universal-mcp-agents 0.1.23rc1__py3-none-any.whl → 0.1.23rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of universal-mcp-agents might be problematic. Click here for more details.
- universal_mcp/agents/__init__.py +2 -2
- universal_mcp/agents/cli.py +1 -1
- universal_mcp/agents/codeact0/__main__.py +2 -5
- universal_mcp/agents/codeact0/agent.py +144 -112
- universal_mcp/agents/codeact0/prompts.py +48 -33
- universal_mcp/agents/codeact0/state.py +2 -2
- universal_mcp/agents/codeact0/tools.py +48 -6
- universal_mcp/agents/codeact0/utils.py +26 -5
- {universal_mcp_agents-0.1.23rc1.dist-info → universal_mcp_agents-0.1.23rc2.dist-info}/METADATA +3 -3
- {universal_mcp_agents-0.1.23rc1.dist-info → universal_mcp_agents-0.1.23rc2.dist-info}/RECORD +11 -11
- {universal_mcp_agents-0.1.23rc1.dist-info → universal_mcp_agents-0.1.23rc2.dist-info}/WHEEL +0 -0
universal_mcp/agents/__init__.py
CHANGED
|
@@ -9,7 +9,7 @@ from universal_mcp.agents.simple import SimpleAgent
|
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
def get_agent(
|
|
12
|
-
agent_name: Literal["react", "simple", "builder", "bigtool", "codeact-
|
|
12
|
+
agent_name: Literal["react", "simple", "builder", "bigtool", "codeact-repl"],
|
|
13
13
|
):
|
|
14
14
|
if agent_name == "react":
|
|
15
15
|
return ReactAgent
|
|
@@ -23,7 +23,7 @@ def get_agent(
|
|
|
23
23
|
return CodeActPlaybookAgent
|
|
24
24
|
else:
|
|
25
25
|
raise ValueError(
|
|
26
|
-
f"Unknown agent: {agent_name}. Possible values: react, simple, builder, bigtool, codeact-
|
|
26
|
+
f"Unknown agent: {agent_name}. Possible values: react, simple, builder, bigtool, codeact-repl"
|
|
27
27
|
)
|
|
28
28
|
|
|
29
29
|
|
universal_mcp/agents/cli.py
CHANGED
|
@@ -25,7 +25,7 @@ def run(name: str = "react"):
|
|
|
25
25
|
client = AgentrClient()
|
|
26
26
|
params = {
|
|
27
27
|
"instructions": "You are a helpful assistant",
|
|
28
|
-
"model": "
|
|
28
|
+
"model": "azure/gpt-4.1",
|
|
29
29
|
"registry": AgentrRegistry(client=client),
|
|
30
30
|
"memory": MemorySaver(),
|
|
31
31
|
}
|
|
@@ -13,15 +13,12 @@ async def main():
|
|
|
13
13
|
agent = CodeActPlaybookAgent(
|
|
14
14
|
name="CodeAct Agent",
|
|
15
15
|
instructions="Be very concise in your answers.",
|
|
16
|
-
model="
|
|
17
|
-
tools={"google_mail": ["list_messages"]},
|
|
16
|
+
model="azure/gpt-4.1",
|
|
18
17
|
registry=AgentrRegistry(),
|
|
19
18
|
memory=memory,
|
|
20
19
|
)
|
|
21
20
|
print("Starting agent...")
|
|
22
|
-
result = await agent.invoke(
|
|
23
|
-
user_input="Fetch unsubscribe links from my Gmail inbox for promo emails I have received in the last 7 days"
|
|
24
|
-
)
|
|
21
|
+
result = await agent.invoke(user_input="load all the tools of reddit which can be used to search subreddit")
|
|
25
22
|
print(messages_to_list(result["messages"]))
|
|
26
23
|
|
|
27
24
|
|
|
@@ -1,35 +1,36 @@
|
|
|
1
|
+
import copy
|
|
1
2
|
import json
|
|
2
3
|
import re
|
|
3
|
-
from typing import Literal, cast
|
|
4
4
|
import uuid
|
|
5
|
+
from typing import Literal, cast
|
|
5
6
|
|
|
7
|
+
from langchain_anthropic import ChatAnthropic
|
|
6
8
|
from langchain_core.messages import AIMessage, ToolMessage
|
|
7
9
|
from langchain_core.tools import StructuredTool
|
|
8
10
|
from langgraph.checkpoint.base import BaseCheckpointSaver
|
|
9
11
|
from langgraph.graph import START, StateGraph
|
|
10
12
|
