universal-mcp-applications 0.1.25__py3-none-any.whl → 0.1.32__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- universal_mcp/applications/google_docs/app.py +6 -2
- universal_mcp/applications/google_gemini/app.py +3 -3
- universal_mcp/applications/google_sheet/app.py +6 -2
- universal_mcp/applications/linkedin/README.md +16 -4
- universal_mcp/applications/linkedin/app.py +748 -153
- universal_mcp/applications/onedrive/README.md +24 -0
- universal_mcp/applications/onedrive/__init__.py +1 -0
- universal_mcp/applications/onedrive/app.py +338 -0
- universal_mcp/applications/outlook/app.py +253 -209
- universal_mcp/applications/reddit/app.py +30 -47
- universal_mcp/applications/scraper/app.py +304 -290
- universal_mcp/applications/sharepoint/README.md +16 -14
- universal_mcp/applications/sharepoint/app.py +267 -154
- universal_mcp/applications/slack/app.py +31 -0
- {universal_mcp_applications-0.1.25.dist-info → universal_mcp_applications-0.1.32.dist-info}/METADATA +2 -2
- {universal_mcp_applications-0.1.25.dist-info → universal_mcp_applications-0.1.32.dist-info}/RECORD +18 -18
- universal_mcp/applications/unipile/README.md +0 -28
- universal_mcp/applications/unipile/__init__.py +0 -1
- universal_mcp/applications/unipile/app.py +0 -1077
- {universal_mcp_applications-0.1.25.dist-info → universal_mcp_applications-0.1.32.dist-info}/WHEEL +0 -0
- {universal_mcp_applications-0.1.25.dist-info → universal_mcp_applications-0.1.32.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,16 +1,14 @@
|
|
|
1
|
+
import os
|
|
1
2
|
from dotenv import load_dotenv
|
|
2
3
|
|
|
3
4
|
load_dotenv()
|
|
4
5
|
|
|
5
|
-
from typing import Any
|
|
6
|
+
from typing import Any, Literal
|
|
6
7
|
|
|
7
8
|
from loguru import logger
|
|
8
9
|
from universal_mcp.applications.application import APIApplication
|
|
9
10
|
from universal_mcp.integrations import Integration
|
|
10
11
|
|
|
11
|
-
from universal_mcp.applications.unipile import UnipileApp
|
|
12
|
-
|
|
13
|
-
|
|
14
12
|
class ScraperApp(APIApplication):
|
|
15
13
|
"""
|
|
16
14
|
Application for interacting with LinkedIn API.
|
|
@@ -18,126 +16,151 @@ class ScraperApp(APIApplication):
|
|
|
18
16
|
"""
|
|
19
17
|
|
|
20
18
|
def __init__(self, integration: Integration, **kwargs: Any) -> None:
|
|
21
|
-
"""
|
|
22
|
-
Initialize the ScraperApp.
|
|
23
|
-
|
|
24
|
-
Args:
|
|
25
|
-
integration: The integration configuration containing credentials and other settings.
|
|
26
|
-
It is expected that the integration provides the necessary credentials
|
|
27
|
-
for LinkedIn API access.
|
|
28
|
-
"""
|
|
29
19
|
super().__init__(name="scraper", integration=integration, **kwargs)
|
|
30
20
|
if self.integration:
|
|
31
21
|
credentials = self.integration.get_credentials()
|
|
32
22
|
self.account_id = credentials.get("account_id")
|
|
33
|
-
self._unipile_app = UnipileApp(integration=self.integration)
|
|
34
23
|
else:
|
|
35
24
|
logger.warning("Integration not found")
|
|
36
25
|
self.account_id = None
|
|
37
|
-
self._unipile_app = None
|
|
38
26
|
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
27
|
+
@property
|
|
28
|
+
def base_url(self) -> str:
|
|
29
|
+
if not self._base_url:
|
|
30
|
+
unipile_dsn = os.getenv("UNIPILE_DSN")
|
|
31
|
+
if not unipile_dsn:
|
|
32
|
+
logger.error(
|
|
33
|
+
"UnipileApp: UNIPILE_DSN environment variable is not set."
|
|
34
|
+
)
|
|
35
|
+
raise ValueError(
|
|
36
|
+
"UnipileApp: UNIPILE_DSN environment variable is required."
|
|
37
|
+
)
|
|
38
|
+
self._base_url = f"https://{unipile_dsn}"
|
|
39
|
+
return self._base_url
|
|
40
|
+
|
|
41
|
+
@base_url.setter
|
|
42
|
+
def base_url(self, base_url: str) -> None:
|
|
43
|
+
self._base_url = base_url
|
|
44
|
+
logger.info(f"UnipileApp: Base URL set to {self._base_url}")
|
|
45
|
+
|
|
46
|
+
def _get_headers(self) -> dict[str, str]:
|
|
47
|
+
"""
|
|
48
|
+
Get the headers for Unipile API requests.
