universal-mcp-agents 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. universal_mcp/agents/__init__.py +19 -0
  2. universal_mcp/agents/autoagent/__init__.py +1 -1
  3. universal_mcp/agents/autoagent/__main__.py +1 -1
  4. universal_mcp/agents/autoagent/graph.py +32 -13
  5. universal_mcp/agents/autoagent/studio.py +3 -8
  6. universal_mcp/agents/base.py +80 -22
  7. universal_mcp/agents/bigtool/__init__.py +13 -9
  8. universal_mcp/agents/bigtool/__main__.py +6 -7
  9. universal_mcp/agents/bigtool/graph.py +84 -40
  10. universal_mcp/agents/bigtool/prompts.py +3 -3
  11. universal_mcp/agents/bigtool2/__init__.py +16 -6
  12. universal_mcp/agents/bigtool2/__main__.py +7 -6
  13. universal_mcp/agents/bigtool2/agent.py +4 -2
  14. universal_mcp/agents/bigtool2/graph.py +78 -36
  15. universal_mcp/agents/bigtool2/prompts.py +1 -1
  16. universal_mcp/agents/bigtoolcache/__init__.py +8 -4
  17. universal_mcp/agents/bigtoolcache/__main__.py +1 -1
  18. universal_mcp/agents/bigtoolcache/agent.py +5 -3
  19. universal_mcp/agents/bigtoolcache/context.py +0 -1
  20. universal_mcp/agents/bigtoolcache/graph.py +99 -69
  21. universal_mcp/agents/bigtoolcache/prompts.py +28 -0
  22. universal_mcp/agents/bigtoolcache/tools_all.txt +956 -0
  23. universal_mcp/agents/bigtoolcache/tools_important.txt +474 -0
  24. universal_mcp/agents/builder.py +62 -20
  25. universal_mcp/agents/cli.py +19 -5
  26. universal_mcp/agents/codeact/__init__.py +16 -4
  27. universal_mcp/agents/codeact/test.py +2 -1
  28. universal_mcp/agents/hil.py +16 -4
  29. universal_mcp/agents/llm.py +12 -4
  30. universal_mcp/agents/planner/__init__.py +14 -4
  31. universal_mcp/agents/planner/__main__.py +10 -6
  32. universal_mcp/agents/planner/graph.py +9 -3
  33. universal_mcp/agents/planner/prompts.py +14 -1
  34. universal_mcp/agents/planner/state.py +0 -1
  35. universal_mcp/agents/react.py +36 -22
  36. universal_mcp/agents/shared/tool_node.py +26 -11
  37. universal_mcp/agents/simple.py +27 -4
  38. universal_mcp/agents/tools.py +9 -4
  39. universal_mcp/agents/ui_tools.py +305 -0
  40. universal_mcp/agents/utils.py +55 -17
  41. {universal_mcp_agents-0.1.3.dist-info → universal_mcp_agents-0.1.5.dist-info}/METADATA +3 -2
  42. universal_mcp_agents-0.1.5.dist-info/RECORD +52 -0
  43. universal_mcp/agents/bigtool/context.py +0 -24
  44. universal_mcp/agents/bigtool2/context.py +0 -33
  45. universal_mcp_agents-0.1.3.dist-info/RECORD +0 -51
  46. {universal_mcp_agents-0.1.3.dist-info → universal_mcp_agents-0.1.5.dist-info}/WHEEL +0 -0
@@ -1,6 +1,6 @@
1
1
  import json
2
2
  from datetime import UTC, datetime
3
- from typing import Any, Literal, TypedDict, cast
3
+ from typing import Literal, TypedDict, cast
4
4
 
5
5
  from langchain_anthropic import ChatAnthropic
6
6
  from langchain_core.language_models import BaseChatModel
@@ -15,94 +15,107 @@ from universal_mcp.agents.bigtoolcache.state import State
15
15
  from universal_mcp.logger import logger
16
16
  from universal_mcp.tools.registry import ToolRegistry
17
17
  from universal_mcp.types import ToolFormat
18
+ from universal_mcp.agents.bigtoolcache.prompts import TOOLS_LIST
18
19
 
