universal-mcp-agents 0.1.4__py3-none-any.whl → 0.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- universal_mcp/agents/__init__.py +19 -0
- universal_mcp/agents/autoagent/__init__.py +1 -1
- universal_mcp/agents/autoagent/__main__.py +1 -1
- universal_mcp/agents/autoagent/graph.py +2 -2
- universal_mcp/agents/autoagent/studio.py +2 -1
- universal_mcp/agents/base.py +25 -13
- universal_mcp/agents/bigtool/__init__.py +10 -8
- universal_mcp/agents/bigtool/__main__.py +6 -7
- universal_mcp/agents/bigtool/graph.py +18 -27
- universal_mcp/agents/bigtool/prompts.py +3 -3
- universal_mcp/agents/bigtool2/__init__.py +13 -5
- universal_mcp/agents/bigtool2/__main__.py +7 -6
- universal_mcp/agents/bigtool2/agent.py +2 -1
- universal_mcp/agents/bigtool2/graph.py +14 -16
- universal_mcp/agents/bigtool2/prompts.py +1 -1
- universal_mcp/agents/bigtoolcache/__init__.py +2 -2
- universal_mcp/agents/bigtoolcache/__main__.py +1 -1
- universal_mcp/agents/bigtoolcache/agent.py +3 -2
- universal_mcp/agents/bigtoolcache/graph.py +11 -10
- universal_mcp/agents/bigtoolcache/prompts.py +1 -2
- universal_mcp/agents/builder.py +43 -15
- universal_mcp/agents/cli.py +19 -5
- universal_mcp/agents/codeact/test.py +2 -1
- universal_mcp/agents/llm.py +7 -3
- universal_mcp/agents/planner/__init__.py +8 -2
- universal_mcp/agents/planner/__main__.py +10 -8
- universal_mcp/agents/planner/graph.py +6 -2
- universal_mcp/agents/planner/prompts.py +14 -1
- universal_mcp/agents/planner/state.py +0 -1
- universal_mcp/agents/react.py +35 -25
- universal_mcp/agents/shared/tool_node.py +2 -3
- universal_mcp/agents/simple.py +19 -3
- universal_mcp/agents/tools.py +0 -1
- universal_mcp/agents/ui_tools.py +305 -0
- universal_mcp/agents/utils.py +46 -36
- {universal_mcp_agents-0.1.4.dist-info → universal_mcp_agents-0.1.5.dist-info}/METADATA +2 -1
- universal_mcp_agents-0.1.5.dist-info/RECORD +52 -0
- universal_mcp/agents/bigtool/context.py +0 -24
- universal_mcp/agents/bigtool2/context.py +0 -32
- universal_mcp_agents-0.1.4.dist-info/RECORD +0 -53
- {universal_mcp_agents-0.1.4.dist-info → universal_mcp_agents-0.1.5.dist-info}/WHEEL +0 -0
universal_mcp/agents/__init__.py
CHANGED
|
@@ -7,6 +7,25 @@ from universal_mcp.agents.planner import PlannerAgent
|
|
|
7
7
|
from universal_mcp.agents.react import ReactAgent
|
|
8
8
|
from universal_mcp.agents.simple import SimpleAgent
|
|
9
9
|
|
|
10
|
+
|
|
11
|
+
def get_agent(agent_name: str):
|
|
12
|
+
if agent_name == "auto":
|
|
13
|
+
return AutoAgent
|
|
14
|
+
elif agent_name == "react":
|
|
15
|
+
return ReactAgent
|
|
16
|
+
elif agent_name == "simple":
|
|
17
|
+
return SimpleAgent
|
|
18
|
+
elif agent_name == "builder":
|
|
19
|
+
return BuilderAgent
|
|
20
|
+
elif agent_name == "planner":
|
|
21
|
+
return PlannerAgent
|
|
22
|
+
elif agent_name == "bigtool":
|
|
23
|
+
return BigToolAgent
|
|
24
|
+
elif agent_name == "bigtool2":
|
|
25
|
+
return BigToolAgent2
|
|
26
|
+
else:
|