|
|
49
|
+
Overrides the base class method to use X-Api-Key.
|
|
50
50
|
"""
|
|
51
|
-
|
|
51
|
+
if not self.integration:
|
|
52
|
+
logger.warning(
|
|
53
|
+
"UnipileApp: No integration configured, returning empty headers."
|
|
54
|
+
)
|
|
55
|
+
return {}
|
|
56
|
+
|
|
57
|
+
api_key = os.getenv("UNIPILE_API_KEY")
|
|
58
|
+
if not api_key:
|
|
59
|
+
logger.error(
|
|
60
|
+
"UnipileApp: API key not found in integration credentials for Unipile."
|
|
61
|
+
)
|
|
62
|
+
return { # Or return minimal headers if some calls might not need auth (unlikely for Unipile)
|
|
63
|
+
"Content-Type": "application/json",
|
|
64
|
+
"Cache-Control": "no-cache",
|
|
65
|
+
}
|
|
66
|
+
|
|
67
|
+
logger.debug("UnipileApp: Using X-Api-Key for authentication.")
|
|
68
|
+
return {
|
|
69
|
+
"x-api-key": api_key,
|
|
70
|
+
"Content-Type": "application/json",
|
|
71
|
+
"Cache-Control": "no-cache", # Often good practice for APIs
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
def _get_search_parameter_id(self, param_type: str, keywords: str) -> str:
|
|
75
|
+
"""
|
|
76
|
+
Retrieves the ID for a given LinkedIn search parameter by its name.
|
|
52
77
|
|
|
53
78
|
Args:
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
cursor: Pagination cursor for the next page of entries.
|
|
57
|
-
limit: Number of items to return (up to 50 for Classic search).
|
|
58
|
-
keywords: Keywords to search for.
|
|
59
|
-
sort_by: How to sort the results, e.g., "relevance" or "date".
|
|
60
|
-
date_posted: Filter posts by when they were posted.
|
|
61
|
-
content_type: Filter by the type of content in the post. Example: "videos", "images", "live_videos", "collaborative_articles", "documents"
|
|
79
|
+
param_type: The type of parameter to search for (e.g., "LOCATION", "COMPANY").
|
|
80
|
+
keywords: The name of the parameter to find (e.g., "United States").
|
|
62
81
|
|
|
63
82
|
Returns:
|
|
64
|
-
|
|
83
|
+
The corresponding ID for the search parameter.
|
|
65
84
|
|
|
66
85
|
Raises:
|
|
86
|
+
ValueError: If no exact match for the keywords is found.
|
|
67
87
|
httpx.HTTPError: If the API request fails.
|
|
68
|
-
|
|
69
|
-
Tags:
|
|
70
|
-
linkedin, search, posts, api, scrapper, important
|
|
71
88
|
"""
|
|
89
|
+
url = f"{self.base_url}/api/v1/linkedin/search/parameters"
|
|
90
|
+
params = {
|
|
91
|
+
"account_id": self.account_id,
|
|
92
|
+
"keywords": keywords,
|
|
93
|
+
"type": param_type,
|
|
94
|
+
}
|
|
95
|
+
|
|
96
|
+
response = self._get(url, params=params)
|
|
97
|
+
results = self._handle_response(response)
|
|
98
|
+
|
|
99
|
+
items = results.get("items", [])
|
|
100
|
+
if items:
|
|
101
|
+
# Return the ID of the first result, assuming it's the most relevant
|
|
102
|
+
return items[0]["id"]
|
|
103
|
+
|
|
104
|
+
raise ValueError(f'Could not find a matching ID for {param_type}: "{keywords}"')
|
|
72
105
|
|
|
73
|
-
return self._unipile_app.search(
|
|
74
|
-
account_id=self.account_id,
|
|
75
|
-
category=category,
|
|
76
|
-
api=api,
|
|
77
|
-
cursor=cursor,
|
|
78
|
-
limit=limit,
|
|
79
|
-
keywords=keywords,
|
|
80
|
-
sort_by=sort_by,
|
|
81
|
-
date_posted=date_posted,
|
|
82
|
-
content_type=content_type,
|
|
83
|
-
)
|
|
84
106
|
|
|
85
107
|
def linkedin_list_profile_posts(
|
|
86
108
|
self,
|
|
87
|
-
identifier: str,
|
|
109
|
+
identifier: str, # User or Company provider internal ID
|
|
88
110
|
cursor: str | None = None,
|
|
89
|
-
limit: int | None = None,
|
|
111
|
+
limit: int | None = None, # 1-100 (spec says max 250)
|
|
112
|
+
is_company: bool | None = None,
|
|
90
113
|
) -> dict[str, Any]:
|
|
91
114
|
"""
|
|
92
|
-
Fetches a paginated list of
|
|
93
|
-
|
|
115
|
+
Fetches a paginated list of posts from a specific user or company profile using its provider ID. The `is_company` flag must specify the entity type. Unlike `linkedin_search_posts`, this function directly retrieves content from a known profile's feed instead of performing a global keyword search.
