universal-mcp 0.1.24rc12__py3-none-any.whl → 0.1.24rc14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- universal_mcp/agentr/registry.py +6 -0
- universal_mcp/agents/__init__.py +5 -1
- universal_mcp/agents/autoagent/__init__.py +1 -2
- universal_mcp/agents/autoagent/__main__.py +8 -5
- universal_mcp/agents/autoagent/graph.py +4 -7
- universal_mcp/agents/autoagent/prompts.py +1 -1
- universal_mcp/agents/base.py +2 -4
- universal_mcp/agents/bigtool/__init__.py +54 -0
- universal_mcp/agents/bigtool/__main__.py +24 -0
- universal_mcp/agents/bigtool/context.py +24 -0
- universal_mcp/agents/bigtool/graph.py +166 -0
- universal_mcp/agents/bigtool/prompts.py +31 -0
- universal_mcp/agents/bigtool/state.py +27 -0
- universal_mcp/agents/bigtool2/__init__.py +53 -0
- universal_mcp/agents/bigtool2/__main__.py +24 -0
- universal_mcp/agents/bigtool2/agent.py +11 -0
- universal_mcp/agents/bigtool2/context.py +33 -0
- universal_mcp/agents/bigtool2/graph.py +169 -0
- universal_mcp/agents/bigtool2/prompts.py +12 -0
- universal_mcp/agents/bigtool2/state.py +27 -0
- universal_mcp/agents/builder.py +80 -0
- universal_mcp/agents/llm.py +23 -16
- universal_mcp/agents/planner/__init__.py +37 -0
- universal_mcp/agents/planner/__main__.py +24 -0
- universal_mcp/agents/planner/graph.py +82 -0
- universal_mcp/agents/planner/prompts.py +1 -0
- universal_mcp/agents/planner/state.py +12 -0
- universal_mcp/agents/shared/agent_node.py +34 -0
- universal_mcp/agents/shared/tool_node.py +235 -0
- universal_mcp/tools/registry.py +5 -0
- universal_mcp/types.py +5 -2
- {universal_mcp-0.1.24rc12.dist-info → universal_mcp-0.1.24rc14.dist-info}/METADATA +3 -1
- {universal_mcp-0.1.24rc12.dist-info → universal_mcp-0.1.24rc14.dist-info}/RECORD +36 -16
- universal_mcp/agents/auto.py +0 -575
- {universal_mcp-0.1.24rc12.dist-info → universal_mcp-0.1.24rc14.dist-info}/WHEEL +0 -0
- {universal_mcp-0.1.24rc12.dist-info → universal_mcp-0.1.24rc14.dist-info}/entry_points.txt +0 -0
- {universal_mcp-0.1.24rc12.dist-info → universal_mcp-0.1.24rc14.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,235 @@
|
|
1
|
+
# tool_node.py
|
2
|
+
|
3
|
+
import asyncio
|
4
|
+
from typing import Annotated, TypedDict
|
5
|
+
|
6
|
+
from langchain_core.language_models import BaseChatModel
|
7
|
+
from langchain_core.messages import AIMessage, AnyMessage, HumanMessage
|
8
|
+
from langgraph.graph import END, StateGraph
|
9
|
+
from langgraph.graph.message import add_messages
|
10
|
+
from loguru import logger
|
11
|
+
from pydantic import BaseModel, Field
|
12
|
+
|
13
|
+
from universal_mcp.tools.registry import ToolRegistry
|
14
|
+
from universal_mcp.types import AgentrConnection, AgentrToolConfig
|
15
|
+
|
16
|
+
# --- LangGraph Agent ---
|
17
|
+
|
18
|
+
|
19
|
+
class AgentState(TypedDict):
|
20
|
+
task: str
|
21
|
+
apps_required: bool
|
22
|
+
relevant_apps: list[str]
|
23
|
+
apps_with_tools: AgentrToolConfig
|
24
|
+
messages: Annotated[list[AnyMessage], add_messages]
|
25
|
+
reasoning: str
|
26
|
+
|
27
|
+
|
28
|
+
class ToolSelectionOutput(BaseModel):
|
29
|
+
tool_ids: list[str] = Field(description="The ids of the tools to use")
|
30
|
+
|
31
|
+
|
32
|
+
def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGraph:
|
33
|
+
"""Builds the LangGraph workflow."""