from langgraph.types import Command, RetryPolicy, StreamWriter
|
|
11
13
|
from universal_mcp.tools.registry import ToolRegistry
|
|
12
|
-
from universal_mcp.types import
|
|
14
|
+
from universal_mcp.types import ToolFormat
|
|
13
15
|
|
|
14
16
|
from universal_mcp.agents.base import BaseAgent
|
|
15
17
|
from universal_mcp.agents.codeact0.llm_tool import smart_print
|
|
16
18
|
from universal_mcp.agents.codeact0.prompts import (
|
|
17
19
|
PLAYBOOK_GENERATING_PROMPT,
|
|
18
|
-
PLAYBOOK_PLANNING_PROMPT,
|
|
19
20
|
PLAYBOOK_META_PROMPT,
|
|
21
|
+
PLAYBOOK_PLANNING_PROMPT,
|
|
20
22
|
create_default_prompt,
|
|
21
23
|
)
|
|
22
24
|
from universal_mcp.agents.codeact0.sandbox import eval_unsafe, execute_ipython_cell, handle_execute_ipython_cell
|
|
23
|
-
from universal_mcp.agents.codeact0.state import CodeActState, PlaybookCode,
|
|
25
|
+
from universal_mcp.agents.codeact0.state import CodeActState, PlaybookCode, PlaybookMeta, PlaybookPlan
|
|
24
26
|
from universal_mcp.agents.codeact0.tools import (
|
|
25
27
|
create_meta_tools,
|
|
26
28
|
enter_playbook_mode,
|
|
27
29
|
get_valid_tools,
|
|
28
30
|
)
|
|
29
|
-
from universal_mcp.agents.codeact0.utils import
|
|
31
|
+
from universal_mcp.agents.codeact0.utils import build_anthropic_cache_message, get_connected_apps_string
|
|
30
32
|
from universal_mcp.agents.llm import load_chat_model
|
|
31
33
|
from universal_mcp.agents.utils import convert_tool_ids_to_dict, filter_retry_on, get_message_text
|
|
32
|
-
from universal_mcp.agents.codeact0.utils import get_connected_apps_string
|
|
33
34
|
|
|
34
35
|
|
|
35
36
|
class CodeActPlaybookAgent(BaseAgent):
|
|
@@ -59,11 +60,12 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
59
60
|
self.tools_config = self.playbook.tools if self.playbook else {}
|
|
60
61
|
self.eval_fn = eval_unsafe
|
|
61
62
|
self.sandbox_timeout = sandbox_timeout
|
|
62
|
-
self.
|
|
63
|
+
self.default_tools_config = {
|
|
63
64
|
"llm": ["generate_text", "classify_data", "extract_data", "call_llm"],
|
|
64
65
|
}
|
|
65
|
-
|
|
66
|
-
|
|
66
|
+
self.final_instructions = ""
|
|
67
|
+
self.tools_context = {}
|
|
68
|
+
self.exported_tools = []
|
|
67
69
|
|
|
68
70
|
async def _build_graph(self):
|
|
69
71
|
meta_tools = create_meta_tools(self.registry)
|
|
@@ -71,28 +73,47 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
71
73
|
self.additional_tools = [
|
|
72
74
|
t if isinstance(t, StructuredTool) else StructuredTool.from_function(t) for t in additional_tools
|
|
73
75
|
]
|
|
76
|
+
|
|
74
77
|
if self.tools_config:
|
|
75
|
-
# Convert dict format to list format if needed
|
|
76
78
|
if isinstance(self.tools_config, dict):
|
|
77
79
|
self.tools_config = [
|
|
78
80
|
f"{provider}__{tool}" for provider, tools in self.tools_config.items() for tool in tools
|
|
79
81
|
]
|
|
80
|
-
|
|
81
|
-
|
|
82
|
+
if not self.registry:
|
|
83
|
+
raise ValueError("Tools are configured but no registry is provided")
|
|
84
|
+
await self.registry.export_tools(self.tools_config, ToolFormat.LANGCHAIN)
|
|
85
|
+
|
|
86
|
+
await self.registry.export_tools(self.default_tools_config, ToolFormat.LANGCHAIN)
|
|
82
87
|
|
|
83
88
|
async def call_model(state: CodeActState) -> Command[Literal["execute_tools"]]:
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
89
|
+
"""This node now only ever binds the four meta-tools to the LLM."""
