universal-mcp-agents 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of universal-mcp-agents might be problematic. Click here for more details.

Files changed (50) hide show
  1. universal_mcp/agents/__init__.py +11 -8
  2. universal_mcp/agents/base.py +13 -18
  3. universal_mcp/agents/bigtool2/__init__.py +6 -7
  4. universal_mcp/agents/bigtool2/__main__.py +2 -4
  5. universal_mcp/agents/bigtool2/agent.py +1 -0
  6. universal_mcp/agents/bigtool2/graph.py +48 -184
  7. universal_mcp/agents/bigtool2/meta_tools.py +120 -0
  8. universal_mcp/agents/bigtoolcache/__init__.py +31 -22
  9. universal_mcp/agents/bigtoolcache/__main__.py +1 -4
  10. universal_mcp/agents/bigtoolcache/agent.py +1 -3
  11. universal_mcp/agents/bigtoolcache/graph.py +101 -191
  12. universal_mcp/agents/bigtoolcache/prompts.py +7 -31
  13. universal_mcp/agents/bigtoolcache/tools.py +141 -0
  14. universal_mcp/agents/builder.py +10 -20
  15. universal_mcp/agents/cli.py +1 -2
  16. universal_mcp/agents/codeact/__init__.py +2 -254
  17. universal_mcp/agents/codeact/__main__.py +35 -0
  18. universal_mcp/agents/codeact/agent.py +160 -0
  19. universal_mcp/agents/codeact/prompts.py +91 -0
  20. universal_mcp/agents/codeact/sandbox.py +42 -18
  21. universal_mcp/agents/codeact/state.py +10 -0
  22. universal_mcp/agents/codeact/utils.py +12 -5
  23. universal_mcp/agents/hil.py +1 -6
  24. universal_mcp/agents/planner/__init__.py +1 -3
  25. universal_mcp/agents/planner/graph.py +1 -3
  26. universal_mcp/agents/react.py +14 -6
  27. universal_mcp/agents/shared/prompts.py +31 -17
  28. universal_mcp/agents/shared/tool_node.py +68 -53
  29. universal_mcp/agents/simple.py +2 -1
  30. universal_mcp/agents/utils.py +4 -15
  31. universal_mcp/applications/ui/app.py +5 -15
  32. {universal_mcp_agents-0.1.8.dist-info → universal_mcp_agents-0.1.10.dist-info}/METADATA +2 -1
  33. universal_mcp_agents-0.1.10.dist-info/RECORD +42 -0
  34. universal_mcp/agents/autoagent/__init__.py +0 -30
  35. universal_mcp/agents/autoagent/__main__.py +0 -25
  36. universal_mcp/agents/autoagent/context.py +0 -26
  37. universal_mcp/agents/autoagent/graph.py +0 -170
  38. universal_mcp/agents/autoagent/prompts.py +0 -9
  39. universal_mcp/agents/autoagent/state.py +0 -27
  40. universal_mcp/agents/autoagent/utils.py +0 -13
  41. universal_mcp/agents/bigtool/__init__.py +0 -58
  42. universal_mcp/agents/bigtool/__main__.py +0 -23
  43. universal_mcp/agents/bigtool/graph.py +0 -210
  44. universal_mcp/agents/bigtool/prompts.py +0 -31
  45. universal_mcp/agents/bigtool/state.py +0 -27
  46. universal_mcp/agents/bigtoolcache/tools_all.txt +0 -956
  47. universal_mcp/agents/bigtoolcache/tools_important.txt +0 -474
  48. universal_mcp/agents/codeact/test.py +0 -16
  49. universal_mcp_agents-0.1.8.dist-info/RECORD +0 -51
  50. {universal_mcp_agents-0.1.8.dist-info → universal_mcp_agents-0.1.10.dist-info}/WHEEL +0 -0
@@ -1,27 +1,51 @@
1
+ import asyncio
1
2
  import builtins
2
3
  import contextlib
3
4
  import io
4
5
  from typing import Any
5
6
 