|
34
|
+
|
35
|
+
async def _check_if_app_needed(state: AgentState) -> AgentState:
|
36
|
+
"""Checks if an external application is needed for the given task."""
|
37
|
+
task = state["task"]
|
38
|
+
prompt = f"""
|
39
|
+
Given the user's task: "{task}"
|
40
|
+
Does this task require an external application to be completed?
|
41
|
+
Your answer should be a simple "Yes" or "No", followed by a brief explanation.
|
42
|
+
For example:
|
43
|
+
Yes, an external application is needed to send emails.
|
44
|
+
No, this is a general question that can be answered directly.
|
45
|
+
"""
|
46
|
+
response = await llm.ainvoke(prompt)
|
47
|
+
content = response.content.strip()
|
48
|
+
reasoning = f"Initial check for app requirement. LLM response: {content}"
|
49
|
+
|
50
|
+
if content.lower().startswith("yes"):
|
51
|
+
return {
|
52
|
+
**state,
|
53
|
+
"messages": [AIMessage(content=content)],
|
54
|
+
"apps_required": True,
|
55
|
+
"reasoning": reasoning,
|
56
|
+
}
|
57
|
+
else:
|
58
|
+
return {
|
59
|
+
**state,
|
60
|
+
"messages": [AIMessage(content=content)],
|
61
|
+
"apps_required": False,
|
62
|
+
"reasoning": reasoning,
|
63
|
+
}
|
64
|
+
|
65
|
+
async def _find_relevant_apps(state: AgentState) -> AgentState:
|
66
|
+
"""Identifies relevant apps for the given task, preferring connected apps."""
|
67
|
+
task = state["task"]
|
68
|
+
all_apps = await registry.list_all_apps()
|
69
|
+
connected_apps = await registry.list_connected_apps()
|
70
|
+
prompt = """
|
71
|
+
You are an expert at identifying which applications are needed to complete specific tasks.
|
72
|
+
|
73
|
+
TASK: "{task}"
|
74
|
+
|
75
|
+
AVAILABLE APPS:
|
76
|
+
{all_apps}
|
77
|
+
|
78
|
+
CONNECTED APPS (user has already authenticated these):
|
79
|
+
{connected_apps}
|
80
|
+
|
81
|
+
INSTRUCTIONS:
|
82
|
+
1. Analyze the task carefully to understand what functionality is required.
|
83
|
+
2. Review the available apps and their descriptions to identify which ones could help.
|
84
|
+
3. If multiple apps can perform the task, prefer connected apps, but you MUST include all relevant apps.
|
85
|
+
4. Consider apps that provide complementary functionality for complex tasks.
|
86
|
+
5. Only suggest apps that are directly relevant to the core task requirements.
|
87
|
+
6. Your output should be a list of app IDs.
|
88
|
+
|
89
|
+
"""
|
90
|
+
|
91
|
+
class AppList(BaseModel):
|
92
|
+
app_list: list[str]
|
93
|
+
reasoning: str
|
94
|
+
|
95
|
+
response = await llm.with_structured_output(AppList).ainvoke(
|
96
|
+
input=prompt.format(task=task, all_apps=all_apps, connected_apps=connected_apps)
|
97
|
+
)
|
98
|
+
app_list = response.app_list
|
99
|
+
reasoning = f"Found relevant apps: {app_list}. Reasoning: {response.reasoning}"
|
100
|
+
logger.info(f"Found relevant apps: {app_list}.")
|
101
|
+
|
102
|
+
return {
|
103
|
+
**state,
|
104
|
+
"messages": [AIMessage(content=f"Identified relevant apps: {', '.join(app_list)}")],
|
105
|
+
"relevant_apps": app_list,
|
106
|
+
"reasoning": state.get("reasoning", "") + "\n" + reasoning,
|
107
|
+
}
|
108
|
+
|
109
|
+
async def _select_tools(task: str, tools: list[dict]) -> list[str]:
|
110
|
+
"""Selects the most appropriate tools from a list for a given task."""
