universal-mcp-agents 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of universal-mcp-agents might be problematic. Click here for more details.
- universal_mcp/agents/autoagent/graph.py +30 -11
- universal_mcp/agents/autoagent/studio.py +1 -7
- universal_mcp/agents/base.py +55 -9
- universal_mcp/agents/bigtool/__init__.py +3 -1
- universal_mcp/agents/bigtool/graph.py +78 -25
- universal_mcp/agents/bigtool2/__init__.py +3 -1
- universal_mcp/agents/bigtool2/agent.py +2 -1
- universal_mcp/agents/bigtool2/context.py +0 -1
- universal_mcp/agents/bigtool2/graph.py +76 -32
- universal_mcp/agents/bigtoolcache/__init__.py +6 -2
- universal_mcp/agents/bigtoolcache/agent.py +2 -1
- universal_mcp/agents/bigtoolcache/context.py +0 -1
- universal_mcp/agents/bigtoolcache/graph.py +88 -59
- universal_mcp/agents/bigtoolcache/prompts.py +29 -0
- universal_mcp/agents/bigtoolcache/tools_all.txt +956 -0
- universal_mcp/agents/bigtoolcache/tools_important.txt +474 -0
- universal_mcp/agents/builder.py +19 -5
- universal_mcp/agents/codeact/__init__.py +16 -4
- universal_mcp/agents/hil.py +16 -4
- universal_mcp/agents/llm.py +5 -1
- universal_mcp/agents/planner/__init__.py +7 -3
- universal_mcp/agents/planner/__main__.py +3 -1
- universal_mcp/agents/planner/graph.py +3 -1
- universal_mcp/agents/react.py +5 -1
- universal_mcp/agents/shared/tool_node.py +24 -8
- universal_mcp/agents/simple.py +8 -1
- universal_mcp/agents/tools.py +9 -3
- universal_mcp/agents/utils.py +35 -7
- {universal_mcp_agents-0.1.2.dist-info → universal_mcp_agents-0.1.4.dist-info}/METADATA +4 -4
- universal_mcp_agents-0.1.4.dist-info/RECORD +53 -0
- universal_mcp_agents-0.1.2.dist-info/RECORD +0 -51
- {universal_mcp_agents-0.1.2.dist-info → universal_mcp_agents-0.1.4.dist-info}/WHEEL +0 -0
|
@@ -27,7 +27,9 @@ class BigToolAgentCache(BaseAgent):
|
|
|
27
27
|
self.llm = load_chat_model(self.model)
|
|
28
28
|
self.recursion_limit = kwargs.get("recursion_limit", 10)
|
|
29
29
|
|
|
30
|
-
logger.info(
|
|
30
|
+
logger.info(
|
|
31
|
+
f"BigToolAgent '{self.name}' initialized with model '{self.model}'."
|
|
32
|
+
)
|
|
31
33
|
|
|
32
34
|
async def _build_graph(self):
|
|
33
35
|
"""Build the bigtool agent graph using the existing create_agent function."""
|
|
@@ -42,7 +44,9 @@ class BigToolAgentCache(BaseAgent):
|
|
|
42
44
|
logger.info("Graph built and compiled successfully.")
|
|
43
45
|
return compiled_graph
|
|
44
46
|
except Exception as e:
|
|
45
|
-
logger.error(
|
|
47
|
+
logger.error(
|
|
48
|
+
f"Error building graph for BigToolAgentCache '{self.name}': {e}"
|
|
49
|
+
)
|
|
46
50
|
raise
|
|
47
51
|
|
|
48
52
|
@property
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
from universal_mcp.agents.bigtoolcache import BigToolAgentCache
|
|
2
2
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
3
3
|
|
|
4
|
+
|
|
4
5
|
async def agent():
|
|
5
6
|
agent_object = await BigToolAgentCache(
|
|
6
7
|
name="BigTool Agent 2",
|
|
@@ -8,4 +9,4 @@ async def agent():
|
|
|
8
9
|
model="anthropic/claude-4-sonnet-20250514",
|
|
9
10
|
registry=AgentrRegistry(),
|
|
10
11
|
)._build_graph()
|
|
11
|
-
return agent_object
|
|
12
|
+
return agent_object
|
|
@@ -15,94 +15,106 @@ from universal_mcp.agents.bigtoolcache.state import State
|
|
|
15
15
|
from universal_mcp.logger import logger
|
|
16
16
|
from universal_mcp.tools.registry import ToolRegistry
|
|
17
17
|
from universal_mcp.types import ToolFormat
|
|
18
|
+
from universal_mcp.agents.bigtoolcache.prompts import TOOLS_LIST
|
|
18
19
|
|
|
19
20
|
|
|
21
|
+
class ToolSelectionOutput(TypedDict):
|
|
22
|
+
connected_tool_ids: list[str]
|
|
23
|
+
unconnected_tool_ids: list[str]
|
|
20
24
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
llm: BaseChatModel
|
|
24
|
-
):
|
|
25
|
+
|
|
26
|
+
def build_graph(tool_registry: ToolRegistry, llm: BaseChatModel):
|
|
25
27
|
@tool
|
|
26
28
|
async def search_tools(queries: list[str]) -> str:
|
|
27
29
|
"""Search tools for a given list of queries
|
|
28
30
|
Each single query should be atomic (doable with a single tool).
