BaseAgent
4
- from universal_mcp.agents.llm import load_chat_model
5
- from universal_mcp.logger import logger
6
- from universal_mcp.tools.registry import ToolRegistry
7
-
8
- from .graph import build_graph
9
- from .prompts import SYSTEM_PROMPT
10
-
11
-
12
- class BigToolAgent(BaseAgent):
13
- def __init__(
14
- self,
15
- name: str,
16
- instructions: str,
17
- model: str,
18
- registry: ToolRegistry,
19
- memory: BaseCheckpointSaver | None = None,
20
- **kwargs,
21
- ):
22
- # Combine the base system prompt with agent-specific instructions
23
- full_instructions = f"{SYSTEM_PROMPT}\n\n**User Instructions:**\n{instructions}"
24
- super().__init__(name, full_instructions, model, memory, **kwargs)
25
-
26
- self.registry = registry
27
- self.llm = load_chat_model(self.model)
28
- self.tool_selection_llm = load_chat_model("gemini/gemini-2.0-flash-001")
29
-
30
- logger.info(f"BigToolAgent '{self.name}' initialized with model '{self.model}'.")
31
-
32
- async def _build_graph(self):
33
- """Build the bigtool agent graph using the existing create_agent function."""
34
- logger.info(f"Building graph for BigToolAgent '{self.name}'...")
35
- try:
36
- graph_builder = build_graph(
37
- tool_registry=self.registry,
38
- llm=self.llm,
39
- tool_selection_llm=self.tool_selection_llm,
40
- )
41
-
42
- compiled_graph = graph_builder.compile(checkpointer=self.memory)
43
- logger.info("Graph built and compiled successfully.")
44
- return compiled_graph
45
- except Exception as e:
46
- logger.error(f"Error building graph for BigToolAgent '{self.name}': {e}")
47
- raise
48
-
49
- @property
50
- def graph(self):
51
- return self._graph
52
-
53
-
54
- __all__ = ["BigToolAgent"]
@@ -1,24 +0,0 @@
1
- import asyncio
2
-
3
- from loguru import logger
4
-
5
- from universal_mcp.agentr.registry import AgentrRegistry
6
- from universal_mcp.agents.bigtool import BigToolAgent
7
-
8
-
9
- async def main():
10
- agent = BigToolAgent(
11
- name="bigtool",
12
- instructions="You are a helpful assistant that can use tools to help the user.",
13
- model="azure/gpt-4.1",
14
- registry=AgentrRegistry(),
15
- )
16
- async for event in agent.stream(
17
- user_input="Send an email to manoj@agentr.dev",
18
- thread_id="test123",
19
- ):
20
- logger.info(event.content)
21
-
22
-
23
- if __name__ == "__main__":
24
- asyncio.run(main())
@@ -1,24 +0,0 @@
1
- from dataclasses import dataclass, field
2
-
3
- from .prompts import SYSTEM_PROMPT
4
-
5
-
6
- @dataclass(kw_only=True)
7
- class Context:
8
- """The context for the agent."""
9
-
10
- system_prompt: str = field(
11
- default=SYSTEM_PROMPT,
12
- metadata={
13
- "description": "The system prompt to use for the agent's interactions. "
14
- "This prompt sets the context and behavior for the agent."
15
- },
16
- )
17
-
18
- model: str = field(
19
- default="anthropic/claude-4-sonnet-20250514",
20
- metadata={
21
- "description": "The name of the language model to use for the agent's main interactions. "
22
- "Should be in the form: provider/model-name."
23
- },
24
- )
@@ -1,166 +0,0 @@
1
- import json
2
- from datetime import UTC, datetime
3
- from typing import Literal, TypedDict, cast
4
-
5
- from langchain_anthropic import ChatAnthropic
6
- from langchain_core.language_models import BaseChatModel
7
- from langchain_core.messages import AIMessage, ToolMessage
8
- from langchain_core.tools import tool
9
- from langgraph.graph import StateGraph
10
- from langgraph.runtime import Runtime
11
- from langgraph.types import Command
12
-
13
- from universal_mcp.agents.bigtool.context import Context
14
- from universal_mcp.agents.bigtool.state import State
15
- from universal_mcp.logger import logger
16
- from universal_mcp.tools.registry import ToolRegistry
17
- from universal_mcp.types import ToolFormat
18
-
19
- from .prompts import SELECT_TOOL_PROMPT
20
-
21
-
22
- def build_graph(
23
- tool_registry: ToolRegistry,
24
- llm: BaseChatModel,
25
- tool_selection_llm: BaseChatModel,
26
- ):
27
- @tool
28
- async def retrieve_tools(task_query: str) -> list[str]:
29
- """Retrieve tools for a given task.