|
111
|
+
tool_candidates = [f"{tool['name']}: {tool['description']}" for tool in tools]
|
112
|
+
|
113
|
+
SELECT_TOOL_PROMPT = f"""You are an AI assistant that helps the user perform tasks using various apps (each app has multiple tools).
|
114
|
+
You will be provided with a task and a list of tools which might be relevant for this task.
|
115
|
+
|
116
|
+
Your goal is to select the most appropriate tool for the given task.
|
117
|
+
<task>
|
118
|
+
{task}
|
119
|
+
</task>
|
120
|
+
|
121
|
+
<tool_candidates>
|
122
|
+
- {tool_candidates}
|
123
|
+
</tool_candidates>
|
124
|
+
|
125
|
+
Only return tool ids.
|
126
|
+
"""
|
127
|
+
|
128
|
+
response = await llm.with_structured_output(schema=ToolSelectionOutput).ainvoke(input=SELECT_TOOL_PROMPT)
|
129
|
+
|
130
|
+
selected_tool_ids = response.tool_ids
|
131
|
+
return selected_tool_ids
|
132
|
+
|
133
|
+
async def _generate_search_query(task: str) -> str:
|
134
|
+
"""Generates a concise search query from the user's task."""
|
135
|
+
prompt = f"""
|
136
|
+
You are an expert at summarizing a user's task into a concise search query for finding relevant tools.
|
137
|
+
The query should capture all the main actions or intents of the task.
|
138
|
+
|
139
|
+
For example:
|
140
|
+
Task: "Send an email to abc@the-read-example.com with the subject 'Hello'"
|
141
|
+
Query: "send email"
|
142
|
+
|
143
|
+
Task: "Create a new contact in my CRM for John Doe"
|
144
|
+
Query: "create contact"
|
145
|
+
|
146
|
+
Task: "Find the latest news about artificial intelligence"
|
147
|
+
Query: "search news"
|
148
|
+
|
149
|
+
Task: "Post a message to the #general channel in Slack and create a new issue in Jira"
|
150
|
+
Query: "send message, create issue"
|
151
|
+
|
152
|
+
Task: "{task}"
|
153
|
+
"""
|
154
|
+
|
155
|
+
class SearchQuery(BaseModel):
|
156
|
+
query: str
|
157
|
+
|
158
|
+
response = await llm.with_structured_output(SearchQuery).ainvoke(input=prompt.format(task=task))
|
159
|
+
query = response.query
|
160
|
+
logger.info(f"Generated search query '{query}' for task '{task}'")
|
161
|
+
return query
|
162
|
+
|
163
|
+
async def _search_tools(state: AgentState) -> AgentState:
|
164
|
+
"""Searches for and filters tools in the relevant apps."""
|
165
|
+
task = state["task"]
|
166
|
+
logger.info(f"Searching for tools in relevant apps for task: {task}")
|
167
|
+
search_query = await _generate_search_query(task)
|
168
|
+
apps_with_tools_dict = {}
|
169
|
+
reasoning_steps = []
|
170
|
+
for app_name in state["relevant_apps"]:
|
171
|
+
logger.info(f"Searching for tools in {app_name} for task: {task} with query '{search_query}'")
|
172
|
+
found_tools = await registry.search_tools(query=search_query, app_id=app_name)
|
173
|
+
selected_tools = await _select_tools(task, found_tools)
|
174
|
+
apps_with_tools_dict[app_name] = selected_tools
|
175
|
+
reasoning_steps.append(f"For '{app_name}', selected tool(s): {', '.join(selected_tools)}.")