|
|
29
31
|
For tasks requiring multiple tools, add separate queries for each subtask"""
|
|
30
32
|
logger.info(f"Searching tools for queries: '{queries}'")
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
if tool["id"] not in app_tools[app]:
|
|
49
|
-
app_tools[app][tool["id"]] = tool["description"]
|
|
50
|
-
for app in app_tools:
|
|
51
|
-
app_status = "connected" if app in connected_apps else "NOT connected"
|
|
52
|
-
all_tool_candidates += f"Tools from {app} (status: {app_status} by user):\n"
|
|
53
|
-
for tool in app_tools[app]:
|
|
54
|
-
all_tool_candidates += f" - {tool}: {app_tools[app][tool]}\n"
|
|
55
|
-
all_tool_candidates += "\n"
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
return all_tool_candidates
|
|
59
|
-
except Exception as e:
|
|
60
|
-
logger.error(f"Error retrieving tools: {e}")
|
|
61
|
-
return "Error: " + str(e)
|
|
62
|
-
|
|
33
|
+
messages = [
|
|
34
|
+
{
|
|
35
|
+
"role": "system",
|
|
36
|
+
"content": [
|
|
37
|
+
{
|
|
38
|
+
"type": "text",
|
|
39
|
+
"text": TOOLS_LIST,
|
|
40
|
+
"cache_control": {"type": "ephemeral", "ttl": "1h"},
|
|
41
|
+
}
|
|
42
|
+
],
|
|
43
|
+
},
|
|
44
|
+
{"role": "user", "content": str(queries)},
|
|
45
|
+
]
|
|
46
|
+
response = llm.with_structured_output(ToolSelectionOutput).invoke(messages)
|
|
47
|
+
response_text = f"Connected tools: {response['connected_tool_ids']}\nUnconnected tools: {response['unconnected_tool_ids']}"
|
|
48
|
+
return response_text
|
|
49
|
+
|
|
63
50
|
@tool
|
|
64
51
|
async def load_tools(tool_ids: list[str]) -> list[dict[str, Any]]:
|
|
65
|
-
"""Load the tools for the given tool ids. Returns the tool name, description, parameters schema, and output schema."""
|
|
52
|
+
"""Load the tools for the given tool ids. Returns the tool name, description, parameters schema, and output schema. A tool id is made up using the app_id and the tool_name, attached by double underscore (__). e.g. google_mail__send_email"""
|
|
66
53
|
temp_manager = tool_registry.tool_manager
|
|
67
54
|
temp_manager.clear_tools()
|
|
68
55
|
await tool_registry.export_tools(tool_ids, format=ToolFormat.NATIVE)
|
|
69
56
|
tool_details = []
|
|
70
57
|
for tool_id in tool_ids:
|
|
71
58
|
tool = temp_manager.get_tool(tool_id)
|
|
72
|
-
tool_details.append(
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
59
|
+
tool_details.append(
|
|
60
|
+
{
|
|
61
|
+
"name": tool.name,
|
|
62
|
+
"description": tool.description,
|
|
63
|
+
"parameters_schema": tool.parameters,
|
|
64
|
+
"output_schema": tool.output_schema,
|
|
65
|
+
}
|
|
66
|
+
)
|
|
78
67
|
return tool_details
|
|
79
|
-
|
|
68
|
+
|
|
80
69
|
@tool
|
|
81
70
|
async def call_tool(tool_id: str, tool_args: dict[str, Any]) -> Any:
|
|
82
71
|
"""Call the tool with the given id and arguments."""