|
27
|
+
raise ValueError(f"Unknown agent: {agent_name}. Possible values: auto, react, simple, builder, planner, bigtool, bigtool2")
|
|
28
|
+
|
|
10
29
|
__all__ = [
|
|
11
30
|
"BaseAgent",
|
|
12
31
|
"ReactAgent",
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
2
|
+
from universal_mcp.tools.registry import ToolRegistry
|
|
2
3
|
|
|
3
4
|
from universal_mcp.agents.autoagent.graph import build_graph
|
|
4
5
|
from universal_mcp.agents.base import BaseAgent
|
|
5
|
-
from universal_mcp.tools.registry import ToolRegistry
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
class AutoAgent(BaseAgent):
|
|
@@ -6,13 +6,13 @@ from langchain_core.messages import AIMessage, ToolMessage
|
|
|
6
6
|
from langchain_core.tools import tool
|
|
7
7
|
from langgraph.graph import END, START, StateGraph
|
|
8
8
|
from langgraph.runtime import Runtime
|
|
9
|
+
from universal_mcp.tools.registry import ToolRegistry
|
|
10
|
+
from universal_mcp.types import ToolFormat
|
|
9
11
|
|
|
10
12
|
from universal_mcp.agents.autoagent.context import Context
|
|
11
13
|
from universal_mcp.agents.autoagent.prompts import SYSTEM_PROMPT
|
|
12
14
|
from universal_mcp.agents.autoagent.state import State
|
|
13
15
|
from universal_mcp.agents.llm import load_chat_model
|
|
14
|
-
from universal_mcp.tools.registry import ToolRegistry
|
|
15
|
-
from universal_mcp.types import ToolFormat
|
|
16
16
|
|
|
17
17
|
|
|
18
18
|
async def build_graph(tool_registry: ToolRegistry, instructions: str = ""):
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
import asyncio
|
|
2
2
|
|
|
3
3
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
4
|
-
from universal_mcp.agents.autoagent import build_graph
|
|
5
4
|
from universal_mcp.tools import ToolManager
|
|
6
5
|
|
|
6
|
+
from universal_mcp.agents.autoagent import build_graph
|
|
7
|
+
|
|
7
8
|
tool_registry = AgentrRegistry()
|
|
8
9
|
tool_manager = ToolManager()
|
|
9
10
|
|
universal_mcp/agents/base.py
CHANGED
|
@@ -2,9 +2,11 @@
|
|
|
2
2
|
from typing import cast
|
|
3
3
|
from uuid import uuid4
|
|
4
4
|
|
|
5
|
-
from langchain_core.messages import AIMessageChunk
|
|
5
|
+
from langchain_core.messages import AIMessage, AIMessageChunk
|
|
6
6
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
7
|
+
from langgraph.graph import StateGraph
|
|
7
8
|
from langgraph.types import Command
|
|
9
|
+
from universal_mcp.logger import logger
|
|
8
10
|
|
|
9
11
|
from .utils import RichCLI
|
|
10
12
|
|
|
@@ -31,7 +33,7 @@ class BaseAgent:
|
|
|
31
33
|
self._graph = await self._build_graph()
|
|
32
34
|
self._initialized = True
|
|
33
35
|
|
|
34
|
-
async def _build_graph(self):
|
|
36
|
+
async def _build_graph(self) -> StateGraph:
|
|
35
37
|
raise NotImplementedError("Subclasses must implement this method")
|
|
36
38
|
|
|
37
39
|
async def stream(self, thread_id: str, user_input: str, metadata: dict = None):
|
|
@@ -60,32 +62,41 @@ class BaseAgent:
|
|
|
60
62
|
):