|
176
|
+
|
177
|
+
agentr_servers = {app_name: AgentrConnection(tools=tools) for app_name, tools in apps_with_tools_dict.items()}
|
178
|
+
tool_config = AgentrToolConfig(agentrServers=agentr_servers)
|
179
|
+
|
180
|
+
return {
|
181
|
+
**state,
|
182
|
+
"apps_with_tools": tool_config,
|
183
|
+
"reasoning": state.get("reasoning", "") + "\n" + "\n".join(reasoning_steps),
|
184
|
+
}
|
185
|
+
|
186
|
+
def _handle_no_apps_found(state: AgentState) -> AgentState:
|
187
|
+
"""Handles the case where no relevant apps are found."""
|
188
|
+
reasoning = "No suitable application was found among the available apps."
|
189
|
+
return {
|
190
|
+
**state,
|
191
|
+
"apps_with_tools": AgentrToolConfig(agentrServers={}),
|
192
|
+
"reasoning": state.get("reasoning", "") + "\n" + reasoning,
|
193
|
+
}
|
194
|
+
|
195
|
+
workflow = StateGraph(AgentState)
|
196
|
+
|
197
|
+
workflow.add_node("check_if_app_needed", _check_if_app_needed)
|
198
|
+
workflow.add_node("find_relevant_apps", _find_relevant_apps)
|
199
|
+
workflow.add_node("search_tools", _search_tools)
|
200
|
+
workflow.add_node("handle_no_apps_found", _handle_no_apps_found)
|
201
|
+
|
202
|
+
workflow.set_entry_point("check_if_app_needed")
|
203
|
+
|
204
|
+
workflow.add_conditional_edges(
|
205
|
+
"check_if_app_needed",
|
206
|
+
lambda state: "find_relevant_apps" if state["apps_required"] else END,
|
207
|
+
)
|
208
|
+
workflow.add_conditional_edges(
|
209
|
+
"find_relevant_apps",
|
210
|
+
lambda state: "search_tools" if state["relevant_apps"] else "handle_no_apps_found",
|
211
|
+
)
|
212
|
+
|
213
|
+
workflow.add_edge("search_tools", END)
|
214
|
+
workflow.add_edge("handle_no_apps_found", END)
|
215
|
+
|
216
|
+
return workflow.compile()
|
217
|
+
|
218
|
+
|
219
|
+
async def main():
|
220
|
+
from universal_mcp.agentr.registry import AgentrRegistry
|
221
|
+
from universal_mcp.agents.llm import load_chat_model
|
222
|
+
|
223
|
+
registry = AgentrRegistry()
|
224
|
+
llm = load_chat_model("gemini/gemini-2.5-flash")
|
225
|
+
graph = build_tool_node_graph(llm, registry)
|
226
|
+
initial_state = {
|
227
|
+
"task": "Send an email to manoj@agentr.dev",
|
228
|
+
"messages": [HumanMessage(content="Send an email to manoj@agentr.dev")],
|
229
|
+
}
|
230
|
+
result = await graph.ainvoke(initial_state)
|
231
|
+
print(result)
|
232
|
+
|
233
|
+
|
234
|
+
if __name__ == "__main__":
|
235
|
+
asyncio.run(main())
|
universal_mcp/tools/registry.py
CHANGED
@@ -81,3 +81,8 @@ class ToolRegistry(ABC):
|
|
81
81
|
async def call_tool(self, tool_name: str, tool_args: dict[str, Any]) -> dict[str, Any]:
|
82
82
|
"""Call a tool with the given name and arguments."""
|
83
83
|
pass
|
84
|
+
|
85
|
+
@abstractmethod
|
86
|
+
async def list_connected_apps(self) -> list[str]:
|
87
|
+
"""List all apps that the user has connected."""
|
88
|
+
pass
|
universal_mcp/types.py
CHANGED
@@ -30,6 +30,9 @@ class MCPConnection(BaseModel):
|
|
30
30
|
headers: dict[str, str] | None = None
|
31
31
|
|
32
32
|
|
33
|
-
class
|
34
|
-
mcpServers: dict[str, MCPConnection] | None = None
|
33
|
+
class AgentrToolConfig(BaseModel):
|
35
34
|
agentrServers: dict[str, AgentrConnection] | None = None
|
35
|
+
|
36
|
+
|
37
|
+
class ToolConfig(AgentrToolConfig):
|
38
|
+
mcpServers: dict[str, MCPConnection] | None = None
|
@@ -1,11 +1,12 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: universal-mcp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.24rc14
|
4
4
|
Summary: Universal MCP acts as a middle ware for your API applications. It can store your credentials, authorize, enable disable apps on the fly and much more.