6
7
 
7
- def eval_unsafe(code: str, _locals: dict[str, Any]) -> tuple[str, dict[str, Any]]:
8
- # Store original keys before execution
9
- original_keys = set(_locals.keys())
8
+ async def eval_unsafe(code: str, _locals: dict[str, Any], timeout: int = 10) -> tuple[str, dict[str, Any]]:
9
+ """
10
+ Execute code in a non-blocking way and return the output and changed variables.
11
+ """
10
12
  result = f"Executing code...\n{code}\n\nOutput:\n"
11
13
  result += "=" * 50 + "\n"
14
+
15
+ # Create a combined globals/locals environment that includes builtins
16
+ # and the provided context. This allows nested functions to access tools.
17
+ execution_env = {**builtins.__dict__, **_locals}
18
+
19
+ def sync_eval_in_thread():
20
+ """Synchronously execute code and capture output."""
21
+ try:
22
+ with contextlib.redirect_stdout(io.StringIO()) as f:
23
+ exec(code, execution_env)
24
+ output = f.getvalue()
25
+ if not output:
26
+ output = "<code ran, no output printed to stdout>"
27
+ return output
28
+ except Exception as e:
29
+ return f"Error during execution: {repr(e)}"
30
+
31
+ # Run the synchronous exec in a separate thread to avoid blocking the event loop.
12
32
  try:
13
- with contextlib.redirect_stdout(io.StringIO()) as f:
14
- # Execute the code in the provided locals context
15
- # Using exec to allow dynamic code execution
16
- # This is a simplified version; in production, consider security implications
17
- exec(code, builtins.__dict__, _locals)
18
- result += f.getvalue()
19
- if not result:
20
- result = "<code ran, no output printed to stdout>"
21
- except Exception as e:
22
- result += f"Error during execution: {repr(e)}"
23
-
24
- # Determine new variables created during execution
25
- new_keys = set(_locals.keys()) - original_keys
26
- new_vars = {key: _locals[key] for key in new_keys}
27
- return result, new_vars
33
+ output = await asyncio.wait_for(asyncio.to_thread(sync_eval_in_thread), timeout=timeout)
34
+ except asyncio.TimeoutError:
35
+ output = f"Error: Code execution timed out after {timeout} seconds."
36
+ result += output
37
+
38
+ # Identify all variables that are not part of the original builtins
39
+ # and were not in the initial _locals, or were changed.
40
+ changed_vars = {}
41
+ builtin_keys = set(builtins.__dict__.keys())
42
+
43
+ for key, value in execution_env.items():
44
+ if key in builtin_keys:
45
+ continue # Skip builtins
46
+
47
+ # Check if the key is new or if the value has changed
48
+ if key not in _locals or _locals[key] is not value:
49
+ changed_vars[key] = value
50
+
51
+ return result, changed_vars
@@ -0,0 +1,10 @@
1
+ from typing import Any
2
+
3
+ from langgraph.graph import MessagesState
4
+
5
+
6
+ class CodeActState(MessagesState):
7
+ """State for CodeAct agent."""
8
+
9
+ script: str | None
10
+ """The Python code script to be executed."""
@@ -1,5 +1,7 @@
1
1
  import re
2
2
 
3
+ from universal_mcp.logger import logger
4
+
3
5
  BACKTICK_PATTERN = r"(?:^|\n)```(.*?)(?:```(?:\n|$))"
4
6
 
5
7
 
@@ -37,7 +39,12 @@ def extract_and_combine_codeblocks(text: str) -> str:
37
39
  """
38
40
  # Find all code blocks in the text using regex
39
41
  # Pattern matches anything between triple backticks, with or without a language identifier
40
- code_blocks = re.findall(BACKTICK_PATTERN, text, re.DOTALL)
42
+ try:
43
+ code_blocks = re.findall(BACKTICK_PATTERN, text, re.DOTALL)
44
+ except Exception as e:
45
+ logger.error(f"Error extracting code blocks: {e}")
46
+ logger.error(f"Text: {text}")
47
+ return ""
41
48
 
42
49
  if not code_blocks:
43
50
  return ""
@@ -46,15 +53,15 @@ def extract_and_combine_codeblocks(text: str) -> str:
46
53
  processed_blocks = []
47
54
  for block in code_blocks:
48
55
  # Strip leading and trailing whitespace
49
- block = block.strip()
56
+ cleaned_block = block.strip()
50
57
 
51
58
  # If the first line looks like a language identifier, remove it
52
- lines = block.split("\n")
59
+ lines = cleaned_block.split("\n")
53
60
  if lines and (not lines[0].strip() or " " not in lines[0].strip()):
54
61
  # First line is empty or likely a language identifier (no spaces)
55
- block = "\n".join(lines[1:])
62
+ cleaned_block = "\n".join(lines[1:])
56
63
 
57
- processed_blocks.append(block)
64
+ processed_blocks.append(cleaned_block)
58
65
 