|
|
61
63
|
# Only forward assistant token chunks that are not tool-related.
|
|
62
64
|
type_ = type(event)
|
|
63
|
-
if type_ != AIMessageChunk:
|
|
64
|
-
continue
|
|
65
|
-
event = cast(AIMessageChunk, event)
|
|
66
|
-
aggregate = event if aggregate is None else aggregate + event
|
|
67
65
|
tags = metadata.get("tags", []) if isinstance(metadata, dict) else []
|
|
68
66
|
is_quiet = isinstance(tags, list) and ("quiet" in tags)
|
|
69
|
-
|
|
70
67
|
if is_quiet:
|
|
71
68
|
continue
|
|
69
|
+
# Handle different types of messages
|
|
70
|
+
if type_ in (AIMessage, AIMessageChunk):
|
|
71
|
+
# Accumulate billing and aggregate message
|
|
72
|
+
aggregate = event if aggregate is None else aggregate + event
|
|
73
|
+
# Ignore intermeddite finish messages
|
|
72
74
|
if "finish_reason" in event.response_metadata:
|
|
73
75
|
# Got LLM finish reason ignore it
|
|
74
|
-
|
|
76
|
+
logger.debug(f"Finish event: {event}, Metadata: {metadata}")
|
|
75
77
|
pass
|
|
76
78
|
else:
|
|
77
|
-
|
|
79
|
+
logger.debug(f"Event: {event}, Metadata: {metadata}")
|
|
78
80
|
yield event
|
|
79
81
|
# Send a final finished message
|
|
80
82
|
# The last event would be finish
|
|
81
83
|
event = cast(AIMessageChunk, event)
|
|
84
|
+
event.usage_metadata = aggregate.usage_metadata
|
|
85
|
+
logger.debug(f"Usage metadata: {event.usage_metadata}")
|
|
82
86
|
yield event
|
|
83
87
|
|
|
84
88
|
async def stream_interactive(self, thread_id: str, user_input: str):
|
|
85
89
|
await self.ainit()
|
|
86
90
|
with self.cli.display_agent_response_streaming(self.name) as stream_updater:
|
|
87
91
|
async for event in self.stream(thread_id, user_input):
|
|
88
|
-
|
|
92
|
+
|
|
93
|
+
if isinstance(event.content, list):
|
|
94
|
+
thinking_content = "".join([c.get("thinking", "") for c in event.content])
|
|
95
|
+
stream_updater.update(thinking_content, type_="thinking")
|
|
96
|
+
content = "".join([c.get("text", "") for c in event.content])
|
|
97
|
+
stream_updater.update(content, type_="text")
|
|
98
|
+
else:
|
|
99
|
+
stream_updater.update(event.content, type_="text")
|
|
89
100
|
|
|
90
101
|
async def invoke(
|
|
91
102
|
self, user_input: str, thread_id: str = str(uuid4()), metadata: dict = None
|
|
@@ -106,11 +117,12 @@ class BaseAgent:
|
|
|
106
117
|
"metadata": run_metadata,
|
|
107
118
|
}
|
|
108
119
|
|
|
109
|
-
|
|
120
|
+
result = await self._graph.ainvoke(
|
|
110
121
|
{"messages": [{"role": "user", "content": user_input}]},
|
|
111
122
|
config=run_config,
|
|
112
123
|
context={"system_prompt": self.instructions, "model": self.model},
|
|
113
124
|
)
|
|
125
|
+
return result
|
|
114
126
|
|
|
115
127
|
async def run_interactive(self, thread_id: str = str(uuid4())):
|
|
116
128
|
"""Main application loop"""
|
|
@@ -145,7 +157,7 @@ class BaseAgent:
|
|
|
145
157
|
f"Agent is {self.name}. {self.instructions}"
|
|
146
158
|
)
|
|
147
159
|
continue
|
|
148
|
-
elif command
|
|
160
|
+
elif command in {"exit", "quit", "q"}:
|
|
149
161
|
self.cli.display_info("Goodbye! 👋")
|
|
150
162
|
break
|
|
151
163
|
elif command == "reset":
|
|
@@ -170,6 +182,6 @@ class BaseAgent:
|
|
|
170
182
|
break
|
|
171
183
|
except Exception as e:
|
|
172
184
|
import traceback
|
|
173
|
-
|
|
174
185
|
traceback.print_exc()
|
|
175
186
|
self.cli.display_error(f"An error occurred: {str(e)}")
|
|
187
|
+
break
|
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
2
|
+
from universal_mcp.logger import logger
|
|
3
|
+
from universal_mcp.tools.registry import ToolRegistry
|
|
2
4
|
|
|
3
5
|
from universal_mcp.agents.base import BaseAgent
|
|
4
6
|
from universal_mcp.agents.llm import load_chat_model
|
|
5
|
-
from universal_mcp.logger import logger
|
|
6
|
-
from universal_mcp.tools.registry import ToolRegistry
|
|
7
7
|
|
|
8
8
|
from .graph import build_graph
|
|
9
9
|
from .prompts import SYSTEM_PROMPT
|
|
@@ -19,18 +19,20 @@ class BigToolAgent(BaseAgent):
|
|
|
19
19
|
memory: BaseCheckpointSaver | None = None,
|
|
20
20
|
**kwargs,
|
|
21
21
|
):
|
|
22
|
-
|
|
23
|
-
full_instructions = f"{SYSTEM_PROMPT}\n\n**User Instructions:**\n{instructions}"
|
|
24
|
-
super().__init__(name, full_instructions, model, memory, **kwargs)
|
|
25
|
-
|
|
22
|
+
super().__init__(name, instructions, model, memory, **kwargs)
|
|
26
23
|
self.registry = registry
|
|
27
24
|
self.llm = load_chat_model(self.model)
|
|
28
|
-
self.tool_selection_llm = load_chat_model("gemini/gemini-2.0-flash-001")
|
|
29
25
|
|
|
30
26
|
logger.info(
|
|
31
27
|
f"BigToolAgent '{self.name}' initialized with model '{self.model}'."