|
5
5
|
Author-email: Manoj Bajaj <manojbajaj95@gmail.com>
|
6
6
|
License: MIT
|
7
7
|
License-File: LICENSE
|
8
8
|
Requires-Python: >=3.11
|
9
|
+
Requires-Dist: agentevals>=0.0.9
|
9
10
|
Requires-Dist: black>=25.1.0
|
10
11
|
Requires-Dist: cookiecutter>=2.6.0
|
11
12
|
Requires-Dist: gql>=4.0.0
|
@@ -23,6 +24,7 @@ Requires-Dist: langgraph>=0.5.2
|
|
23
24
|
Requires-Dist: langsmith>=0.4.5
|
24
25
|
Requires-Dist: loguru>=0.7.3
|
25
26
|
Requires-Dist: mcp>=1.10.0
|
27
|
+
Requires-Dist: openevals>=0.1.0
|
26
28
|
Requires-Dist: posthog>=3.24.0
|
27
29
|
Requires-Dist: pydantic-settings>=2.8.1
|
28
30
|
Requires-Dist: pydantic>=2.11.1
|
@@ -5,35 +5,55 @@ universal_mcp/config.py,sha256=lOlDAgQMT7f6VymmsuCP9sYLlxGKj0hDF3hFcJ2nzS4,8135
|
|
5
5
|
universal_mcp/exceptions.py,sha256=Uen8UFgLHGlSwXgRUyF-nhqTwdiBuL3okgBVRV2AgtA,2150
|
6
6
|
universal_mcp/logger.py,sha256=VmH_83efpErLEDTJqz55Dp0dioTXfGvMBLZUx5smOLc,2116
|
7
7
|
universal_mcp/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8
|
-
universal_mcp/types.py,sha256=
|
8
|
+
universal_mcp/types.py,sha256=zSKtth1Q9jR4_hrKZ6k9-9LYeM9zzPAvY3KJ6kYqFCM,814
|
9
9
|
universal_mcp/agentr/README.md,sha256=t15pVgkCwZM5wzgLgrf0Zv6hVL7dPmKXvAeTf8CiXPQ,6641
|
10
10
|
universal_mcp/agentr/__init__.py,sha256=fv1ZnOCduIUiJ9oN4e6Ya_hA2oWQvcEuDU3Ek1vEufI,180
|
11
11
|
universal_mcp/agentr/client.py,sha256=TQgwrNc7dEMXuprELf0Q-fdYdrH92Ppd7PUDZoD-KcY,7429
|
12
12
|
universal_mcp/agentr/integration.py,sha256=V5GjqocqS02tRoI8MeV9PL6m-BzejwBzgJhOHo4MxAE,4212
|
13
|
-
universal_mcp/agentr/registry.py,sha256=
|
13
|
+
universal_mcp/agentr/registry.py,sha256=rC9n4t55Y9a6NLFtioYOECRp6l2YxlOYc1Pmvdqh2GE,6927
|
14
14
|
universal_mcp/agentr/server.py,sha256=bIPmHMiKKwnUYnxmfZVRh1thcn7Rytm_-bNiXTfANzc,2098
|
15
|
-
universal_mcp/agents/__init__.py,sha256=
|
16
|
-
universal_mcp/agents/
|
17
|
-
universal_mcp/agents/
|
15
|
+
universal_mcp/agents/__init__.py,sha256=heSawqbhwOXHV3Rn2B0VBvPhizvsRX4VBrbJCVnHCPo,553
|
16
|
+
universal_mcp/agents/base.py,sha256=zNYbzV1KY0OM-lDvLBMpdDpueKc6Wy54kbuzjFmBa5w,5170
|
17
|
+
universal_mcp/agents/builder.py,sha256=XsPmGHQxAL9Mzs-8NHnnh2Ix8-vdcNdNm-EFwgNVK3A,2993
|
18
18