|
|
116
|
+
|
|
94
117
|
Args:
|
|
95
|
-
identifier: The entity's provider internal ID (LinkedIn ID).
|
|
96
|
-
cursor: Pagination cursor
|
|
97
|
-
limit: Number of items to return (1-100, though spec allows up to 250).
|
|
98
|
-
|
|
118
|
+
identifier: The entity's provider internal ID (LinkedIn ID).
|
|
119
|
+
cursor: Pagination cursor.
|
|
120
|
+
limit: Number of items to return (1-100, as per Unipile example, though spec allows up to 250).
|
|
121
|
+
is_company: Boolean indicating if the identifier is for a company.
|
|
122
|
+
|
|
99
123
|
Returns:
|
|
100
124
|
A dictionary containing a list of post objects and pagination details.
|
|
101
|
-
|
|
125
|
+
|
|
102
126
|
Raises:
|
|
103
127
|
httpx.HTTPError: If the API request fails.
|
|
104
|
-
|
|
128
|
+
|
|
105
129
|
Tags:
|
|
106
130
|
linkedin, post, list, user_posts, company_posts, content, api, important
|
|
107
131
|
"""
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
limit=limit
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
self,
|
|
118
|
-
|
|
119
|
-
|
|
132
|
+
url = f"{self.base_url}/api/v1/users/{identifier}/posts"
|
|
133
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
134
|
+
if cursor:
|
|
135
|
+
params["cursor"] = cursor
|
|
136
|
+
if limit:
|
|
137
|
+
params["limit"] = limit
|
|
138
|
+
if is_company is not None:
|
|
139
|
+
params["is_company"] = is_company
|
|
140
|
+
|
|
141
|
+
response = self._get(url, params=params)
|
|
142
|
+
return response.json()
|
|
143
|
+
|
|
144
|
+
def linkedin_retrieve_profile(self, identifier: str) -> dict[str, Any]:
|
|
120
145
|
"""
|
|
121
|
-
|
|
122
|
-
|
|
146
|
+
Fetches a specific LinkedIn user's profile using their public or internal ID. Unlike `linkedin_search_people`, which discovers multiple users via keywords, this function targets and retrieves detailed data for a single, known individual based on a direct identifier.
|
|
147
|
+
|
|
123
148
|
Args:
|
|
124
|
-
identifier: Can be the provider's internal id OR the provider's public id of the requested user.
|
|
125
|
-
|
|
126
|
-
|
|
149
|
+
identifier: Can be the provider's internal id OR the provider's public id of the requested user.For example, for https://www.linkedin.com/in/manojbajaj95/, the identifier is "manojbajaj95".
|
|
150
|
+
|
|
127
151
|
Returns:
|
|
128
152
|
A dictionary containing the user's profile details.
|
|
129
|
-
|
|
153
|
+
|
|
130
154
|
Raises:
|
|
131
155
|
httpx.HTTPError: If the API request fails.
|
|
132
|
-
|
|
156
|
+
|
|
133
157
|
Tags:
|
|
134
158
|
linkedin, user, profile, retrieve, get, api, important
|
|
135
159
|
"""
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
)
|
|
160
|
+
url = f"{self.base_url}/api/v1/users/{identifier}"
|
|
161
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
162
|
+
response = self._get(url, params=params)
|
|
163
|
+
return self._handle_response(response)
|
|
141
164
|
|
|
142
165
|
def linkedin_list_post_comments(
|
|
143
166
|
self,
|
|
@@ -147,248 +170,238 @@ class ScraperApp(APIApplication):
|
|
|
147
170
|
limit: int | None = None,
|
|
148
171
|
) -> dict[str, Any]:
|
|
149
172
|
"""
|
|
150
|
-
Fetches comments for a specified LinkedIn post.
|
|
151
|
-
|
|
173
|
+
Fetches a paginated list of comments for a specified LinkedIn post. It can retrieve either top-level comments or threaded replies if an optional `comment_id` is provided. This is a read-only operation, distinct from functions that search for posts or list user-specific content.
|
|
174
|
+
|
|
152
175
|
Args:
|
|
153
|
-
post_id: The social ID of the post.
|
|
176
|
+
post_id: The social ID of the post.
|
|
154
177
|
comment_id: If provided, retrieves replies to this comment ID instead of top-level comments.
|
|
155
178
|
cursor: Pagination cursor.
|
|
156
|
-
limit: Number of comments to return.
|
|
157
|
-
|
|
179
|
+
limit: Number of comments to return. (OpenAPI spec shows type string, passed as string if provided).
|
|
180
|
+
|
|
158
181
|
Returns:
|
|
159
182
|
A dictionary containing a list of comment objects and pagination details.