30
- Task query should be atomic (doable with a single tool).
31
- For tasks requiring multiple tools, call this tool multiple times for each subtask."""
32
- logger.info(f"Retrieving tools for task: '{task_query}'")
33
- try:
34
- tools_list = await tool_registry.search_tools(task_query, limit=10)
35
- tool_candidates = [f"{tool['id']}: {tool['description']}" for tool in tools_list]
36
- logger.info(f"Found {len(tool_candidates)} candidate tools.")
37
-
38
- class ToolSelectionOutput(TypedDict):
39
- tool_names: list[str]
40
-
41
- model = tool_selection_llm
42
- app_ids = await tool_registry.list_all_apps()
43
- connections = await tool_registry.list_connected_apps()
44
- connection_ids = set([connection["app_id"] for connection in connections])
45
- connected_apps = [app["id"] for app in app_ids if app["id"] in connection_ids]
46
- unconnected_apps = [app["id"] for app in app_ids if app["id"] not in connection_ids]
47
- app_id_descriptions = "These are the apps connected to the user's account:\n" + "\n".join(
48
- [f"{app}" for app in connected_apps]
49
- )
50
- if unconnected_apps:
51
- app_id_descriptions += "\n\nOther (not connected) apps: " + "\n".join(
52
- [f"{app}" for app in unconnected_apps]
53
- )
54
-
55
- response = await model.with_structured_output(schema=ToolSelectionOutput, method="json_mode").ainvoke(
56
- SELECT_TOOL_PROMPT.format(
57
- app_ids=app_id_descriptions, tool_candidates="\n - ".join(tool_candidates), task=task_query
58
- )
59
- )
60
-
61
- selected_tool_names = cast(ToolSelectionOutput, response)["tool_names"]
62
- logger.info(f"Selected tools: {selected_tool_names}")
63
- return selected_tool_names
64
- except Exception as e:
65
- logger.error(f"Error retrieving tools: {e}")
66
- return []
67
-
68
- async def call_model(state: State, runtime: Runtime[Context]) -> Command[Literal["select_tools", "call_tools"]]:
69
- logger.info("Calling model...")
70
- try:
71
- system_message = runtime.context.system_prompt.format(system_time=datetime.now(tz=UTC).isoformat())
72
- messages = [{"role": "system", "content": system_message}, *state["messages"]]
73
-
74
- logger.info(f"Selected tool IDs: {state['selected_tool_ids']}")
75
- selected_tools = await tool_registry.export_tools(
76
- tools=state["selected_tool_ids"],
77
- format=ToolFormat.LANGCHAIN,
78
- )
79
- logger.info(f"Exported {len(selected_tools)} tools for model.")
80
-
81
- model = llm
82
- if isinstance(model, ChatAnthropic):
83
- model_with_tools = model.bind_tools(
84
- [retrieve_tools, *selected_tools], tool_choice="auto", cache_control={"type": "ephemeral"}
85
- )
86
- else:
87
- model_with_tools = model.bind_tools([retrieve_tools, *selected_tools], tool_choice="auto")
88
- response = cast(AIMessage, await model_with_tools.ainvoke(messages))
89
-
90
- if response.tool_calls:
91
- logger.info(f"Model responded with {len(response.tool_calls)} tool calls.")
92
- if len(response.tool_calls) > 1:
93
- raise Exception("Not possible in Claude with llm.bind_tools(tools=tools, tool_choice='auto')")
94
- tool_call = response.tool_calls[0]
95
- if tool_call["name"] == retrieve_tools.name:
96
- logger.info("Model requested to select tools.")
97
- return Command(goto="select_tools", update={"messages": [response]})
98
- elif tool_call["name"] not in state["selected_tool_ids"]:
99
- try:
100
- await tool_registry.export_tools([tool_call["name"]], ToolFormat.LANGCHAIN)
101
- logger.info(
102
- f"Tool '{tool_call['name']}' not in selected tools, but available. Proceeding to call."
103
- )
104
- return Command(goto="call_tools", update={"messages": [response]})
105
- except Exception as e:
106
- logger.error(f"Unexpected tool call: {tool_call['name']}. Error: {e}")
107
- raise Exception(
108
- f"Unexpected tool call: {tool_call['name']}. Available tools: {state['selected_tool_ids']}"
109
- ) from e
110
- logger.info(f"Proceeding to call tool: {tool_call['name']}")
111
- return Command(goto="call_tools", update={"messages": [response]})
112
- else:
113
- logger.info("Model responded with a message, ending execution.")