|
|
32
28
|
)
|
|
33
29
|
|
|
30
|
+
def _build_system_message(self):
|
|
31
|
+
return SYSTEM_PROMPT.format(
|
|
32
|
+
name=self.name,
|
|
33
|
+
instructions=self.instructions,
|
|
34
|
+
)
|
|
35
|
+
|
|
34
36
|
async def _build_graph(self):
|
|
35
37
|
"""Build the bigtool agent graph using the existing create_agent function."""
|
|
36
38
|
logger.info(f"Building graph for BigToolAgent '{self.name}'...")
|
|
@@ -38,7 +40,7 @@ class BigToolAgent(BaseAgent):
|
|
|
38
40
|
graph_builder = build_graph(
|
|
39
41
|
tool_registry=self.registry,
|
|
40
42
|
llm=self.llm,
|
|
41
|
-
|
|
43
|
+
system_prompt=self._build_system_message(),
|
|
42
44
|
)
|
|
43
45
|
|
|
44
46
|
compiled_graph = graph_builder.compile(checkpointer=self.memory)
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
import asyncio
|
|
2
2
|
|
|
3
3
|
from loguru import logger
|
|
4
|
-
|
|
5
4
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
5
|
+
|
|
6
6
|
from universal_mcp.agents.bigtool import BigToolAgent
|
|
7
|
+
from universal_mcp.agents.utils import messages_to_list
|
|
7
8
|
|
|
8
9
|
|
|
9
10
|
async def main():
|
|
@@ -13,12 +14,10 @@ async def main():
|
|
|
13
14
|
model="azure/gpt-4.1",
|
|
14
15
|
registry=AgentrRegistry(),
|
|
15
16
|
)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
)
|
|
20
|
-
logger.info(event.content)
|
|
21
|
-
|
|
17
|
+
await agent.ainit()
|
|
18
|
+
output = await agent.invoke(
|
|
19
|
+
user_input="Send an email to manoj@agentr.dev")
|
|
20
|
+
logger.info(messages_to_list(output["messages"]))
|
|
22
21
|
|
|
23
22
|
if __name__ == "__main__":
|
|
24
23
|
asyncio.run(main())
|
|
@@ -1,28 +1,24 @@
|
|
|
1
1
|
import json
|
|
2
|
-
from datetime import UTC, datetime
|
|
3
2
|
from typing import Literal, TypedDict, cast
|
|
4
3
|
|
|
5
|
-
from langchain_anthropic import ChatAnthropic
|
|
6
4
|
from langchain_core.language_models import BaseChatModel
|
|
7
5
|
from langchain_core.messages import AIMessage, ToolMessage
|
|
8
6
|
from langchain_core.tools import tool
|
|
9
7
|
from langgraph.graph import StateGraph
|
|
10
|
-
from langgraph.runtime import Runtime
|
|
11
8
|
from langgraph.types import Command
|
|
12
|
-
|
|
13
|
-
from universal_mcp.agents.bigtool.context import Context
|
|
14
|
-
from universal_mcp.agents.bigtool.state import State
|
|
15
9
|
from universal_mcp.logger import logger
|
|
16
10
|
from universal_mcp.tools.registry import ToolRegistry
|
|
17
11
|
from universal_mcp.types import ToolFormat
|
|
18
12
|
|
|
13
|
+
from universal_mcp.agents.bigtool.state import State
|
|
14
|
+
|
|
19
15
|
from .prompts import SELECT_TOOL_PROMPT
|
|
20
16
|
|
|
21
17
|
|
|
22
18
|
def build_graph(
|
|
23
19
|
tool_registry: ToolRegistry,
|
|
24
20
|
llm: BaseChatModel,
|
|
25
|
-
|
|
21
|
+
system_prompt: str,
|
|
26
22
|
):
|
|
27
23
|
@tool
|
|
28
24
|
async def retrieve_tools(task_query: str) -> list[str]:
|
|
@@ -40,7 +36,7 @@ def build_graph(
|
|
|
40
36
|
class ToolSelectionOutput(TypedDict):
|
|
41
37
|
tool_names: list[str]
|
|
42
38
|
|
|
43
|
-
model =
|
|
39
|
+
model = llm
|
|
44
40
|
app_ids = await tool_registry.list_all_apps()
|
|
45
41
|
connections = await tool_registry.list_connected_apps()
|
|
46
42
|
connection_ids = set([connection["app_id"] for connection in connections])
|
|
@@ -76,16 +72,14 @@ def build_graph(
|
|
|
76
72
|
logger.error(f"Error retrieving tools: {e}")
|
|
77
73
|
return []
|
|
78
74
|
|
|
75
|
+
|
|
79
76
|
async def call_model(
|
|
80
|
-
state: State
|
|
77
|
+
state: State
|
|
81
78
|
) -> Command[Literal["select_tools", "call_tools"]]:
|
|
82
79
|
logger.info("Calling model...")