59
66
  # Combine all codeblocks with newlines between them
60
67
  combined_code = "\n\n".join(processed_blocks)
@@ -63,12 +63,7 @@ def handle_interrupt(interrupt: Interrupt) -> str | bool:
63
63
  value = input("Do you accept this? (y/n): " + interrupt.value["question"])
64
64
  return value.lower() in ["y", "yes"]
65
65
  elif interrupt_type == "choice":
66
- value = input(
67
- "Enter your choice: "
68
- + interrupt.value["question"]
69
- + " "
70
- + ", ".join(interrupt.value["choices"])
71
- )
66
+ value = input("Enter your choice: " + interrupt.value["question"] + " " + ", ".join(interrupt.value["choices"]))
72
67
  if value in interrupt.value["choices"]:
73
68
  return value
74
69
  else:
@@ -26,9 +26,7 @@ class PlannerAgent(BaseAgent):
26
26
  self.executor_agent_cls = executor_agent_cls
27
27
 
28
28
  def _build_system_message(self):
29
- return DEVELOPER_PROMPT.format(
30
- name=self.name, instructions=self.instructions
31
- )
29
+ return DEVELOPER_PROMPT.format(name=self.name, instructions=self.instructions)
32
30
 
33
31
  async def _build_graph(self):
34
32
  return build_graph(
@@ -18,9 +18,7 @@ def build_graph(llm, registry, instructions, model, executor_agent_cls):
18
18
  task = state["messages"][-1].content
19
19
  logger.info(f"Running tool finder for task: {task}")
20
20
  tool_finder_graph = build_tool_node_graph(llm, registry)
21
- tool_finder_state = await tool_finder_graph.ainvoke(
22
- {"original_task": task, "messages": state["messages"]}
23
- )
21
+ tool_finder_state = await tool_finder_graph.ainvoke({"original_task": task, "messages": state["messages"]})
24
22
 
25
23
  if not tool_finder_state.get("apps_required"):
26
24
  logger.info("Tool finder determined no apps are required.")
@@ -4,6 +4,7 @@ from loguru import logger
4
4
  from universal_mcp.agentr.registry import AgentrRegistry
5
5
  from universal_mcp.tools.registry import ToolRegistry
6
6
  from universal_mcp.types import ToolConfig, ToolFormat
7
+ from rich import print
7
8
 
8
9
  from universal_mcp.agents.base import BaseAgent
9
10
  from universal_mcp.agents.llm import load_chat_model
@@ -40,7 +41,18 @@ class ReactAgent(BaseAgent):
40
41
  self.llm = load_chat_model(model)
41
42
  self.tools = tools or {}
42
43
  if "ui" not in self.tools:
43
- self.tools["ui"] = ["create_bar_chart", "create_line_chart", "create_pie_chart", "create_table", "http_get", "http_post", "http_put", "http_delete", "http_patch", "read_file"]
44
+ self.tools["ui"] = [
45
+ "create_bar_chart",
46
+ "create_line_chart",
47
+ "create_pie_chart",
48
+ "create_table",
49
+ "http_get",
50
+ "http_post",
51
+ "http_put",
52
+ "http_delete",
53
+ "http_patch",
54
+ "read_file",
55
+ ]
44
56
  self.max_iterations = max_iterations
45
57
  self.registry = registry
46
58
 
@@ -54,7 +66,6 @@ class ReactAgent(BaseAgent):
54
66
  else:
55
67
  tools = []
56
68
 
57
-
58
69
  logger.debug(f"Initialized ReactAgent: name={self.name}, model={self.model}")
59
70
  return create_react_agent(
60
71
  self.llm,
@@ -75,10 +86,7 @@ async def main():
75
86
  tools={"google-mail": ["send_email"]},
76
87
  registry=AgentrRegistry(),
77
88
  )
78
- result = await agent.invoke(
79
- "Send an email with the subject 'testing react agent' to manoj@agentr.dev"
80
- )
81
- from rich import print
89
+ result = await agent.invoke("Send an email with the subject 'testing react agent' to manoj@agentr.dev")
82
90
 