114
- return Command(update={"messages": [response]})
115
- except Exception as e:
116
- logger.error(f"Error in call_model: {e}")
117
- raise
118
-
119
- async def select_tools(state: State, runtime: Runtime[Context]) -> Command[Literal["call_model"]]:
120
- logger.info("Selecting tools...")
121
- try:
122
- tool_call = state["messages"][-1].tool_calls[0]
123
- selected_tool_names = await retrieve_tools.ainvoke(input=tool_call["args"])
124
- tool_msg = ToolMessage(f"Available tools: {selected_tool_names}", tool_call_id=tool_call["id"])
125
- logger.info(f"Tools selected: {selected_tool_names}")
126
- return Command(goto="call_model", update={"messages": [tool_msg], "selected_tool_ids": selected_tool_names})
127
- except Exception as e:
128
- logger.error(f"Error in select_tools: {e}")
129
- raise
130
-
131
- async def call_tools(state: State) -> Command[Literal["call_model"]]:
132
- logger.info("Calling tools...")
133
- outputs = []
134
- recent_tool_ids = []
135
- for tool_call in state["messages"][-1].tool_calls:
136
- logger.info(f"Executing tool: {tool_call['name']} with args: {tool_call['args']}")
137
- try:
138
- await tool_registry.export_tools([tool_call["name"]], ToolFormat.LANGCHAIN)
139
- tool_result = await tool_registry.call_tool(tool_call["name"], tool_call["args"])
140
- logger.info(f"Tool '{tool_call['name']}' executed successfully.")
141
- outputs.append(
142
- ToolMessage(
143
- content=json.dumps(tool_result),
144
- name=tool_call["name"],
145
- tool_call_id=tool_call["id"],
146
- )
147
- )
148
- recent_tool_ids.append(tool_call["name"])
149
- except Exception as e:
150
- logger.error(f"Error executing tool '{tool_call['name']}': {e}")
151
- outputs.append(
152
- ToolMessage(
153
- content=json.dumps("Error: " + str(e)),
154
- name=tool_call["name"],
155
- tool_call_id=tool_call["id"],
156
- )
157
- )
158
- return Command(goto="call_model", update={"messages": outputs, "selected_tool_ids": recent_tool_ids})
159
-
160
- builder = StateGraph(State, context_schema=Context)
161
-
162
- builder.add_node(call_model)
163
- builder.add_node(select_tools)
164
- builder.add_node(call_tools)
165
- builder.set_entry_point("call_model")
166
- return builder
@@ -1,31 +0,0 @@
1
- """Default prompts used by the agent."""
2
-
3
- SYSTEM_PROMPT = """You are a helpful AI assistant.
4
-
5
- **Core Directives:**
6
- 1. **Always Use Tools for Tasks:** For any user request that requires an action (e.g., sending an email, searching for information, creating an event), you MUST use a tool. Do not answer from your own knowledge or refuse a task if a tool might exist for it.
7
- 2. **First Step is ALWAYS `retrieve_tools`:** Before you can use any other tool, you MUST first call the `retrieve_tools` function to find the right tool for the user's request. This is your mandatory first action.
8
- 3. **Strictly Follow the Process:** Your only job in your first turn is to analyze the user's request and call `retrieve_tools` with a concise query describing the core task. Do not engage in conversation.
9
-
10
- System time: {system_time}
11
-
12
- When multiple tools are available for the same task, you must ask the user.
13
- """
14
-
15
- SELECT_TOOL_PROMPT = """You are an AI assistant that helps the user perform tasks using various apps (each app has multiple tools).
16
- You will be provided with a task and a list of tools which might be relevant for this task.
17
-
18
- Your goal is to select the most appropriate tool for the given task.
19
- <task>
20
- {task}
21
- </task>
22
-
23
- These are the list of apps available to you:
24
- {app_ids}
25
- Note that when multiple apps seem relevant for a task, prefer connected apps over unconnected apps while breaking a tie. If more than one relevant app (or none of the relevant apps) are connected, you must choose both apps tools. In case the user specifically asks you to use an app that is not connected, select the tool.
26
-
27
- <tool_candidates>
28
- - {tool_candidates}
29
- </tool_candidates>
30
-
31
- """
@@ -1,27 +0,0 @@
1
- from typing import Annotated
2
-
3
- from langgraph.prebuilt.chat_agent_executor import AgentState
4
-
5
-
6
- def _enqueue(left: list, right: list) -> list:
7
- """Treat left as a FIFO queue, append new items from right (preserve order),
8
- keep items unique, and cap total size to 20 (drop oldest items)."""