|
|
83
72
|
return await tool_registry.call_tool(tool_id, tool_args)
|
|
84
73
|
|
|
85
|
-
|
|
86
|
-
|
|
74
|
+
async def call_model(
|
|
75
|
+
state: State, runtime: Runtime[Context]
|
|
76
|
+
) -> Command[Literal["select_tools", "call_tools"]]:
|
|
87
77
|
logger.info("Calling model...")
|
|
88
78
|
try:
|
|
89
|
-
system_message = runtime.context.system_prompt.format(
|
|
90
|
-
|
|
79
|
+
system_message = runtime.context.system_prompt.format(
|
|
80
|
+
system_time=datetime.now(tz=UTC).isoformat()
|
|
81
|
+
)
|
|
82
|
+
messages = [
|
|
83
|
+
{
|
|
84
|
+
"role": "system",
|
|
85
|
+
"content": [
|
|
86
|
+
{
|
|
87
|
+
"type": "text",
|
|
88
|
+
"text": system_message,
|
|
89
|
+
"cache_control": {"type": "ephemeral", "ttl": "1h"},
|
|
90
|
+
}
|
|
91
|
+
],
|
|
92
|
+
},
|
|
93
|
+
*state["messages"],
|
|
94
|
+
]
|
|
91
95
|
|
|
92
96
|
model = llm
|
|
93
97
|
|
|
94
98
|
if isinstance(model, ChatAnthropic):
|
|
95
99
|
model_with_tools = model.bind_tools(
|
|
96
|
-
[search_tools, load_tools, call_tool],
|
|
100
|
+
[search_tools, load_tools, call_tool],
|
|
101
|
+
tool_choice="auto",
|
|
102
|
+
cache_control={"type": "ephemeral", "ttl": "1h"},
|
|
97
103
|
)
|
|
98
104
|
else:
|
|
99
|
-
model_with_tools = model.bind_tools(
|
|
105
|
+
model_with_tools = model.bind_tools(
|
|
106
|
+
[search_tools, load_tools, call_tool], tool_choice="auto"
|
|
107
|
+
)
|
|
100
108
|
response = cast(AIMessage, await model_with_tools.ainvoke(messages))
|
|
101
109
|
|
|
102
110
|
if response.tool_calls:
|
|
103
|
-
logger.info(
|
|
111
|
+
logger.info(
|
|
112
|
+
f"Model responded with {len(response.tool_calls)} tool calls."
|
|
113
|
+
)
|
|
104
114
|
if len(response.tool_calls) > 1:
|
|
105
|
-
raise Exception(
|
|
115
|
+
raise Exception(
|
|
116
|
+
"Not possible in Claude with llm.bind_tools(tools=tools, tool_choice='auto')"
|
|
117
|
+
)
|
|
106
118
|
tool_call = response.tool_calls[0]
|
|
107
119
|
if tool_call["name"] == search_tools.name:
|
|
108
120
|
logger.info("Model requested to select tools.")
|
|
@@ -110,10 +122,18 @@ def build_graph(
|
|
|
110
122
|
elif tool_call["name"] == load_tools.name:
|
|
111
123
|
logger.info("Model requested to load tools.")
|
|
112
124
|
tool_details = await load_tools.ainvoke(input=tool_call["args"])
|
|
113
|
-
tool_msg = ToolMessage(
|
|
125
|
+
tool_msg = ToolMessage(
|
|
126
|
+
f"Loaded tools. {tool_details}", tool_call_id=tool_call["id"]
|
|
127
|
+
)
|
|
114
128
|
selected_tool_ids = tool_call["args"]["tool_ids"]
|
|
115
129
|
logger.info(f"Loaded tools: {selected_tool_ids}")
|
|
116
|
-
return Command(
|
|
130
|
+
return Command(
|
|
131
|
+
goto="call_model",
|
|
132
|
+
update={
|
|
133
|
+
"messages": [response, tool_msg],
|
|
134
|
+
"selected_tool_ids": selected_tool_ids,
|
|
135
|
+
},
|
|
136
|
+
)
|
|
117
137
|
elif tool_call["name"] == call_tool.name:
|
|
118
138
|
logger.info("Model requested to call tool.")
|
|
119
139
|
return Command(goto="call_tools", update={"messages": [response]})
|
|
@@ -125,12 +145,16 @@ def build_graph(
|
|
|
125
145
|
logger.error(f"Error in call_model: {e}")
|
|
126
146
|
raise
|
|
127
147
|
|
|
128
|
-
async def select_tools(
|
|
148
|
+
async def select_tools(
|
|
149
|
+
state: State, runtime: Runtime[Context]
|
|
150
|
+
) -> Command[Literal["call_model"]]:
|
|
129
151
|
logger.info("Selecting tools...")