83
91
  print(messages_to_list(result["messages"]))
84
92
 
@@ -6,7 +6,7 @@ You are an expert planner. Your goal is to consolidate a complex user request in
6
6
  2. **Focus on Data Handoffs:** A good decomposition often involves one sub-task to *retrieve* information and a subsequent sub-task to *use* that information.
7
7
  3. **Assume Internal Capabilities:** Do NOT create sub-tasks for abstract cognitive work like 'summarize' or 'analyze'.
8
8
  4. **Simplify Single Actions:** If the user's task is already a single, simple action, the output should be a single sub-task that concisely describes that action. Do not make it identical to the user's input.
9
-
9
+ 5. **General purpose sub tasks:** You also need to realise that these subtasks are going to be used to search for tools and apps. And the names and description of these tools and apps are going to be general in nature so the sub tasks should not be too specific. The task which you will get may be specific in nature but the sub taks must be general.
10
10
  **--- EXAMPLES ---**
11
11
 
12
12
  **EXAMPLE 1:**
@@ -30,25 +30,37 @@ You are an expert planner. Your goal is to consolidate a complex user request in
30
30
 
31
31
 
32
32
  APP_SEARCH_QUERY_PROMPT = """
33
- You are an expert at extracting the name of an application or a category of application from a sub-task description. Your goal is to generate a query for an app search engine.
33
+ You are an expert at selecting an application to perform a specific sub-task. Your goal is to generate a concise query for an app search engine.
34
34
 
35
- **INSTRUCTIONS:**
36
- 1. Read the sub-task carefully.
37
- 2. If an application is explicitly named (e.g., "Perplexity", "Gmail", "GitHub"), your query should be ONLY that name.
38
- 3. If no specific application is named, generate a query for the *category* of application (e.g., "web search", "email client", "document editor").
39
- 4. The query should be concise.
35
+ Analyze the current sub-task in the context of the original user goal and the ENTIRE PLAN so far.
40
36
 
41
- **EXAMPLES:**
42
- - **Sub-task:** "Perform a web search using Perplexity to find the best restaurants in Goa."
43
- - **Query:** "Perplexity"
37
+ **CORE INSTRUCTION:** If any application already used in the plan is capable of performing the current sub-task, your query MUST BE the name of that application to ensure continuity and efficiency. Otherwise, generate a concise query for the category of application needed.
44
38
 
45
- - **Sub-task:** "Fetch all marketing emails received from Gmail in the last 7 days."
46
- - **Query:** "Gmail"
39
+ **--- EXAMPLES ---**
47
40
 
48
- - **Sub-task:** "Find the latest news about artificial intelligence."
49
- - **Query:** "web search"
41
+ **EXAMPLE 1: Reusing an app from two steps ago**
42
+ - **Original User Task:** "Find my latest order confirmation in Gmail, search for reviews of the main product on perplexity, and then send an email to ankit@agentr.dev telling about the reviews"
43
+ - **Plan So Far:**
44
+ - The sub-task 'Find order confirmation in Gmail' was assigned to app 'google_mail'.
45
+ - The sub-task 'Search for product reviews on perplexity' was assigned to app 'perplexity'.
46
+ - **Current Sub-task:** "send an email to ankit@agentr.dev"
47
+ - **CORRECT QUERY:** "google_mail"
50
48
 
51
- **SUB-TASK:**
49
+ **EXAMPLE 2: First Step (No previous context)**
50
+ - **Original User Task:** "Find the best restaurants in Goa."
51
+ - **Plan So Far:** None. This is the first step.
52
+ - **Current Sub-task:** "Perform a web search to find the best restaurants in Goa."
53
+ - **CORRECT QUERY:** "web search"
54
+
55
+ **--- YOUR TASK ---**
56
+
57
+ **Original User Task:**
58
+ "{original_task}"
59
+
60
+ **Plan So Far:**
61
+ {plan_context}
62
+
63
+ **Current Sub-task:**
52
64
  "{sub_task}"
53
65
 
54
66
  **YOUR CONCISE APP SEARCH QUERY:**
@@ -62,6 +74,7 @@ You are an expert at summarizing the core *action* of a sub-task into a concise
62
74
  1. Focus only on the verb or action being performed in the sub-task.
63
75
  2. Include key entities related to the action.
64
76
  3. Do NOT include the names of applications (e.g., "Perplexity", "Gmail").
77
+ 4. You also need to realise that this query is going to be used to search for tools in a particular app. And the names and description of these tools are going to be general in nature so the query should not be too specific. The sub task which you will get may be specific in nature but the query must be general.
65
78
 