|
|
83
80
|
try:
|
|
84
|
-
system_message = runtime.context.system_prompt.format(
|
|
85
|
-
system_time=datetime.now(tz=UTC).isoformat()
|
|
86
|
-
)
|
|
87
81
|
messages = [
|
|
88
|
-
{"role": "system", "content":
|
|
82
|
+
{"role": "system", "content": system_prompt},
|
|
89
83
|
*state["messages"],
|
|
90
84
|
]
|
|
91
85
|
|
|
@@ -98,18 +92,15 @@ def build_graph(
|
|
|
98
92
|
else:
|
|
99
93
|
selected_tools = []
|
|
100
94
|
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
[retrieve_tools, *selected_tools], tool_choice="auto"
|
|
111
|
-
)
|
|
112
|
-
response = cast(AIMessage, await model_with_tools.ainvoke(messages))
|
|
95
|
+
model_with_tools = llm.bind_tools(
|
|
96
|
+
[retrieve_tools, *selected_tools], tool_choice="auto"
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
response = await model_with_tools.ainvoke(messages)
|
|
101
|
+
cast(AIMessage, response)
|
|
102
|
+
logger.debug(f"Response: {response}")
|
|
103
|
+
|
|
113
104
|
|
|
114
105
|
if response.tool_calls:
|
|
115
106
|
logger.info(
|
|
@@ -151,7 +142,7 @@ def build_graph(
|
|
|
151
142
|
raise
|
|
152
143
|
|
|
153
144
|
async def select_tools(
|
|
154
|
-
state: State
|
|
145
|
+
state: State
|
|
155
146
|
) -> Command[Literal["call_model"]]:
|
|
156
147
|
logger.info("Selecting tools...")
|
|
157
148
|
try:
|
|
@@ -210,7 +201,7 @@ def build_graph(
|
|
|
210
201
|
update={"messages": outputs, "selected_tool_ids": recent_tool_ids},
|
|
211
202
|
)
|
|
212
203
|
|
|
213
|
-
builder = StateGraph(State
|
|
204
|
+
builder = StateGraph(State)
|
|
214
205
|
|
|
215
206
|
builder.add_node(call_model)
|
|
216
207
|
builder.add_node(select_tools)
|
|
@@ -1,15 +1,15 @@
|
|
|
1
1
|
"""Default prompts used by the agent."""
|
|
2
2
|
|
|
3
|
-
SYSTEM_PROMPT = """You are a helpful AI assistant.
|
|
3
|
+
SYSTEM_PROMPT = """You are {name}, a helpful AI assistant.
|
|
4
4
|
|
|
5
5
|
**Core Directives:**
|
|
6
6
|
1. **Always Use Tools for Tasks:** For any user request that requires an action (e.g., sending an email, searching for information, creating an event), you MUST use a tool. Do not answer from your own knowledge or refuse a task if a tool might exist for it.
|
|
7
7
|
2. **First Step is ALWAYS `retrieve_tools`:** Before you can use any other tool, you MUST first call the `retrieve_tools` function to find the right tool for the user's request. This is your mandatory first action.
|
|
8
8
|
3. **Strictly Follow the Process:** Your only job in your first turn is to analyze the user's request and call `retrieve_tools` with a concise query describing the core task. Do not engage in conversation.
|
|
9
9
|
|
|
10
|
-
System time: {system_time}
|
|
11
|
-
|
|
12
10
|
When multiple tools are available for the same task, you must ask the user.
|
|
11
|
+
|
|
12
|
+
{instructions}
|
|
13
13
|
"""
|
|
14
14
|
|
|
15
15
|
SELECT_TOOL_PROMPT = """You are an AI assistant that helps the user perform tasks using various apps (each app has multiple tools).