|
|
90
|
+
messages = build_anthropic_cache_message(self.final_instructions) + state["messages"]
|
|
91
|
+
|
|
92
|
+
agent_facing_tools = [
|
|
93
|
+
execute_ipython_cell,
|
|
94
|
+
enter_playbook_mode,
|
|
95
|
+
meta_tools["search_functions"],
|
|
96
|
+
meta_tools["load_functions"],
|
|
97
|
+
]
|
|
98
|
+
|
|
99
|
+
if isinstance(self.model_instance, ChatAnthropic):
|
|
100
|
+
model_with_tools = self.model_instance.bind_tools(
|
|
101
|
+
tools=agent_facing_tools,
|
|
102
|
+
tool_choice="auto",
|
|
103
|
+
cache_control={"type": "ephemeral", "ttl": "1h"},
|
|
104
|
+
)
|
|
105
|
+
if isinstance(messages[-1].content, str):
|
|
106
|
+
pass
|
|
107
|
+
else:
|
|
108
|
+
last = copy.deepcopy(messages[-1])
|
|
109
|
+
last.content[-1]["cache_control"] = {"type": "ephemeral", "ttl": "5m"}
|
|
110
|
+
messages[-1] = last
|
|
111
|
+
else:
|
|
112
|
+
model_with_tools = self.model_instance.bind_tools(
|
|
113
|
+
tools=agent_facing_tools,
|
|
114
|
+
tool_choice="auto",
|
|
115
|
+
)
|
|
116
|
+
|
|
96
117
|
response = cast(AIMessage, model_with_tools.invoke(messages))
|
|
97
118
|
if response.tool_calls:
|
|
98
119
|
return Command(goto="execute_tools", update={"messages": [response]})
|
|
@@ -106,15 +127,16 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
106
127
|
|
|
107
128
|
tool_messages = []
|
|
108
129
|
new_tool_ids = []
|
|
109
|
-
ask_user = False
|
|
110
|
-
ai_msg = ""
|
|
111
130
|
tool_result = ""
|
|
112
131
|
effective_previous_add_context = state.get("add_context", {})
|
|
113
132
|
effective_existing_context = state.get("context", {})
|
|
133
|
+
# logging.info(f"Initial new_tool_ids_for_context: {new_tool_ids_for_context}")
|
|
114
134
|
|
|
115
135
|
for tool_call in tool_calls:
|
|
136
|
+
tool_name = tool_call["name"]
|
|
137
|
+
tool_args = tool_call["args"]
|
|
116
138
|
try:
|
|
117
|
-
if
|
|
139
|
+
if tool_name == "enter_playbook_mode":
|
|
118
140
|
tool_message = ToolMessage(
|
|
119
141
|
content=json.dumps("Entered Playbook Mode."),
|
|
120
142
|
name=tool_call["name"],
|
|
@@ -124,11 +146,11 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
124
146
|
goto="playbook",
|
|
125
147
|
update={"playbook_mode": "planning", "messages": [tool_message]}, # Entered Playbook mode
|
|
126
148
|
)
|
|
127
|
-
elif
|
|
149
|
+
elif tool_name == "execute_ipython_cell":
|
|
128
150
|
code = tool_call["args"]["snippet"]
|
|
129
151
|
output, new_context, new_add_context = await handle_execute_ipython_cell(
|
|
130
152
|
code,
|
|
131
|
-
self.tools_context,
|
|
153
|
+
self.tools_context, # Uses the dynamically updated context
|
|
132
154
|
self.eval_fn,
|
|
133
155
|
effective_previous_add_context,
|
|
134
156
|
effective_existing_context,
|
|
@@ -136,19 +158,22 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
136
158
|
effective_existing_context = new_context
|
|
137
159
|
effective_previous_add_context = new_add_context
|
|
138
160
|
tool_result = output
|
|
139
|
-
elif
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
161
|
+
elif tool_name == "load_functions":
|
|
162
|
+
# The tool now does all the work of validation and formatting.
|
|
163
|
+
tool_result = await meta_tools["load_functions"].ainvoke(tool_args)
|
|
164
|
+
|
|
165
|
+
# We still need to update the sandbox context for `execute_ipython_cell`
|
|
166
|
+
valid_tools, _ = await get_valid_tools(tool_ids=tool_args["tool_ids"], registry=self.registry)
|
|
143
167
|
new_tool_ids.extend(valid_tools)
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
168
|
+
if new_tool_ids:
|
|
169
|
+
newly_exported = await self.registry.export_tools(new_tool_ids, ToolFormat.LANGCHAIN)
|
|
170
|
+
_, new_context_for_sandbox = create_default_prompt(
|
|
171
|
+
newly_exported, [], "", "", None
|
|
172
|
+
) # is_initial_prompt is False by default
|
|
173
|
+
self.tools_context.update(new_context_for_sandbox)
|
|
174
|
+
|
|
175
|
+
elif tool_name == "search_functions":
|
|
176
|
+
tool_result = await meta_tools["search_functions"].ainvoke(tool_args)
|
|
152
177
|
else:
|
|
153
178
|
raise Exception(