66
79
  **EXAMPLES:**
67
80
  - **Sub-task:** "Perform a web search using Perplexity to find the best restaurants in Goa."
@@ -103,10 +116,11 @@ You are an AI assistant that selects the most appropriate tool(s) from a list to
103
116
  **INSTRUCTIONS:**
104
117
  1. Carefully review the sub-task to understand the required action.
105
118
  2. Examine the list of available tools and their descriptions.
106
- 3. Select the best tool ID that matches the sub-task. You are encouraged to select multiple tools if there are multiple tools with similar capabilties
119
+ 3. Select the best tool ID that matches the sub-task. You are encouraged to select multiple tools if there are multiple tools with similar capabilties
107
120
  or names. It is always good to have more tools than having insufficent tools.
108
121
  4. If no tool is a good fit, return an empty list.
109
122
  5. Only return the tool IDs.
123
+ 6. You should understand that the sub task maybe specific in nature but the tools are made to be general purpose and therefore the tool_candidates you will get will be very general purpose but that should not stop you from selecting the tools as these tools will be given to a very smart agent who will be able to use these tools for the specific sub-taks
110
124
 
111
125
  **SUB-TASK:**
112
126
  "{sub_task}"
@@ -115,4 +129,4 @@ or names. It is always good to have more tools than having insufficent tools.
115
129
  {tool_candidates}
116
130
 
117
131
  **YOUR SELECTED TOOL ID(s):**
118
- """
132
+ """
@@ -1,5 +1,5 @@
1
1
  import asyncio
2
- from typing import Annotated, TypedDict, List, Dict
2
+ from typing import Annotated, TypedDict
3
3
 
4
4
  from langchain_core.language_models import BaseChatModel
5
5
  from langchain_core.messages import AIMessage, AnyMessage, HumanMessage
@@ -17,43 +17,50 @@ from universal_mcp.agents.shared.prompts import (
17
17
  TOOL_SELECTION_PROMPT,
18
18
  )
19
19
 
20
-
21
20
  MAX_DECOMPOSITION_ATTEMPTS = 2
22
21
 
23
22
  # --- Pydantic Models for Structured LLM Outputs ---
24
23
 
24
+
25
25
  class TaskDecomposition(BaseModel):
26
- sub_tasks: List[str] = Field(description="A list of sub-task descriptions.")
26
+ sub_tasks: list[str] = Field(description="A list of sub-task descriptions.")
27
+
27
28
 
28
29
  class SearchQuery(BaseModel):
29
30
  query: str = Field(description="A concise search query.")
30
31
 
32
+
31
33
  class ToolSelection(BaseModel):
32
- tool_ids: List[str] = Field(description="The IDs of the selected tools.")
34
+ tool_ids: list[str] = Field(description="The IDs of the selected tools.")
33
35
 
34
36
 
35
37
  # --- LangGraph Agent State ---
36
38
 
39
+
37
40
  class SubTask(TypedDict, total=False):
38
41
  """Represents a single step in the execution plan."""
42
+
39
43
  task: str
40
44
  status: str # "pending", "success", "failed"
41
45
  app_id: str
42
- tool_ids: List[str]
46
+ tool_ids: list[str]
43
47
  reasoning: str
44
48
 
49
+
45
50
  class AgentState(TypedDict):
46
51
  """The central state of our agent graph."""
52
+
47
53
  original_task: str
48
54
  decomposition_attempts: int
49
55
  failed_sub_task_info: str # To inform re-decomposition
50
- sub_tasks: List[SubTask]
51
- execution_plan: List[SubTask]
56
+ sub_tasks: list[SubTask]
57
+ execution_plan: list[SubTask]
52
58
  messages: Annotated[list[AnyMessage], add_messages]
53
59
 
54
60
 
55
61
  # --- Graph Builder ---
56
62
 
63
+
57
64
  def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGraph:
58
65
  """Builds the adaptive LangGraph workflow for tool selection."""
59
66
 
@@ -65,19 +72,14 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
65
72
 
66
73
  if attempts > 0 and failed_info:
67
74
  logger.warning(f"Revising decomposition. Attempt {attempts + 1}.")
68
- prompt = REVISE_DECOMPOSITION_PROMPT.format(
69
- task=task, failed_sub_task=failed_info
70
- )
75
+ prompt = REVISE_DECOMPOSITION_PROMPT.format(task=task, failed_sub_task=failed_info)
71
76
  else:
72
77
  logger.info("Performing initial task decomposition.")
73
78
  prompt = TASK_DECOMPOSITION_PROMPT.format(task=task)
74
79
 