19
20
 
20
21
 
21
- def build_graph(
22
- tool_registry: ToolRegistry,
23
- llm: BaseChatModel
24
- ):
22
+ class ToolSelectionOutput(TypedDict):
23
+ connected_tool_ids: list[str]
24
+ unconnected_tool_ids: list[str]
25
+
26
+
27
+ def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
25
28
  @tool
26
29
  async def search_tools(queries: list[str]) -> str:
27
30
  """Search tools for a given list of queries
28
31
  Each single query should be atomic (doable with a single tool).
29
32
  For tasks requiring multiple tools, add separate queries for each subtask"""
30
33
  logger.info(f"Searching tools for queries: '{queries}'")
31
- try:
32
- all_tool_candidates = ""
33
- app_ids = await tool_registry.list_all_apps()
34
- connections = await tool_registry.list_connected_apps()
35
- connection_ids = set([connection["app_id"] for connection in connections])
36
- connected_apps = [app["id"] for app in app_ids if app["id"] in connection_ids]
37
- unconnected_apps = [app["id"] for app in app_ids if app["id"] not in connection_ids]
38
- app_tools = {}
39
- for task_query in queries:
40
- tools_list = await tool_registry.search_tools(task_query, limit=40)
41
- for tool in tools_list:
42
- app = tool["id"].split("__")[0]
43
- if app not in app_tools:
44
- if len(app_tools.keys()) >= 10:
45
- break
46
- app_tools[app] = {}
47
- if len(app_tools[app]) < 3:
48
- if tool["id"] not in app_tools[app]:
49
- app_tools[app][tool["id"]] = tool["description"]
50
- for app in app_tools:
51
- app_status = "connected" if app in connected_apps else "NOT connected"
52
- all_tool_candidates += f"Tools from {app} (status: {app_status} by user):\n"
53
- for tool in app_tools[app]:
54
- all_tool_candidates += f" - {tool}: {app_tools[app][tool]}\n"
55
- all_tool_candidates += "\n"
56
-
57
-
58
- return all_tool_candidates
59
- except Exception as e:
60
- logger.error(f"Error retrieving tools: {e}")
61
- return "Error: " + str(e)
62
-
34
+ messages = [
35
+ {
36
+ "role": "system",
37
+ "content": [
38
+ {
39
+ "type": "text",
40
+ "text": TOOLS_LIST,
41
+ "cache_control": {"type": "ephemeral", "ttl": "1h"},
42
+ }
43
+ ],
44
+ },
45
+ {"role": "user", "content": str(queries)},
46
+ ]
47
+ response = llm.with_structured_output(ToolSelectionOutput).invoke(messages)
48
+ response_text = f"Connected tools: {response['connected_tool_ids']}\nUnconnected tools: {response['unconnected_tool_ids']}"
49
+ return response_text
50
+
63
51
  @tool
64
52
  async def load_tools(tool_ids: list[str]) -> list[dict[str, Any]]:
65
- """Load the tools for the given tool ids. Returns the tool name, description, parameters schema, and output schema."""
53
+ """Load the tools for the given tool ids. Returns the tool name, description, parameters schema, and output schema. A tool id is made up using the app_id and the tool_name, attached by double underscore (__). e.g. google_mail__send_email"""
66
54
  temp_manager = tool_registry.tool_manager
67
55
  temp_manager.clear_tools()
68
56
  await tool_registry.export_tools(tool_ids, format=ToolFormat.NATIVE)
69
57
  tool_details = []
70
58
  for tool_id in tool_ids:
71
59
  tool = temp_manager.get_tool(tool_id)
72
- tool_details.append({
73
- "name": tool.name,
74
- "description": tool.description,
75
- "parameters_schema": tool.parameters,
76
- "output_schema": tool.output_schema,
77
- })
60
+ tool_details.append(
61
+ {
62
+ "name": tool.name,
63
+ "description": tool.description,
64
+ "parameters_schema": tool.parameters,
65
+ "output_schema": tool.output_schema,
66
+ }
67
+ )
78
68
  return tool_details
79
-
69
+
80
70
  @tool
81
71
  async def call_tool(tool_id: str, tool_args: dict[str, Any]) -> Any:
82
72
  """Call the tool with the given id and arguments."""
83
73
  return await tool_registry.call_tool(tool_id, tool_args)
84
74
 