|
|
160
|
-
|
|
183
|
+
|
|
161
184
|
Raises:
|
|
162
185
|
httpx.HTTPError: If the API request fails.
|
|
163
|
-
|
|
186
|
+
|
|
164
187
|
Tags:
|
|
165
188
|
linkedin, post, comment, list, content, api, important
|
|
166
189
|
"""
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
190
|
+
url = f"{self.base_url}/api/v1/posts/{post_id}/comments"
|
|
191
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
192
|
+
if cursor:
|
|
193
|
+
params["cursor"] = cursor
|
|
194
|
+
if limit is not None:
|
|
195
|
+
params["limit"] = str(limit)
|
|
196
|
+
if comment_id:
|
|
197
|
+
params["comment_id"] = comment_id
|
|
198
|
+
|
|
199
|
+
response = self._get(url, params=params)
|
|
200
|
+
return response.json()
|
|
201
|
+
|
|
202
|
+
def linkedin_search_people(
|
|
177
203
|
self,
|
|
178
204
|
cursor: str | None = None,
|
|
179
205
|
limit: int | None = None,
|
|
180
206
|
keywords: str | None = None,
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
location: dict[str, Any] | None = None,
|
|
185
|
-
location_by_postal_code: dict[str, Any] | None = None,
|
|
186
|
-
industry: dict[str, Any] | None = None,
|
|
187
|
-
first_name: str | None = None,
|
|
188
|
-
last_name: str | None = None,
|
|
189
|
-
tenure: list[dict[str, Any]] | None = None,
|
|
190
|
-
groups: list[str] | None = None,
|
|
191
|
-
school: dict[str, Any] | None = None,
|
|
192
|
-
profile_language: list[str] | None = None,
|
|
193
|
-
company: dict[str, Any] | None = None,
|
|
194
|
-
company_headcount: list[dict[str, Any]] | None = None,
|
|
195
|
-
company_type: list[str] | None = None,
|
|
196
|
-
company_location: dict[str, Any] | None = None,
|
|
197
|
-
tenure_at_company: list[dict[str, Any]] | None = None,
|
|
198
|
-
past_company: dict[str, Any] | None = None,
|
|
199
|
-
function: dict[str, Any] | None = None,
|
|
200
|
-
role: dict[str, Any] | None = None,
|
|
201
|
-
tenure_at_role: list[dict[str, Any]] | None = None,
|
|
202
|
-
seniority: dict[str, Any] | None = None,
|
|
203
|
-
past_role: dict[str, Any] | None = None,
|
|
204
|
-
following_your_company: bool | None = None,
|
|
205
|
-
viewed_your_profile_recently: bool | None = None,
|
|
206
|
-
network_distance: list[str] | None = None,
|
|
207
|
-
connections_of: list[str] | None = None,
|
|
208
|
-
past_colleague: bool | None = None,
|
|
209
|
-
shared_experiences: bool | None = None,
|
|
210
|
-
changed_jobs: bool | None = None,
|
|
211
|
-
posted_on_linkedin: bool | None = None,
|
|
212
|
-
mentionned_in_news: bool | None = None,
|
|
213
|
-
persona: list[str] | None = None,
|
|
214
|
-
account_lists: dict[str, Any] | None = None,
|
|
215
|
-
lead_lists: dict[str, Any] | None = None,
|
|
216
|
-
viewed_profile_recently: bool | None = None,
|
|
217
|
-
messaged_recently: bool | None = None,
|
|
218
|
-
include_saved_leads: bool | None = None,
|
|
219
|
-
include_saved_accounts: bool | None = None,
|
|
207
|
+
location: str | None = None,
|
|
208
|
+
industry: str | None = None,
|
|
209
|
+
company: str | None = None,
|
|
220
210
|
) -> dict[str, Any]:
|
|
221
211
|
"""
|
|
222
|
-
Performs a
|
|
223
|
-
|
|
224
|
-
with precise filters including experience, company details, education, and relationship criteria.
|
|
225
|
-
|
|
212
|
+
Performs a paginated search for people on LinkedIn, distinct from searches for companies or jobs. It filters results using keywords, location, industry, and company, internally converting filter names like 'United States' into their required API IDs before making the request.
|
|
213
|
+
|
|
226
214
|
Args:
|
|
227
215
|
cursor: Pagination cursor for the next page of entries.
|
|
228
|
-
limit: Number of items to return.
|
|
229
|
-
keywords:
|
|
230
|
-
|
|
231
|
-
saved_search_id: ID of saved search (overrides other parameters).
|
|
232
|
-
recent_search_id: ID of recent search (overrides other parameters).