75
80
  response = await llm.with_structured_output(TaskDecomposition).ainvoke(prompt)
76
- sub_tasks = [
77
- {"task": sub_task_str, "status": "pending"}
78
- for sub_task_str in response.sub_tasks
79
- ]
80
-
81
+ sub_tasks = [{"task": sub_task_str, "status": "pending"} for sub_task_str in response.sub_tasks]
82
+
81
83
  return {
82
84
  "sub_tasks": sub_tasks,
83
85
  "decomposition_attempts": attempts + 1,
@@ -85,38 +87,50 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
85
87
  }
86
88
 
87
89
  async def _resolve_sub_tasks(state: AgentState) -> AgentState:
88
- """Iterates through sub-tasks, finding apps and tools for each using a two-query approach."""
90
+ """Iterates through sub-tasks, providing full plan context to the app selection prompt."""
89
91
  sub_tasks = state["sub_tasks"]
92
+ original_task = state["original_task"]
90
93
  current_plan = []
91
-
94
+
92
95
  for i, sub_task in enumerate(sub_tasks):
93
96
  task_desc = sub_task["task"]
94
97
  logger.info(f"Resolving sub-task: '{task_desc}'")
95
98
 
96
- # 1. Generate App-specific query to find the right application
97
- app_query_prompt = APP_SEARCH_QUERY_PROMPT.format(sub_task=task_desc)
99
+ # 1. Build the FULL context string from the entire plan so far
100
+ if not current_plan:
101
+ plan_context_str = "None. This is the first step."
102
+ else:
103
+ context_lines = [
104
+ f"- The sub-task '{step['task']}' was assigned to app '{step['app_id']}'." for step in current_plan
105
+ ]
106
+ plan_context_str = "\n".join(context_lines)
107
+
108
+ # 2. Generate the App-specific query using the NEW full-context prompt
109
+ app_query_prompt = APP_SEARCH_QUERY_PROMPT.format(
110
+ original_task=original_task, plan_context=plan_context_str, sub_task=task_desc
111
+ )
98
112
  app_query_response = await llm.with_structured_output(SearchQuery).ainvoke(app_query_prompt)
99
113
  app_search_query = app_query_response.query
100
- logger.info(f"Generated app search query: '{app_search_query}'")
114
+ logger.info(f"Generated context-aware app search query: '{app_search_query}'")
101
115
 
102
- # 2. Search for candidate apps using the app-centric query
116
+ # 3. Search for candidate apps (the rest of the logic is the same)
103
117
  candidate_apps = await registry.search_apps(query=app_search_query, limit=5)
104
118
  if not candidate_apps:
105
119
  logger.error(f"No apps found for query '{app_search_query}' from sub-task: '{task_desc}'")
106
120
  return {"failed_sub_task_info": task_desc, "sub_tasks": []}
107
121
 
108
- # 3. Generate Action-specific query for finding the tool
122
+ # 4. Generate Action-specific query for finding the tool
109
123
  tool_query_prompt = TOOL_SEARCH_QUERY_PROMPT.format(sub_task=task_desc)
110
124
  tool_query_response = await llm.with_structured_output(SearchQuery).ainvoke(tool_query_prompt)
111
125
  tool_search_query = tool_query_response.query
112
126
  logger.info(f"Generated tool search query: '{tool_search_query}'")
113
127
 
114
- # 4. Find a suitable tool within the candidate apps using the action-centric query
128
+ # 5. Find a suitable tool within the candidate apps
115
129
  tool_found = False
116
130
  for app in candidate_apps:
117
131
  app_id = app["id"]
118
132
  logger.info(f"Searching for tools in app '{app_id}' with query '{tool_search_query}'...")
119
-
133
+
120
134
  found_tools = await registry.search_tools(query=tool_search_query, app_id=app_id, limit=5)
121
135
  if not found_tools:
122
136
  continue
@@ -124,19 +138,21 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
124
138
  tool_candidates_str = "\n - ".join([f"{tool['name']}: {tool['description']}" for tool in found_tools])
125
139
  selection_prompt = TOOL_SELECTION_PROMPT.format(sub_task=task_desc, tool_candidates=tool_candidates_str)
126
140
  selection_response = await llm.with_structured_output(ToolSelection).ainvoke(selection_prompt)
127
-
141
+
128
142
  if selection_response.tool_ids:
129
143
  logger.success(f"Found and selected tool(s) {selection_response.tool_ids} in app '{app_id}'.")
130
- sub_task.update({
131
- "status": "success",
132
- "app_id": app_id,
133
- "tool_ids": selection_response.tool_ids,
134
- "reasoning": f"Selected tool(s) {selection_response.tool_ids} from app '{app_id}' for sub-task."
135
- })
144
+ sub_task.update(
145
+ {
146
+ "status": "success",
147
+ "app_id": app_id,
148
+ "tool_ids": selection_response.tool_ids,
149
+ "reasoning": f"Selected tool(s) {selection_response.tool_ids} from app '{app_id}' for sub-task.",
150
+ }
151
+ )
136
152
  current_plan.append(sub_task)
137
153
  tool_found = True
138
154
  break
139
-
155
+
140
156
  if not tool_found:
141
157
  logger.error(f"Could not find any suitable tool for sub-task: '{task_desc}'")
142
158
  return {"failed_sub_task_info": task_desc, "sub_tasks": []}
@@ -147,7 +163,11 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
147
163
  """Handles the case where all decomposition attempts have failed."""
148
164
  logger.error("Maximum decomposition attempts reached. Planning failed.")
149
165
  return {
150
- "messages": [AIMessage(content="I am unable to create a complete plan for this task with the available tools. Please try rephrasing your request.")]
166
+ "messages": [
167
+ AIMessage(
168
+ content="I am unable to create a complete plan for this task with the available tools. Please try rephrasing your request."
169
+ )
170
+ ]
151
171
  }
152
172
 