|
universal_mcp/agents/cli.py,sha256=7GdRBpu9rhZPiC2vaNQXWI7K-0yCnvdlmE0IFpvy2Gk,539
|
19
19
|
universal_mcp/agents/hil.py,sha256=6xi0hhK5g-rhCrAMcGbjcKMReLWPC8rnFZMBOF3N_cY,3687
|
20
|
-
universal_mcp/agents/llm.py,sha256=
|
20
|
+
universal_mcp/agents/llm.py,sha256=1R8gMh1atZuUe99jUlxA0xLb62k3vCp1yHnqENHrLB0,1590
|
21
21
|
universal_mcp/agents/react.py,sha256=bjTq1SzNUSeCCDMrrfXsUBu_F_mGzow_jRx5KrQ-HVg,3032
|
22
22
|
universal_mcp/agents/simple.py,sha256=JL8TFyXlA1F4zcArgKhlqVIbLWXetwM05z4MPDJgFeI,1367
|
23
23
|
universal_mcp/agents/tools.py,sha256=7Vdw0VZYxXVAzAYSpRKWHzVl9Ll6NOnVRlc4cTXguUQ,1335
|
24
24
|
universal_mcp/agents/utils.py,sha256=7kwFpD0Rv6JqHG-LlNCVwSu_xRX-N119mUmiBroHJL4,4109
|
25
|
-
universal_mcp/agents/autoagent/__init__.py,sha256=
|
26
|
-
universal_mcp/agents/autoagent/__main__.py,sha256=
|
25
|
+
universal_mcp/agents/autoagent/__init__.py,sha256=RruAbcjyMTB-dIRkzFZYtQxrTpZetynBRYd1xD9noj8,836
|
26
|
+
universal_mcp/agents/autoagent/__main__.py,sha256=HH5D5gSw6xirrSoj_0CCmQlVq_wfp--b6hZdiHGfXD8,654
|
27
27
|
universal_mcp/agents/autoagent/context.py,sha256=RgjW1uCslucxYJpdmi4govd-0V1_9e6Y_kjWl3FpLrE,847
|
28
|
-
universal_mcp/agents/autoagent/graph.py,sha256=
|
29
|
-
universal_mcp/agents/autoagent/prompts.py,sha256=
|
28
|
+
universal_mcp/agents/autoagent/graph.py,sha256=zQ8XDPELK5MbdMy5hy9rkJtgd71I1RdPlpbNkqvXtuM,6645
|
29
|
+
universal_mcp/agents/autoagent/prompts.py,sha256=v-EwzZ_0XPuBNd_r8aWxmKMSQlZLTVBr0o-dmTQMN1w,892
|
30
30
|
universal_mcp/agents/autoagent/state.py,sha256=TQeGZD99okclkoCh5oz-VYIlEsC9yLQyDpnBnm7QCN8,759
|
31
31
|
universal_mcp/agents/autoagent/studio.py,sha256=nfVRzPXwBjDORHA0wln2k3Nz-zQXNKgZMvgeqBvkdtM,644
|
32
32
|
universal_mcp/agents/autoagent/utils.py,sha256=AFq-8scw_WlSZxDnTzxSNrOSiGYsIlqkqtQLDWf_rMU,431
|
33
|
+
universal_mcp/agents/bigtool/__init__.py,sha256=gKSEOmOE5ZsIypxu1sUibzJ8acbk83DjApxE0Adawro,1853
|
34
|
+
universal_mcp/agents/bigtool/__main__.py,sha256=_4HBqnlmdJwXOgeMITjBgaDHihED-aEgQmSXL9xcj0Y,602
|
35
|
+
universal_mcp/agents/bigtool/context.py,sha256=KM_B-rvEulrvXSBrXAJpwxGHVMW0HgiYKMnmrL2pUEQ,688
|
36
|
+
universal_mcp/agents/bigtool/graph.py,sha256=fOr0p547kjpM_CkRyyEcDxmTZ5lEKaTAR98nRCkgsks,8284