|
|
233
|
-
location: LinkedIn native filter: GEOGRAPHY. Example: {"include": ["San Francisco Bay Area", "New York City Area"]}
|
|
234
|
-
location_by_postal_code: Location filter by postal code. Example: {"postal_code": "94105", "radius": "25"}
|
|
235
|
-
industry: LinkedIn native filter: INDUSTRY. Example: {"include": ["Information Technology and Services", "Financial Services"]}
|
|
236
|
-
first_name: LinkedIn native filter: FIRST NAME. Example: "John"
|
|
237
|
-
last_name: LinkedIn native filter: LAST NAME. Example: "Smith"
|
|
238
|
-
tenure: LinkedIn native filter: YEARS OF EXPERIENCE. Example: [{"min": 5, "max": 10}]
|
|
239
|
-
groups: LinkedIn native filter: GROUPS. Example: ["group_id_1", "group_id_2"]
|
|
240
|
-
school: LinkedIn native filter: SCHOOL. Example: {"include": ["Stanford University", "Harvard University"]}
|
|
241
|
-
profile_language: ISO 639-1 language codes, LinkedIn native filter: PROFILE LANGUAGE. Example: ["en", "es"]
|
|
242
|
-
company: LinkedIn native filter: CURRENT COMPANY. Example: {"include": ["Google", "Microsoft", "Apple"]}
|
|
243
|
-
company_headcount: LinkedIn native filter: COMPANY HEADCOUNT. Example: [{"min": 100, "max": 1000}]
|
|
244
|
-
company_type: LinkedIn native filter: COMPANY TYPE. Example: ["Public Company", "Privately Held"]
|
|
245
|
-
company_location: LinkedIn native filter: COMPANY HEADQUARTERS LOCATION. Example: {"include": ["San Francisco", "Seattle"]}
|
|
246
|
-
tenure_at_company: LinkedIn native filter: YEARS IN CURRENT COMPANY. Example: [{"min": 2, "max": 5}]
|
|
247
|
-
past_company: LinkedIn native filter: PAST COMPANY. Example: {"include": ["Facebook", "Amazon"]}
|
|
248
|
-
function: LinkedIn native filter: FUNCTION. Example: {"include": ["Engineering", "Sales", "Marketing"]}
|
|
249
|
-
role: LinkedIn native filter: CURRENT JOB TITLE. Example: {"include": ["Software Engineer", "Product Manager"]}
|
|
250
|
-
tenure_at_role: LinkedIn native filter: YEARS IN CURRENT POSITION. Example: [{"min": 1, "max": 3}]
|
|
251
|
-
seniority: LinkedIn native filter: SENIORITY LEVEL. Example: {"include": ["Senior", "Director", "VP"]}
|
|
252
|
-
past_role: LinkedIn native filter: PAST JOB TITLE. Example: {"include": ["Senior Developer", "Team Lead"]}
|
|
253
|
-
following_your_company: LinkedIn native filter: FOLLOWING YOUR COMPANY. Example: True
|
|
254
|
-
viewed_your_profile_recently: LinkedIn native filter: VIEWED YOUR PROFILE RECENTLY. Example: True
|
|
255
|
-
network_distance: First, second, third+ degree or GROUP, LinkedIn native filter: CONNECTION. Example: ["1st", "2nd"]
|
|
256
|
-
connections_of: LinkedIn native filter: CONNECTIONS OF. Example: ["person_id_1", "person_id_2"]
|
|
257
|
-
past_colleague: LinkedIn native filter: PAST COLLEAGUE. Example: True
|
|
258
|
-
shared_experiences: LinkedIn native filter: SHARED EXPERIENCES. Example: True
|
|
259
|
-
changed_jobs: LinkedIn native filter: CHANGED JOBS. Example: True
|
|
260
|
-
posted_on_linkedin: LinkedIn native filter: POSTED ON LINKEDIN. Example: True
|
|
261
|
-
mentionned_in_news: LinkedIn native filter: MENTIONNED IN NEWS. Example: True
|
|
262
|
-
persona: LinkedIn native filter: PERSONA. Example: ["persona_id_1", "persona_id_2"]
|
|
263
|
-
account_lists: LinkedIn native filter: ACCOUNT LISTS. Example: {"include": ["list_id_1"]}
|
|
264
|
-
lead_lists: LinkedIn native filter: LEAD LISTS. Example: {"include": ["lead_list_id_1"]}
|
|
265
|
-
viewed_profile_recently: LinkedIn native filter: PEOPLE YOU INTERACTED WITH / VIEWED PROFILE. Example: True
|
|
266
|
-
messaged_recently: LinkedIn native filter: PEOPLE YOU INTERACTED WITH / MESSAGED. Example: True
|
|
267
|
-
include_saved_leads: LinkedIn native filter: SAVED LEADS AND ACCOUNTS / ALL MY SAVED LEADS. Example: True
|
|
268
|
-
include_saved_accounts: LinkedIn native filter: SAVED LEADS AND ACCOUNTS / ALL MY SAVED ACCOUNTS. Example: True
|
|
269
|
-
|
|
216
|
+
limit: Number of items to return (up to 50 for Classic search).