153
173
  def _consolidate_plan(state: AgentState) -> AgentState:
@@ -157,7 +177,7 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
157
177
  """
158
178
  logger.info("Consolidating final execution plan.")
159
179
  plan = state["execution_plan"]
160
- merged_apps: Dict[str, SubTask] = {}
180
+ merged_apps: dict[str, SubTask] = {}
161
181
 
162
182
  for step in plan:
163
183
  app_id = step["app_id"]
@@ -174,9 +194,8 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
174
194
  for app_id, step_data in merged_apps.items():
175
195
  step_data["tool_ids"] = sorted(list(step_data["tool_ids"]))
176
196
  final_plan.append(step_data)
177
-
178
- return {"execution_plan": final_plan}
179
197
 
198
+ return {"execution_plan": final_plan}
180
199
 
181
200
  # --- Graph Definition ---
182
201
 
@@ -184,26 +203,26 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
184
203
 
185
204
  workflow.add_node("decompose_task", _decompose_task)
186
205
  workflow.add_node("resolve_sub_tasks", _resolve_sub_tasks)
187
- workflow.add_node("consolidate_plan", _consolidate_plan) # NEW NODE
206
+ workflow.add_node("consolidate_plan", _consolidate_plan) # NEW NODE
188
207
  workflow.add_node("handle_planning_failure", _handle_planning_failure)
189
208
 
190
209
  workflow.set_entry_point("decompose_task")
191
210
 
192
211
  def should_continue(state: AgentState):
193
- if not state.get("sub_tasks"): # Resolution failed or succeeded
212
+ if not state.get("sub_tasks"): # Resolution failed or succeeded
194
213
  if state.get("execution_plan"):
195
- return "consolidate_plan" # MODIFIED: Go to consolidate on success
214
+ return "consolidate_plan" # MODIFIED: Go to consolidate on success
196
215
  elif state["decomposition_attempts"] >= MAX_DECOMPOSITION_ATTEMPTS:
197
216
  return "handle_planning_failure"
198
217
  else:
199
- return "decompose_task" # Re-try decomposition
218
+ return "decompose_task" # Re-try decomposition
200
219
  else:
201
220
  return "resolve_sub_tasks"
202
221
 
203
222
  workflow.add_conditional_edges("decompose_task", lambda s: "resolve_sub_tasks")
204
223
  workflow.add_conditional_edges("resolve_sub_tasks", should_continue)
205
-
206
- workflow.add_edge("consolidate_plan", END) # NEW EDGE
224
+
225
+ workflow.add_edge("consolidate_plan", END) # NEW EDGE
207
226
  workflow.add_edge("handle_planning_failure", END)
208
227
 
209
228
  return workflow.compile()
@@ -212,15 +231,16 @@ def build_tool_node_graph(llm: BaseChatModel, registry: ToolRegistry) -> StateGr
212
231
  async def main():
213
232
  """Main function to run the agent."""
214
233
  from universal_mcp.agentr.registry import AgentrRegistry
234
+
215
235
  from universal_mcp.agents.llm import load_chat_model
216
236
 
217
237
  registry = AgentrRegistry()
218
238
  llm = load_chat_model("anthropic/claude-4-sonnet-20250514")
219
-
239
+
220
240
  graph = build_tool_node_graph(llm, registry)
221
241
 