85
-
86
- async def call_model(state: State, runtime: Runtime[Context]) -> Command[Literal["select_tools", "call_tools"]]:
75
+ async def call_model(
76
+ state: State, runtime: Runtime[Context]
77
+ ) -> Command[Literal["select_tools", "call_tools"]]:
87
78
  logger.info("Calling model...")
88
79
  try:
89
- system_message = runtime.context.system_prompt.format(system_time=datetime.now(tz=UTC).isoformat())
90
- messages = [{"role": "system", "content": system_message}, *state["messages"]]
80
+ system_message = runtime.context.system_prompt.format(
81
+ system_time=datetime.now(tz=UTC).isoformat()
82
+ )
83
+ messages = [
84
+ {
85
+ "role": "system",
86
+ "content": [
87
+ {
88
+ "type": "text",
89
+ "text": system_message,
90
+ "cache_control": {"type": "ephemeral", "ttl": "1h"},
91
+ }
92
+ ],
93
+ },
94
+ *state["messages"],
95
+ ]
91
96
 
92
97
  model = llm
93
98
 
94
99
  if isinstance(model, ChatAnthropic):
95
100
  model_with_tools = model.bind_tools(
96
- [search_tools, load_tools, call_tool], tool_choice="auto", cache_control={"type": "ephemeral"}
101
+ [search_tools, load_tools, call_tool],
102
+ tool_choice="auto",
103
+ cache_control={"type": "ephemeral", "ttl": "1h"},
97
104
  )
98
105
  else:
99
- model_with_tools = model.bind_tools([search_tools, load_tools, call_tool], tool_choice="auto")
106
+ model_with_tools = model.bind_tools(
107
+ [search_tools, load_tools, call_tool], tool_choice="auto"
108
+ )
100
109
  response = cast(AIMessage, await model_with_tools.ainvoke(messages))
101
110
 
102
111
  if response.tool_calls:
103
- logger.info(f"Model responded with {len(response.tool_calls)} tool calls.")
112
+ logger.info(
113
+ f"Model responded with {len(response.tool_calls)} tool calls."
114
+ )
104
115
  if len(response.tool_calls) > 1:
105
- raise Exception("Not possible in Claude with llm.bind_tools(tools=tools, tool_choice='auto')")
116
+ raise Exception(
117
+ "Not possible in Claude with llm.bind_tools(tools=tools, tool_choice='auto')"
118
+ )
106
119
  tool_call = response.tool_calls[0]
107
120
  if tool_call["name"] == search_tools.name:
108
121
  logger.info("Model requested to select tools.")
@@ -110,10 +123,18 @@ def build_graph(
110
123
  elif tool_call["name"] == load_tools.name:
111
124
  logger.info("Model requested to load tools.")
112
125
  tool_details = await load_tools.ainvoke(input=tool_call["args"])
113
- tool_msg = ToolMessage(f"Loaded tools. {tool_details}", tool_call_id=tool_call["id"])
126
+ tool_msg = ToolMessage(
127
+ f"Loaded tools. {tool_details}", tool_call_id=tool_call["id"]
128
+ )
114
129
  selected_tool_ids = tool_call["args"]["tool_ids"]
115
130
  logger.info(f"Loaded tools: {selected_tool_ids}")
116
- return Command(goto="call_model", update={ "messages": [response, tool_msg], "selected_tool_ids": selected_tool_ids})
131
+ return Command(
132
+ goto="call_model",
133
+ update={
134
+ "messages": [response, tool_msg],
135
+ "selected_tool_ids": selected_tool_ids,
136
+ },
137
+ )
117
138
  elif tool_call["name"] == call_tool.name:
118
139
  logger.info("Model requested to call tool.")
119
140
  return Command(goto="call_tools", update={"messages": [response]})
@@ -125,12 +146,16 @@ def build_graph(
125
146
  logger.error(f"Error in call_model: {e}")
126
147
  raise
127
148
 