|
|
217
|
+
keywords: Keywords to search for.
|
|
218
|
+
|
|
270
219
|
Returns:
|
|
271
220
|
A dictionary containing search results and pagination details.
|
|
272
|
-
|
|
221
|
+
|
|
273
222
|
Raises:
|
|
274
223
|
httpx.HTTPError: If the API request fails.
|
|
275
|
-
|
|
276
|
-
Tags:
|
|
277
|
-
linkedin, sales_navigator, people, search, advanced, scraper, api, important
|
|
278
224
|
"""
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
304
|
-
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
viewed_your_profile_recently=viewed_your_profile_recently,
|
|
309
|
-
network_distance=network_distance,
|
|
310
|
-
connections_of=connections_of,
|
|
311
|
-
past_colleague=past_colleague,
|
|
312
|
-
shared_experiences=shared_experiences,
|
|
313
|
-
changed_jobs=changed_jobs,
|
|
314
|
-
posted_on_linkedin=posted_on_linkedin,
|
|
315
|
-
mentionned_in_news=mentionned_in_news,
|
|
316
|
-
persona=persona,
|
|
317
|
-
account_lists=account_lists,
|
|
318
|
-
lead_lists=lead_lists,
|
|
319
|
-
viewed_profile_recently=viewed_profile_recently,
|
|
320
|
-
messaged_recently=messaged_recently,
|
|
321
|
-
include_saved_leads=include_saved_leads,
|
|
322
|
-
include_saved_accounts=include_saved_accounts,
|
|
323
|
-
)
|
|
324
|
-
|
|
325
|
-
def linkedin_company_search(
|
|
225
|
+
url = f"{self.base_url}/api/v1/linkedin/search"
|
|
226
|
+
|
|
227
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
228
|
+
if cursor:
|
|
229
|
+
params["cursor"] = cursor
|
|
230
|
+
if limit is not None:
|
|
231
|
+
params["limit"] = limit
|
|
232
|
+
|
|
233
|
+
payload: dict[str, Any] = {"api": "classic", "category": "people"}
|
|
234
|
+
|
|
235
|
+
if keywords:
|
|
236
|
+
payload["keywords"] = keywords
|
|
237
|
+
|
|
238
|
+
if location:
|
|
239
|
+
location_id = self._get_search_parameter_id("LOCATION", location)
|
|
240
|
+
payload["location"] = [location_id]
|
|
241
|
+
|
|
242
|
+
if industry:
|
|
243
|
+
industry_id = self._get_search_parameter_id("INDUSTRY", industry)
|
|
244
|
+
payload["industry"] = [industry_id]
|
|
245
|
+
|
|
246
|
+
if company:
|
|
247
|
+
company_id = self._get_search_parameter_id("COMPANY", company)
|
|
248
|
+
payload["company"] = [company_id]
|
|
249
|
+
|
|
250
|
+
response = self._post(url, params=params, data=payload)
|
|
251
|
+
return self._handle_response(response)
|
|
252
|
+
|
|
253
|
+
def linkedin_search_companies(
|
|
326
254
|
self,
|
|
327
255
|
cursor: str | None = None,
|
|
328
256
|
limit: int | None = None,
|
|
329
257
|
keywords: str | None = None,
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
recent_search_id: str | None = None,
|
|
333
|
-
location: dict[str, Any] | None = None,
|
|
334
|
-
location_by_postal_code: dict[str, Any] | None = None,
|
|
335
|
-
industry: dict[str, Any] | None = None,
|
|
336
|
-
company_headcount: list[dict[str, Any]] | None = None,
|
|
337
|
-
company_type: list[str] | None = None,
|
|
338
|
-
company_location: dict[str, Any] | None = None,
|
|
339
|
-
following_your_company: bool | None = None,
|
|
340
|
-
account_lists: dict[str, Any] | None = None,
|
|
341
|
-
include_saved_accounts: bool | None = None,
|
|
258
|
+
location: str | None = None,
|
|
259
|
+
industry: str | None = None,
|
|
342
260
|
) -> dict[str, Any]:
|
|
343
261
|
"""
|
|
344
|
-
|
|
345
|
-
|
|
346
|
-
with precise filters including size, location, industry, and relationship criteria.
|
|
347
|
-
|
|
262
|
+
Executes a paginated LinkedIn search for companies, filtering by optional keywords, location, and industry. Unlike `linkedin_search_people` or `linkedin_search_jobs`, this function specifically sets the API search category to 'companies' to ensure that only company profiles are returned in the search results.
|
|
263
|
+
|
|
348
264
|
Args:
|
|
349
265
|
cursor: Pagination cursor for the next page of entries.
|
|
350
|
-
limit: Number of items to return.
|
|
351
|
-
keywords:
|
|
352
|
-
|
|
353
|
-
saved_search_id: ID of saved search (overrides other parameters).
|
|
354
|
-
recent_search_id: ID of recent search (overrides other parameters).