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
2
|
+
from universal_mcp.logger import logger
|
|
3
|
+
from universal_mcp.tools.registry import ToolRegistry
|
|
2
4
|
|
|
3
5
|
from universal_mcp.agents.base import BaseAgent
|
|
4
6
|
from universal_mcp.agents.llm import load_chat_model
|
|
5
|
-
from universal_mcp.
|
|
6
|
-
from universal_mcp.tools.registry import ToolRegistry
|
|
7
|
+
from universal_mcp.agents.utils import initialize_ui_tools
|
|
7
8
|
|
|
8
9
|
from .graph import build_graph
|
|
9
10
|
from .prompts import SYSTEM_PROMPT
|
|
@@ -19,18 +20,23 @@ class BigToolAgent2(BaseAgent):
|
|
|
19
20
|
memory: BaseCheckpointSaver | None = None,
|
|
20
21
|
**kwargs,
|
|
21
22
|
):
|
|
22
|
-
|
|
23
|
-
full_instructions = f"{SYSTEM_PROMPT}\n\n**User Instructions:**\n{instructions}"
|
|
24
|
-
super().__init__(name, full_instructions, model, memory, **kwargs)
|
|
23
|
+
super().__init__(name, instructions, model, memory, **kwargs)
|
|
25
24
|
|
|
26
25
|
self.registry = registry
|
|
27
26
|
self.llm = load_chat_model(self.model)
|
|
28
27
|
self.recursion_limit = kwargs.get("recursion_limit", 10)
|
|
28
|
+
self.ui_tools = initialize_ui_tools()
|
|
29
29
|
|
|
30
30
|
logger.info(
|
|
31
31
|
f"BigToolAgent '{self.name}' initialized with model '{self.model}'."
|
|
32
32
|
)
|
|
33
33
|
|
|
34
|
+
def _build_system_message(self):
|
|
35
|
+
return SYSTEM_PROMPT.format(
|
|
36
|
+
name=self.name,
|
|
37
|
+
instructions=f"**User Instructions:**\n{self.instructions}",
|
|
38
|
+
)
|
|
39
|
+
|
|
34
40
|
async def _build_graph(self):
|
|
35
41
|
"""Build the bigtool agent graph using the existing create_agent function."""
|
|
36
42
|
logger.info(f"Building graph for BigToolAgent '{self.name}'...")
|
|
@@ -38,6 +44,8 @@ class BigToolAgent2(BaseAgent):
|
|
|
38
44
|
graph_builder = build_graph(
|
|
39
45
|
tool_registry=self.registry,
|
|
40
46
|
llm=self.llm,
|
|
47
|
+
system_prompt=self._build_system_message(),
|
|
48
|
+
ui_tools=self.ui_tools,
|
|
41
49
|
)
|
|
42
50
|
|
|
43
51
|
compiled_graph = graph_builder.compile(checkpointer=self.memory)
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
import asyncio
|
|
2
2
|
|
|
3
3
|
from loguru import logger
|
|
4
|
-
|
|
5
4
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
5
|
+
|
|
6
6
|
from universal_mcp.agents.bigtool2 import BigToolAgent2
|
|
7
|
+
from universal_mcp.agents.utils import messages_to_list
|
|
7
8
|
|
|
8
9
|
|
|
9
10
|
async def main():
|
|
@@ -13,11 +14,11 @@ async def main():
|
|
|
13
14
|
model="azure/gpt-4.1",
|
|
14
15
|
registry=AgentrRegistry(),
|
|
15
16
|
)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
)
|
|
20
|
-
|
|
17
|
+
await agent.ainit()
|
|
18
|
+
output = await agent.invoke(
|
|
19
|
+
user_input="Send an email to manoj@agentr.dev"
|
|
20
|
+
)
|
|
21
|
+
logger.info(messages_to_list(output["messages"]))
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
if __name__ == "__main__":
|
|
@@ -1,23 +1,22 @@
|
|
|
1
1
|
import json
|
|
2
2
|
from datetime import UTC, datetime
|
|
3
|
-
from typing import Literal,
|
|
3
|
+
from typing import Literal, cast
|
|
4
4
|
|
|
5
|
-
from langchain_anthropic import ChatAnthropic
|
|
6
5
|
from langchain_core.language_models import BaseChatModel
|
|
7
6
|
from langchain_core.messages import AIMessage, ToolMessage
|
|
8
7
|
from langchain_core.tools import tool
|
|
9
8
|
from langgraph.graph import StateGraph
|
|
10
|