128
- async def select_tools(state: State, runtime: Runtime[Context]) -> Command[Literal["call_model"]]:
149
+ async def select_tools(
150
+ state: State, runtime: Runtime[Context]
151
+ ) -> Command[Literal["call_model"]]:
129
152
  logger.info("Selecting tools...")
130
153
  try:
131
154
  tool_call = state["messages"][-1].tool_calls[0]
132
- searched_tools= await search_tools.ainvoke(input=tool_call["args"])
133
- tool_msg = ToolMessage(f"Available tools: {searched_tools}", tool_call_id=tool_call["id"])
155
+ searched_tools = await search_tools.ainvoke(input=tool_call["args"])
156
+ tool_msg = ToolMessage(
157
+ f"Available tools: {searched_tools}", tool_call_id=tool_call["id"]
158
+ )
134
159
  return Command(goto="call_model", update={"messages": [tool_msg]})
135
160
  except Exception as e:
136
161
  logger.error(f"Error in select_tools: {e}")
@@ -146,7 +171,9 @@ def build_graph(
146
171
  logger.info(f"Executing tool: {tool_id} with args: {tool_args}")
147
172
  try:
148
173
  await tool_registry.export_tools([tool_id], ToolFormat.LANGCHAIN)
149
- tool_result = await call_tool.ainvoke(input={"tool_id": tool_id, "tool_args": tool_args})
174
+ tool_result = await call_tool.ainvoke(
175
+ input={"tool_id": tool_id, "tool_args": tool_args}
176
+ )
150
177
  logger.info(f"Tool '{tool_id}' executed successfully.")
151
178
  outputs.append(
152
179
  ToolMessage(
@@ -154,18 +181,21 @@ def build_graph(
154
181
  name=tool_id,
155
182
  tool_call_id=tool_call["id"],
156
183
  )
157
- )
158
- recent_tool_ids.append(tool_id)
159
- except Exception as e:
160
- logger.error(f"Error executing tool '{tool_id}': {e}")
161
- outputs.append(
162
- ToolMessage(
163
- content=json.dumps("Error: " + str(e)),
164
- name=tool_id,
165
- tool_call_id=tool_call["id"],
184
+ recent_tool_ids.append(tool_call["name"])
185
+ except Exception as e:
186
+ logger.error(f"Error executing tool '{tool_call['name']}': {e}")
187
+ outputs.append(
188
+ ToolMessage(
189
+ content=json.dumps("Error: " + str(e)),
190
+ name=tool_call["name"],
191
+ tool_call_id=tool_call["id"],
192
+ )
166
193
  )
167
194
  )
168
- return Command(goto="call_model", update={"messages": outputs, "selected_tool_ids": recent_tool_ids})
195
+ return Command(
196
+ goto="call_model",
197
+ update={"messages": outputs, "selected_tool_ids": recent_tool_ids},
198
+ )
169
199
 
170
200
  builder = StateGraph(State, context_schema=Context)
171
201
 
@@ -1,5 +1,24 @@
1
1
  """Default prompts used by the agent."""
2
2
 
3
+ from pathlib import Path
4
+
5
+
6
+ def load_tools_from_file():
7
+ """Load tools from the generated text file."""
8
+ # Get the directory where this file is located
9
+ current_dir = Path(__file__).parent
10
+
11
+ tools_file = current_dir / "tools_important.txt"
12
+ if not tools_file.exists():
13
+ tools_file = current_dir / "tools_all.txt"
14
+
15
+ if tools_file.exists():
16
+ with open(tools_file, encoding="utf-8") as f:
17
+ return f.read()
18
+ else:
19
+ return "No tools file found. Please run tool_retrieve.py to generate the tools list."
20
+
21
+
3
22
  SYSTEM_PROMPT = """You are a helpful AI assistant.
4
23
 
5
24
  **Core Directives:**
@@ -11,3 +30,12 @@ SYSTEM_PROMPT = """You are a helpful AI assistant.
11
30
 
12
31
  System time: {system_time}
13
32
  """
33
+
34
+
35
+ TOOLS_LIST = f""" This is the list of all the tools available to you:
36
+ {load_tools_from_file()}
37
+
38
+ You will be provided a list of queries (which may be similar or different from each other). Your job is to select the relavent tools for the user's request. sometimes, multiple apps might be relevant for the same task. Prefer connected apps over unconnected apps while breaking a tie. If more than one relevant app (or none of the relevant apps) are connected, you must return both apps tools. If the query specifically asks you to use an app that is not connected, return the tools for that app, they can still be connected by the user.
39
+
40
+ You have to return the tool_ids by constructing the tool_id from the app_id and the tool_name, attached by double underscore (__). e.g. google_mail__send_email
41
+ """