|
|
355
|
-
location: LinkedIn native filter: GEOGRAPHY. Example: {"include": ["San Francisco Bay Area", "New York City Area"]}
|
|
356
|
-
location_by_postal_code: Location filter by postal code. Example: {"postal_code": "94105", "radius": "25"}
|
|
357
|
-
industry: LinkedIn native filter: INDUSTRY. Example: {"include": ["Information Technology and Services", "Financial Services"]}
|
|
358
|
-
company_headcount: LinkedIn native filter: COMPANY HEADCOUNT. Example: [{"min": 10, "max": 100}]
|
|
359
|
-
company_type: LinkedIn native filter: COMPANY TYPE. Example: ["Public Company", "Privately Held", "Startup"]
|
|
360
|
-
company_location: LinkedIn native filter: COMPANY HEADQUARTERS LOCATION. Example: {"include": ["San Francisco", "Seattle", "Austin"]}
|
|
361
|
-
following_your_company: LinkedIn native filter: FOLLOWING YOUR COMPANY. Example: True
|
|
362
|
-
account_lists: LinkedIn native filter: ACCOUNT LISTS. Example: {"include": ["account_list_id_1"]}
|
|
363
|
-
include_saved_accounts: LinkedIn native filter: SAVED LEADS AND ACCOUNTS / ALL MY SAVED ACCOUNTS. Example: True
|
|
364
|
-
|
|
266
|
+
limit: Number of items to return (up to 50 for Classic search).
|
|
267
|
+
keywords: Keywords to search for.
|
|
268
|
+
|
|
365
269
|
Returns:
|
|
366
270
|
A dictionary containing search results and pagination details.
|
|
271
|
+
|
|
272
|
+
Raises:
|
|
273
|
+
httpx.HTTPError: If the API request fails.
|
|
274
|
+
"""
|
|
275
|
+
url = f"{self.base_url}/api/v1/linkedin/search"
|
|
276
|
+
|
|
277
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
278
|
+
if cursor:
|
|
279
|
+
params["cursor"] = cursor
|
|
280
|
+
if limit is not None:
|
|
281
|
+
params["limit"] = limit
|
|
282
|
+
|
|
283
|
+
payload: dict[str, Any] = {"api": "classic", "category": "companies"}
|
|
367
284
|
|
|
285
|
+
if keywords:
|
|
286
|
+
payload["keywords"] = keywords
|
|
287
|
+
|
|
288
|
+
if location:
|
|
289
|
+
location_id = self._get_search_parameter_id("LOCATION", location)
|
|
290
|
+
payload["location"] = [location_id]
|
|
291
|
+
|
|
292
|
+
if industry:
|
|
293
|
+
industry_id = self._get_search_parameter_id("INDUSTRY", industry)
|
|
294
|
+
payload["industry"] = [industry_id]
|
|
295
|
+
|
|
296
|
+
response = self._post(url, params=params, data=payload)
|
|
297
|
+
return self._handle_response(response)
|
|
298
|
+
|
|
299
|
+
def linkedin_search_posts(
|
|
300
|
+
self,
|
|
301
|
+
cursor: str | None = None,
|
|
302
|
+
limit: int | None = None,
|
|
303
|
+
keywords: str | None = None,
|
|
304
|
+
date_posted: Literal["past_day", "past_week", "past_month"] | None = None,
|
|
305
|
+
sort_by: Literal["relevance", "date"] = "relevance",
|
|
306
|
+
) -> dict[str, Any]:
|
|
307
|
+
"""
|
|
308
|
+
Performs a keyword-based search for LinkedIn posts, allowing results to be filtered by date and sorted by relevance. This function specifically queries the 'posts' category, distinguishing it from other search methods in the class that target people, companies, or jobs, and returns relevant content.
|
|
309
|
+
|
|
310
|
+
Args:
|
|
311
|
+
cursor: Pagination cursor for the next page of entries.
|
|
312
|
+
limit: Number of items to return (up to 50 for Classic search).
|
|
313
|
+
keywords: Keywords to search for.
|
|
314
|
+
date_posted: Filter by when the post was posted.
|
|
315
|
+
sort_by: How to sort the results.
|
|
316
|
+
|
|
317
|
+
Returns:
|
|
318
|
+
A dictionary containing search results and pagination details.
|
|
319
|
+
|
|
368
320
|
Raises:
|
|
369
321
|
httpx.HTTPError: If the API request fails.