9
- max_size = 30
10
- preferred_size = 20
11
- if len(right) > preferred_size:
12
- preferred_size = min(max_size, len(right))
13
- queue = list(left or [])
14
-
15
- for item in right[:preferred_size] or []:
16
- if item in queue:
17
- queue.remove(item)
18
- queue.append(item)
19
-
20
- if len(queue) > preferred_size:
21
- queue = queue[-preferred_size:]
22
-
23
- return queue
24
-
25
-
26
- class State(AgentState):
27
- selected_tool_ids: Annotated[list[str], _enqueue]
@@ -1,80 +0,0 @@
1
- import asyncio
2
- from collections.abc import Sequence
3
- from typing import Annotated, TypedDict
4
-
5
- from langchain_core.language_models import BaseChatModel
6
- from langchain_core.messages import BaseMessage
7
- from langgraph.checkpoint.base import BaseCheckpointSaver
8
- from langgraph.graph import END, START, StateGraph
9
- from langgraph.graph.message import add_messages
10
-
11
- from universal_mcp.agents.base import BaseAgent
12
- from universal_mcp.agents.llm import load_chat_model
13
- from universal_mcp.agents.shared.agent_node import Agent, generate_agent
14
- from universal_mcp.agents.shared.tool_node import build_tool_node_graph
15
- from universal_mcp.tools.registry import ToolRegistry
16
- from universal_mcp.types import ToolConfig
17
-
18
-
19
- class BuilderState(TypedDict):
20
- messages: Annotated[Sequence[BaseMessage], add_messages]
21
- generated_agent: Agent | None
22
- tool_config: ToolConfig | None
23
-
24
-
25
- class BuilderAgent(BaseAgent):
26
- def __init__(
27
- self,
28
- name: str,
29
- instructions: str,
30
- model: str,
31
- registry: ToolRegistry,
32
- memory: BaseCheckpointSaver | None = None,
33
- **kwargs,
34
- ):
35
- super().__init__(name, instructions, model, memory, **kwargs)
36
- self.registry = registry
37
- self.llm: BaseChatModel = load_chat_model(model)
38
-
39
- async def _create_agent(self, state: BuilderState):
40
- last_message = state["messages"][-1]
41
- generated_agent = await generate_agent(self.llm, last_message.content)
42
- return {"generated_agent": generated_agent}
43
-
44
- async def _create_tool_config(self, state: BuilderState):
45
- last_message = state["messages"][-1]
46
- tool_finder_graph = build_tool_node_graph(self.llm, self.registry)
47
- tool_config = await tool_finder_graph.ainvoke({"task": last_message.content, "messages": [last_message]})
48
- tool_config = tool_config.get("apps_with_tools", {})
49
- return {"tool_config": tool_config}
50
-
51
- async def _build_graph(self):
52
- builder = StateGraph(BuilderState)
53
- builder.add_node("create_agent", self._create_agent)
54
- builder.add_node("create_tool_config", self._create_tool_config)
55
- builder.add_edge(START, "create_agent")
56
- builder.add_edge("create_agent", "create_tool_config")
57
- builder.add_edge("create_tool_config", END)
58
- return builder.compile()
59
-
60
-
61
- async def main():
62
- from universal_mcp.agentr.registry import AgentrRegistry
63
-
64
- registry = AgentrRegistry()
65
- agent = BuilderAgent(
66
- name="Builder Agent",
67
- instructions="You are a builder agent that creates other agents.",
68
- model="gemini/gemini-1.5-pro",
69
- registry=registry,
70
- )
71
- result = await agent.invoke(
72
- "Send a daily email to manoj@agentr.dev with daily agenda of the day",
73
- )
74
- print(result.model_dump_json(indent=2))
75
- # print(f"Agent: {result['generated_agent'].model_dump_json(indent=2)}")
76
- # print(f"Tool Config: {result['tool_config'].model_dump_json(indent=2)}")
77
-
78
-
79
- if __name__ == "__main__":
80
- asyncio.run(main())
@@ -1,27 +0,0 @@
1
- from typer import Typer
2
-
3
- from universal_mcp.agents import ReactAgent
4
- from universal_mcp.logger import setup_logger
5
-
6
- app = Typer()
7
-
8
-
9
- @app.command(
10
- help="Run the agent CLI",
11
- epilog="""
12
- Example:
13
- mcp client run --config client_config.json
14
- """,
15
- )
16
- def run():
17
- """Run the agent CLI"""
18
- import asyncio
19
-
20
- setup_logger(log_file=None, level="WARNING")
21
-
22
- agent = ReactAgent("React Agent", "You are a helpful assistant", "openrouter/auto")
23
- asyncio.run(agent.run_interactive())
24
-
25
-
26
- if __name__ == "__main__":
27
- app()