|
|
130
152
|
try:
|
|
131
153
|
tool_call = state["messages"][-1].tool_calls[0]
|
|
132
|
-
searched_tools= await search_tools.ainvoke(input=tool_call["args"])
|
|
133
|
-
tool_msg = ToolMessage(
|
|
154
|
+
searched_tools = await search_tools.ainvoke(input=tool_call["args"])
|
|
155
|
+
tool_msg = ToolMessage(
|
|
156
|
+
f"Available tools: {searched_tools}", tool_call_id=tool_call["id"]
|
|
157
|
+
)
|
|
134
158
|
return Command(goto="call_model", update={"messages": [tool_msg]})
|
|
135
159
|
except Exception as e:
|
|
136
160
|
logger.error(f"Error in select_tools: {e}")
|
|
@@ -146,7 +170,9 @@ def build_graph(
|
|
|
146
170
|
logger.info(f"Executing tool: {tool_id} with args: {tool_args}")
|
|
147
171
|
try:
|
|
148
172
|
await tool_registry.export_tools([tool_id], ToolFormat.LANGCHAIN)
|
|
149
|
-
tool_result = await call_tool.ainvoke(
|
|
173
|
+
tool_result = await call_tool.ainvoke(
|
|
174
|
+
input={"tool_id": tool_id, "tool_args": tool_args}
|
|
175
|
+
)
|
|
150
176
|
logger.info(f"Tool '{tool_id}' executed successfully.")
|
|
151
177
|
outputs.append(
|
|
152
178
|
ToolMessage(
|
|
@@ -165,7 +191,10 @@ def build_graph(
|
|
|
165
191
|
tool_call_id=tool_call["id"],
|
|
166
192
|
)
|
|
167
193
|
)
|
|
168
|
-
return Command(
|
|
194
|
+
return Command(
|
|
195
|
+
goto="call_model",
|
|
196
|
+
update={"messages": outputs, "selected_tool_ids": recent_tool_ids},
|
|
197
|
+
)
|
|
169
198
|
|
|
170
199
|
builder = StateGraph(State, context_schema=Context)
|
|
171
200
|
|
|
@@ -1,5 +1,25 @@
|
|
|
1
1
|
"""Default prompts used by the agent."""
|
|
2
2
|
|
|
3
|
+
import os
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def load_tools_from_file():
|
|
8
|
+
"""Load tools from the generated text file."""
|
|
9
|
+
# Get the directory where this file is located
|
|
10
|
+
current_dir = Path(__file__).parent
|
|
11
|
+
|
|
12
|
+
tools_file = current_dir / "tools_important.txt"
|
|
13
|
+
if not tools_file.exists():
|
|
14
|
+
tools_file = current_dir / "tools_all.txt"
|
|
15
|
+
|
|
16
|
+
if tools_file.exists():
|
|
17
|
+
with open(tools_file, "r", encoding="utf-8") as f:
|
|
18
|
+
return f.read()
|
|
19
|
+
else:
|
|
20
|
+
return "No tools file found. Please run tool_retrieve.py to generate the tools list."
|
|
21
|
+
|
|
22
|
+
|
|
3
23
|
SYSTEM_PROMPT = """You are a helpful AI assistant.
|
|
4
24
|
|
|
5
25
|
**Core Directives:**
|
|
@@ -11,3 +31,12 @@ SYSTEM_PROMPT = """You are a helpful AI assistant.
|
|
|
11
31
|
|
|
12
32
|
System time: {system_time}
|
|
13
33
|
"""
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
TOOLS_LIST = f""" This is the list of all the tools available to you:
|
|
37
|
+
{load_tools_from_file()}
|
|
38
|
+
|
|
39
|
+
You will be provided a list of queries (which may be similar or different from each other). Your job is to select the relavent tools for the user's request. sometimes, multiple apps might be relevant for the same task. Prefer connected apps over unconnected apps while breaking a tie. If more than one relevant app (or none of the relevant apps) are connected, you must return both apps tools. If the query specifically asks you to use an app that is not connected, return the tools for that app, they can still be connected by the user.
|
|
40
|
+
|
|
41
|
+
You have to return the tool_ids by constructing the tool_id from the app_id and the tool_name, attached by double underscore (__). e.g. google_mail__send_email
|
|
42
|
+
"""
|