222
- task = "Create a content calendar for next month with trending AI/ML topics using web search and optimal posting times based on my audience analytics in Google Sheets"
223
-
242
+ task = "Find my latest order confirmation in Gmail, search for reviews of the main product on perplexity, and then send an email to ankit@agentr.dev telling about the reviews"
243
+
224
244
  initial_state = {
225
245
  "original_task": task,
226
246
  "messages": [HumanMessage(content=task)],
@@ -229,17 +249,12 @@ async def main():
229
249
 
230
250
  final_state = await graph.ainvoke(initial_state)
231
251
 
232
- print("\n--- Final Agent State ---")
233
252
  if final_state.get("execution_plan"):
234
- print("Successfully created a consolidated execution plan:")
235
253
  for step in final_state["execution_plan"]:
236
- print(f"- Sub-task: {step['task']}")
237
- print(f" - App: {step['app_id']}")
238
- print(f" - Tool(s): {', '.join(step['tool_ids'])}")
254
+ pass
239
255
  else:
240
- print("Failed to create an execution plan.")
241
- print(f"Final message: {final_state['messages'][-1].content}")
256
+ pass
242
257
 
243
258
 
244
259
  if __name__ == "__main__":
245
- asyncio.run(main())
260
+ asyncio.run(main())
@@ -4,6 +4,7 @@ from typing import Annotated
4
4
  from langgraph.checkpoint.base import BaseCheckpointSaver
5
5
  from langgraph.graph import END, START, StateGraph
6
6
  from langgraph.graph.message import add_messages
7
+ from rich import print
7
8
  from typing_extensions import TypedDict
8
9
 
9
10
  from universal_mcp.agents.base import BaseAgent
@@ -52,10 +53,10 @@ class SimpleAgent(BaseAgent):
52
53
  graph_builder.add_edge("chatbot", END)
53
54
  return graph_builder.compile(checkpointer=self.memory)
54
55
 
56
+
55
57
  async def main():
56
58
  agent = SimpleAgent("Simple Agent", "Act as a 14 year old kid, reply in Gen-Z lingo", "azure/gpt-5-mini")
57
59
  output = await agent.invoke("What is the capital of France?")
58
- from rich import print
59
60
  print(messages_to_list(output["messages"]))
60
61
 
61
62
 
@@ -8,9 +8,6 @@ from rich.markdown import Markdown
8
8
  from rich.panel import Panel
9
9
  from rich.prompt import Prompt
10
10
  from rich.table import Table
11
- from universal_mcp.tools.manager import ToolManager
12
- from universal_mcp.types import ToolFormat
13
-
14
11
 
15
12
 
16
13
  class RichCLI:
@@ -28,9 +25,7 @@ Available commands:
28
25
  - `/tools` - List available tools
29
26
  - `/exit` - Exit the application
30
27
  """
31
- self.console.print(
32
- Panel(Markdown(welcome_text), title="🤖 AI Agent CLI", border_style="blue")
33
- )
28
+ self.console.print(Panel(Markdown(welcome_text), title="🤖 AI Agent CLI", border_style="blue"))
34
29
 
35
30
  def display_agent_response(self, response: str, agent_name: str):
36
31
  """Display agent response with formatting"""
@@ -54,13 +49,9 @@ Available commands:
54
49
  # Check if type has changed and reset content if so
55
50
  if self.type_ != type_:
56
51
  if type_ == "thinking":
57
- self.content += (
58
- "\n[bold yellow]💭 Thinking:[/bold yellow] :"
59
- )
52
+ self.content += "\n[bold yellow]💭 Thinking:[/bold yellow] :"
60
53
  elif type_ == "text":
61
- self.content += (
62
- f"\n[bold green]🤖 {agent_name}[/bold green] :"
63
- )
54
+ self.content += f"\n[bold green]🤖 {agent_name}[/bold green] :"
64
55
  self.type_ = type_
65
56
  self.content += chunk
66
57
  content_text = "".join(self.content)
@@ -120,9 +111,7 @@ Available commands:
120
111
  value = Prompt.ask(interrupt.value["question"])
121
112
  return value
122
113
  elif interrupt_type == "bool":
123
- value = Prompt.ask(
124
- interrupt.value["question"], choices=["y", "n"], default="y"
125
- )
114
+ value = Prompt.ask(interrupt.value["question"], choices=["y", "n"], default="y")
126
115
  return value
127
116
  elif interrupt_type == "choice":
128
117
  value = Prompt.ask(