-
from langgraph.runtime import Runtime
|
|
11
9
|
from langgraph.types import Command
|
|
12
|
-
|
|
13
|
-
from universal_mcp.agents.bigtool2.context import Context
|
|
14
|
-
from universal_mcp.agents.bigtool2.state import State
|
|
15
10
|
from universal_mcp.logger import logger
|
|
16
11
|
from universal_mcp.tools.registry import ToolRegistry
|
|
17
12
|
from universal_mcp.types import ToolFormat
|
|
18
13
|
|
|
14
|
+
from universal_mcp.agents.bigtool2.state import State
|
|
15
|
+
|
|
19
16
|
|
|
20
|
-
def build_graph(
|
|
17
|
+
def build_graph(
|
|
18
|
+
tool_registry: ToolRegistry, llm: BaseChatModel, system_prompt: str, ui_tools: list
|
|
19
|
+
):
|
|
21
20
|
@tool
|
|
22
21
|
async def search_tools(queries: list[str]) -> str:
|
|
23
22
|
"""Search tools for a given list of queries
|
|
@@ -32,7 +31,7 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
32
31
|
connected_apps = [
|
|
33
32
|
app["id"] for app in app_ids if app["id"] in connection_ids
|
|
34
33
|
]
|
|
35
|
-
|
|
34
|
+
[
|
|
36
35
|
app["id"] for app in app_ids if app["id"] not in connection_ids
|
|
37
36
|
]
|
|
38
37
|
app_tools = {}
|
|
@@ -69,11 +68,11 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
69
68
|
return tool_ids
|
|
70
69
|
|
|
71
70
|
async def call_model(
|
|
72
|
-
state: State,
|
|
71
|
+
state: State,
|
|
73
72
|
) -> Command[Literal["select_tools", "call_tools"]]:
|
|
74
73
|
logger.info("Calling model...")
|
|
75
74
|
try:
|
|
76
|
-
system_message =
|
|
75
|
+
system_message = system_prompt.format(
|
|
77
76
|
system_time=datetime.now(tz=UTC).isoformat()
|
|
78
77
|
)
|
|
79
78
|
messages = [
|
|
@@ -93,7 +92,8 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
93
92
|
model = llm
|
|
94
93
|
|
|
95
94
|
model_with_tools = model.bind_tools(
|
|
96
|
-
[search_tools, load_tools, *selected_tools],
|
|
95
|
+
[search_tools, load_tools, *selected_tools, *ui_tools],
|
|
96
|
+
tool_choice="auto",
|
|
97
97
|
)
|
|
98
98
|
response = cast(AIMessage, await model_with_tools.ainvoke(messages))
|
|
99
99
|
|
|
@@ -112,7 +112,7 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
112
112
|
elif tool_call["name"] == load_tools.name:
|
|
113
113
|
logger.info("Model requested to load tools.")
|
|
114
114
|
tool_msg = ToolMessage(
|
|
115
|
-
|
|
115
|
+
"Loaded tools.", tool_call_id=tool_call["id"]
|
|
116
116
|
)
|
|
117
117
|
selected_tool_ids = tool_call["args"]["tool_ids"]
|
|
118
118
|
logger.info(f"Loaded tools: {selected_tool_ids}")
|
|
@@ -151,9 +151,7 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
151
151
|
logger.error(f"Error in call_model: {e}")
|
|
152
152
|
raise
|
|
153
153
|
|
|
154
|
-
async def select_tools(
|
|
155
|
-
state: State, runtime: Runtime[Context]
|
|
156
|
-
) -> Command[Literal["call_model"]]:
|
|
154
|
+
async def select_tools(state: State) -> Command[Literal["call_model"]]:
|
|
157
155
|
logger.info("Selecting tools...")
|
|
158
156
|
try:
|
|
159
157
|
tool_call = state["messages"][-1].tool_calls[0]
|
|
@@ -204,7 +202,7 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
204
202
|
update={"messages": outputs, "selected_tool_ids": recent_tool_ids},
|
|
205
203
|
)
|
|
206
204
|
|
|
207
|
-
builder = StateGraph(State
|
|
205
|
+
builder = StateGraph(State)
|
|
208
206
|
|
|
209
207
|
builder.add_node(call_model)
|
|
210
208
|
builder.add_node(select_tools)
|
|
@@ -8,5 +8,5 @@ SYSTEM_PROMPT = """You are a helpful AI assistant.