|
37
|
+
universal_mcp/agents/bigtool/prompts.py,sha256=A6El6Qw9r_D8OD4IZKuYqvrJFJZZmUhrTKlyqFPf6c0,1666
|
38
|
+
universal_mcp/agents/bigtool/state.py,sha256=TQeGZD99okclkoCh5oz-VYIlEsC9yLQyDpnBnm7QCN8,759
|
39
|
+
universal_mcp/agents/bigtool2/__init__.py,sha256=uP52BOl0z1n_ECbybf6lxVvC0PAjNMrBUcXUOibXjvA,1779
|
40
|
+
universal_mcp/agents/bigtool2/__main__.py,sha256=C4Mi8vM9kuGa_CryzIc9nL4-u73ZvSK5tOTbMDMN54I,605
|
41
|
+
universal_mcp/agents/bigtool2/agent.py,sha256=iwn2kyC-Wft40f_QHlLtg7fPpFUpwkjk7I5LJrrS4i8,434
|
42
|
+
universal_mcp/agents/bigtool2/context.py,sha256=1DMp8g4Gb6UUxVh8bcqafV2WpTGKo6GlaDN6Ey7cAbo,930
|
43
|
+
universal_mcp/agents/bigtool2/graph.py,sha256=l6LBWmBCsjO0r1TZUXAQHXvz_iqkW_9tGJSlySkcG7A,8373
|
44
|
+
universal_mcp/agents/bigtool2/prompts.py,sha256=Kn1sDrjH2xb3js_MPPu5PJHMP45unl93CdOC97Q_hzw,1652
|
45
|
+
universal_mcp/agents/bigtool2/state.py,sha256=TQeGZD99okclkoCh5oz-VYIlEsC9yLQyDpnBnm7QCN8,759
|
33
46
|
universal_mcp/agents/codeact/__init__.py,sha256=5D_I3lI_3tWjZERRoFav_bPe9UDaJ53pDzZYtyixg3E,10097
|
34
47
|
universal_mcp/agents/codeact/sandbox.py,sha256=lGRzhuXTHCB1qauuOI3bH1-fPTsyL6Lf9EmMIz4C2xQ,1039
|
35
48
|
universal_mcp/agents/codeact/test.py,sha256=AI3qWszpM46hF4wzuQm6A8g_UkhGmcg9KhHtk9u14ro,497
|
36
49
|
universal_mcp/agents/codeact/utils.py,sha256=VuMvLTxBBh3pgaJk8RWj5AK8XZFF-1gnZJ6jFLeM_CI,1690
|
50
|
+
universal_mcp/agents/planner/__init__.py,sha256=VTLVqIWkVh5SAuFoFupxByoqyNS1vCuc14mdUSr-vKE,1090
|
51
|
+
universal_mcp/agents/planner/__main__.py,sha256=nAFabo6SVZh4_4GV-SWCpnGg5GsVXgiHYpm9mhCQ6zw,685
|
52
|
+
universal_mcp/agents/planner/graph.py,sha256=Ct6cFJqXXf8pcYoVrlq-76uITemFfyX-mODBafmkjKA,3309
|
53
|
+
universal_mcp/agents/planner/prompts.py,sha256=vLViZ4BeinqUe8gXACLl04UUnH-Hie5L2qDyhCmSNe0,32
|
54
|
+
universal_mcp/agents/planner/state.py,sha256=m1QF99n4GswqoggYoYvv67pV2zW7HPkjwtfc2z783SE,291
|
55
|
+
universal_mcp/agents/shared/agent_node.py,sha256=jXJ9MwysYk16tOwqvEtXBkcQhkK_PcPLnuXANTb9Z7g,1308
|
56
|
+
universal_mcp/agents/shared/tool_node.py,sha256=Mmwiy3nUJKU1kXE1JfPdCCxtmbLoA-9pwLg4TbuacOs,8722
|
37
57
|