|
|
322
|
+
"""
|
|
323
|
+
url = f"{self.base_url}/api/v1/linkedin/search"
|
|
370
324
|
|
|
371
|
-
|
|
372
|
-
|
|
325
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
326
|
+
if cursor:
|
|
327
|
+
params["cursor"] = cursor
|
|
328
|
+
if limit is not None:
|
|
329
|
+
params["limit"] = limit
|
|
330
|
+
|
|
331
|
+
payload: dict[str, Any] = {"api": "classic", "category": "posts"}
|
|
332
|
+
|
|
333
|
+
if keywords:
|
|
334
|
+
payload["keywords"] = keywords
|
|
335
|
+
if date_posted:
|
|
336
|
+
payload["date_posted"] = date_posted
|
|
337
|
+
if sort_by:
|
|
338
|
+
payload["sort_by"] = sort_by
|
|
339
|
+
|
|
340
|
+
response = self._post(url, params=params, data=payload)
|
|
341
|
+
return self._handle_response(response)
|
|
342
|
+
|
|
343
|
+
def linkedin_search_jobs(
|
|
344
|
+
self,
|
|
345
|
+
cursor: str | None = None,
|
|
346
|
+
limit: int | None = None,
|
|
347
|
+
keywords: str | None = None,
|
|
348
|
+
region: str | None = None,
|
|
349
|
+
sort_by: Literal["relevance", "date"] = "relevance",
|
|
350
|
+
minimum_salary_value: int = 40,
|
|
351
|
+
industry: str | None = None,
|
|
352
|
+
) -> dict[str, Any]:
|
|
353
|
+
"""
|
|
354
|
+
Executes a LinkedIn search specifically for job listings using keywords and filters like region, industry, and minimum salary. Unlike other search functions targeting people or companies, this is specialized for job listings and converts friendly filter names (e.g., "United States") into their required API IDs.
|
|
355
|
+
|
|
356
|
+
Args:
|
|
357
|
+
cursor: Pagination cursor for the next page of entries.
|
|
358
|
+
limit: Number of items to return (up to 50 for Classic search).
|
|
359
|
+
keywords: Keywords to search for.
|
|
360
|
+
location: The geographical location to filter jobs by (e.g., "United States").
|
|
361
|
+
sort_by: How to sort the results.
|
|
362
|
+
minimum_salary_value: The minimum salary to filter for.
|
|
363
|
+
|
|
364
|
+
Returns:
|
|
365
|
+
A dictionary containing search results and pagination details.
|
|
366
|
+
|
|
367
|
+
Raises:
|
|
368
|
+
httpx.HTTPError: If the API request fails.
|
|
369
|
+
ValueError: If the specified location is not found.
|
|
373
370
|
"""
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
390
|
-
|
|
391
|
-
|
|
371
|
+
url = f"{self.base_url}/api/v1/linkedin/search"
|
|
372
|
+
|
|
373
|
+
params: dict[str, Any] = {"account_id": self.account_id}
|
|
374
|
+
if cursor:
|
|
375
|
+
params["cursor"] = cursor
|
|
376
|
+
if limit is not None:
|
|
377
|
+
params["limit"] = limit
|
|
378
|
+
|
|
379
|
+
payload: dict[str, Any] = {
|
|
380
|
+
"api": "classic",
|
|
381
|
+
"category": "jobs",
|
|
382
|
+
"minimum_salary": {
|
|
383
|
+
"currency": "USD",
|
|
384
|
+
"value": minimum_salary_value,
|
|
385
|
+
},
|
|
386
|
+
}
|
|
387
|
+
|
|
388
|
+
if keywords:
|
|
389
|
+
payload["keywords"] = keywords
|
|
390
|
+
if sort_by:
|
|
391
|
+
payload["sort_by"] = sort_by
|
|
392
|
+
|
|
393
|
+
# If location is provided, get its ID and add it to the payload
|
|
394
|
+
if region:
|
|
395
|
+
location_id = self._get_search_parameter_id("LOCATION", region)
|
|
396
|
+
payload["region"] = location_id
|
|
397
|
+
|
|
398
|
+
if industry:
|
|
399
|
+
industry_id = self._get_search_parameter_id("INDUSTRY", industry)
|
|
400
|
+
payload["industry"] = [industry_id]
|
|
401
|
+
|
|
402
|
+
response = self._post(url, params=params, data=payload)
|
|
403
|
+
return self._handle_response(response)
|
|
404
|
+
|
|
392
405
|
|
|
393
406
|
def list_tools(self):
|
|
394
407
|
"""
|
|
@@ -398,10 +411,11 @@ class ScraperApp(APIApplication):
|
|
|
398
411
|
A list of functions that can be used as tools.
|
|
399
412
|
"""
|
|
400
413
|
return [
|
|
401
|
-
self.linkedin_post_search,
|
|
402
414
|
self.linkedin_list_profile_posts,
|
|
403
415
|
self.linkedin_retrieve_profile,
|
|
404
416
|
self.linkedin_list_post_comments,
|
|
405
|
-
self.
|
|
406
|
-
self.
|
|
417
|
+
self.linkedin_search_people,
|
|
418
|
+
self.linkedin_search_companies,
|
|
419
|
+
self.linkedin_search_posts,
|
|
420
|
+
self.linkedin_search_jobs,
|
|
407
421
|
]
|