|
|
|
8
8
|
3. **Load Tools:** After looking at the output of `search_tools`, you MUST call the `load_tools` function to load only the tools you want to use. Use your judgement to eliminate irrelevant apps that came up just because of semantic similarity. However, sometimes, multiple apps might be relevant for the same task. Prefer connected apps over unconnected apps while breaking a tie. If more than one relevant app (or none of the relevant apps) are connected, you must ask the user to choose the app. In case the user asks you to use an app that is not connected, call the apps tools normally. The tool will return a link for connecting that you should pass on to the user.
|
|
9
9
|
3. **Strictly Follow the Process:** Your only job in your first turn is to analyze the user's request and call `search_tools` with a concise query describing the core task. Do not engage in conversation.
|
|
10
10
|
|
|
11
|
-
|
|
11
|
+
{instructions}
|
|
12
12
|
"""
|
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
2
|
+
from universal_mcp.logger import logger
|
|
3
|
+
from universal_mcp.tools.registry import ToolRegistry
|
|
2
4
|
|
|
3
5
|
from universal_mcp.agents.base import BaseAgent
|
|
4
6
|
from universal_mcp.agents.llm import load_chat_model
|
|
5
|
-
from universal_mcp.logger import logger
|
|
6
|
-
from universal_mcp.tools.registry import ToolRegistry
|
|
7
7
|
|
|
8
8
|
from .graph import build_graph
|
|
9
9
|
from .prompts import SYSTEM_PROMPT
|
|
@@ -1,10 +1,11 @@
|
|
|
1
|
-
from universal_mcp.agents.bigtoolcache import BigToolAgentCache
|
|
2
1
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
3
2
|
|
|
3
|
+
from universal_mcp.agents.bigtoolcache import BigToolAgentCache
|
|
4
|
+
|
|
4
5
|
|
|
5
6
|
async def agent():
|
|
6
7
|
agent_object = await BigToolAgentCache(
|
|
7
|
-
name="BigTool Agent
|
|
8
|
+
name="BigTool Agent Cache version",
|
|
8
9
|
instructions="You are a helpful assistant that can use various tools to complete tasks.",
|
|
9
10
|
model="anthropic/claude-4-sonnet-20250514",
|
|
10
11
|
registry=AgentrRegistry(),
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import json
|
|
2
2
|
from datetime import UTC, datetime
|
|
3
|
-
from typing import
|
|
3
|
+
from typing import Literal, TypedDict, cast
|
|
4
4
|
|
|
5
5
|
from langchain_anthropic import ChatAnthropic
|
|
6
6
|
from langchain_core.language_models import BaseChatModel
|
|
@@ -18,6 +18,7 @@ from universal_mcp.types import ToolFormat
|
|
|
18
18
|
from universal_mcp.agents.bigtoolcache.prompts import TOOLS_LIST
|
|
19
19
|
|
|
20
20
|
|
|
21
|
+
|
|
21
22
|
class ToolSelectionOutput(TypedDict):
|
|
22
23
|
connected_tool_ids: list[str]
|
|
23
24
|
unconnected_tool_ids: list[str]
|
|
@@ -180,15 +181,15 @@ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
|
180
181
|
name=tool_id,
|
|
181
182
|
tool_call_id=tool_call["id"],
|
|
182
183
|
)
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
184
|
+
recent_tool_ids.append(tool_call["name"])
|
|
185
|
+
except Exception as e:
|
|
186
|
+
logger.error(f"Error executing tool '{tool_call['name']}': {e}")
|
|
187
|
+
outputs.append(
|
|
188
|
+
ToolMessage(
|
|
189
|
+
content=json.dumps("Error: " + str(e)),
|
|
190
|
+
name=tool_call["name"],
|
|
191
|
+
tool_call_id=tool_call["id"],
|
|
192
|
+
)
|
|
192
193
|
)
|
|
193
194
|
)
|
|
194
195
|
return Command(
|
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
"""Default prompts used by the agent."""
|
|
2
2
|
|
|
3
|
-
import os
|
|
4
3
|
from pathlib import Path
|
|
5
4
|
|
|
6
5
|
|
|
@@ -14,7 +13,7 @@ def load_tools_from_file():
|
|
|
14
13
|
tools_file = current_dir / "tools_all.txt"
|
|
15
14
|
|
|
16
15
|
if tools_file.exists():
|
|
17
|
-
with open(tools_file,
|
|
16
|
+
with open(tools_file, encoding="utf-8") as f:
|
|
18
17
|
return f.read()
|
|
19
18
|
else:
|
|
20
19
|
return "No tools file found. Please run tool_retrieve.py to generate the tools list."
|