universal_mcp/applications/__init__.py,sha256=HrCnGdAT7w4puw2_VulBfjOLku9D5DuMaOwAuQzu6nI,2067
|
38
58
|
universal_mcp/applications/application.py,sha256=pGF9Rb2D6qzlaSwlcfZ-dNqPtsLkQTqL3jpsRuJ6-qE,23835
|
39
59
|
universal_mcp/applications/sample/app.py,sha256=E0JwaWD7qytwawb_iWc1pBnJ-Te7MMtab4MxOOebLdc,8972
|
@@ -51,7 +71,7 @@ universal_mcp/tools/adapters.py,sha256=YJ2oqgc8JgmtsdRRtvO-PO0Q0bKqTJ4Y3J6yxlESo
|
|
51
71
|
universal_mcp/tools/docstring_parser.py,sha256=efEOE-ME7G5Jbbzpn7pN2xNuyu2M5zfZ1Tqu1lRB0Gk,8392
|
52
72
|
universal_mcp/tools/func_metadata.py,sha256=F4jd--hoZWKPBbZihVtluYKUsIdXdq4a0VWRgMl5k-Q,10838
|
53
73
|
universal_mcp/tools/manager.py,sha256=U2-OQY4FGTDKS4IEOZTLVLcdqMC2vVghS0p_iLXX2Gc,10507
|
54
|
-
universal_mcp/tools/registry.py,sha256=
|
74
|
+
universal_mcp/tools/registry.py,sha256=LD0J_bPsd8PRTObyvXglqTW1jfZX98m7KBdyP8Yn7wA,2585
|
55
75
|
universal_mcp/tools/tools.py,sha256=Lk-wUO3rfhwdxaRANtC7lQr5fXi7nclf0oHzxNAb79Q,4927
|
56
76
|
universal_mcp/utils/__init__.py,sha256=8wi4PGWu-SrFjNJ8U7fr2iFJ1ktqlDmSKj1xYd7KSDc,41
|
57
77
|
universal_mcp/utils/common.py,sha256=3aJK3AnBkmYf-dbsFLaEu_dGuXQ0Qi2HuqYTueLVhXQ,10968
|
@@ -72,8 +92,8 @@ universal_mcp/utils/openapi/readme.py,sha256=R2Jp7DUXYNsXPDV6eFTkLiy7MXbSULUj1vH
|
|
72
92
|
universal_mcp/utils/openapi/test_generator.py,sha256=vucBh9klWmQOUA740TFwfM9ry2nkwKWQiNRcsiZ9HbY,12229
|
73
93
|
universal_mcp/utils/templates/README.md.j2,sha256=Mrm181YX-o_-WEfKs01Bi2RJy43rBiq2j6fTtbWgbTA,401
|
74
94
|
universal_mcp/utils/templates/api_client.py.j2,sha256=972Im7LNUAq3yZTfwDcgivnb-b8u6_JLKWXwoIwXXXQ,908
|
75
|
-
universal_mcp-0.1.
|
76
|
-
universal_mcp-0.1.
|
77
|
-
universal_mcp-0.1.
|
78
|
-
universal_mcp-0.1.
|
79
|
-
universal_mcp-0.1.
|
95
|
+
universal_mcp-0.1.24rc14.dist-info/METADATA,sha256=XNtKBwcCdqSZT8Xhqmgc4PlufG0UVh_ezWMStlWZh9c,3255
|
96
|
+
universal_mcp-0.1.24rc14.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
97
|
+
universal_mcp-0.1.24rc14.dist-info/entry_points.txt,sha256=QlBrVKmA2jIM0q-C-3TQMNJTTWOsOFQvgedBq2rZTS8,56
|
98
|
+
universal_mcp-0.1.24rc14.dist-info/licenses/LICENSE,sha256=NweDZVPslBAZFzlgByF158b85GR0f5_tLQgq1NS48To,1063
|
99
|
+
universal_mcp-0.1.24rc14.dist-info/RECORD,,
|