|
|
154
179
|
f"Unexpected tool call: {tool_call['name']}. "
|
|
@@ -164,23 +189,6 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
164
189
|
)
|
|
165
190
|
tool_messages.append(tool_message)
|
|
166
191
|
|
|
167
|
-
if new_tool_ids:
|
|
168
|
-
self.tools_config.extend(new_tool_ids)
|
|
169
|
-
self.exported_tools = await self.registry.export_tools(new_tool_ids, ToolFormat.LANGCHAIN)
|
|
170
|
-
self.final_instructions, self.tools_context = create_default_prompt(
|
|
171
|
-
self.exported_tools, self.additional_tools, self.instructions, await get_connected_apps_string(self.registry), self.playbook
|
|
172
|
-
)
|
|
173
|
-
if ask_user:
|
|
174
|
-
tool_messages.append(AIMessage(content=ai_msg))
|
|
175
|
-
return Command(
|
|
176
|
-
update={
|
|
177
|
-
"messages": tool_messages,
|
|
178
|
-
"selected_tool_ids": new_tool_ids,
|
|
179
|
-
"context": effective_existing_context,
|
|
180
|
-
"add_context": effective_previous_add_context,
|
|
181
|
-
}
|
|
182
|
-
)
|
|
183
|
-
|
|
184
192
|
return Command(
|
|
185
193
|
goto="call_model",
|
|
186
194
|
update={
|
|
@@ -195,21 +203,31 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
195
203
|
playbook_mode = state.get("playbook_mode")
|
|
196
204
|
if playbook_mode == "planning":
|
|
197
205
|
plan_id = str(uuid.uuid4())
|
|
198
|
-
writer({
|
|
199
|
-
"type": "custom",
|
|
200
|
-
id: plan_id,
|
|
201
|
-
"name": "planning",
|
|
202
|
-
"data": {"update": bool(self.playbook)}
|
|
203
|
-
})
|
|
206
|
+
writer({"type": "custom", id: plan_id, "name": "planning", "data": {"update": bool(self.playbook)}})
|
|
204
207
|
planning_instructions = self.instructions + PLAYBOOK_PLANNING_PROMPT
|
|
205
208
|
messages = [{"role": "system", "content": planning_instructions}] + state["messages"]
|
|
206
209
|
|
|
207
210
|
model_with_structured_output = self.playbook_model_instance.with_structured_output(PlaybookPlan)
|
|
208
211
|
response = model_with_structured_output.invoke(messages)
|
|
209
212
|
plan = cast(PlaybookPlan, response)
|
|
210
|
-
|
|
213
|
+
|
|
211
214
|
writer({"type": "custom", id: plan_id, "name": "planning", "data": {"plan": plan.steps}})
|
|
212
|
-
return Command(
|
|
215
|
+
return Command(
|
|
216
|
+
update={
|
|
217
|
+
"messages": [
|
|
218
|
+
AIMessage(
|
|
219
|
+
content=json.dumps(plan.model_dump()),
|
|
220
|
+
additional_kwargs={
|
|
221
|
+
"type": "planning",
|
|
222
|
+
"plan": plan.steps,
|
|
223
|
+
"update": bool(self.playbook),
|
|
224
|
+
},
|
|
225
|
+
)
|
|
226
|
+
],
|
|
227
|
+
"playbook_mode": "confirming",
|
|
228
|
+
"plan": plan.steps,
|
|
229
|
+
}
|
|
230
|
+
)
|
|
213
231
|
|
|
214
232
|
elif playbook_mode == "confirming":
|
|
215
233
|
# Deterministic routing based on three exact button inputs from UI
|
|
@@ -231,23 +249,20 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
231
249
|
# Update flow: use existing name/description and do not re-generate
|
|
232
250
|
name = getattr(self.playbook, "name", None)
|
|
233
251
|
description = getattr(self.playbook, "description", None)
|
|
234
|
-
writer(
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
"
|
|
240
|
-
|
|
241
|
-
|
|
252
|
+
writer(
|
|
253
|
+
{
|
|
254
|
+
"type": "custom",
|
|
255
|
+
id: self.meta_id,
|
|
256
|
+
"name": "generating",
|
|
257
|
+
"data": {
|
|
258
|
+
"update": True,
|
|
259
|
+
"name": name,
|
|
260
|
+
"description": description,
|
|
261
|
+
},
|
|
242
262
|
}
|
|
243
|
-
|
|
263
|
+
)
|
|
244
264
|
else:
|
|
245
|
-
writer({
|
|
246
|
-
"type": "custom",
|
|
247
|
-
id: self.meta_id,
|
|
248
|
-
"name": "generating",
|
|
249
|
-
"data": {"update": False}
|
|
250
|
-
})
|
|
265
|
+
writer({"type": "custom", id: self.meta_id, "name": "generating", "data": {"update": False}})
|
|
251
266
|
|
|
252
267
|
meta_instructions = self.instructions + PLAYBOOK_META_PROMPT
|
|
253
268
|
messages = [{"role": "system", "content": meta_instructions}] + state["messages"]
|
|
@@ -258,16 +273,28 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
258
273
|
name, description = meta.name, meta.description
|
|
259
274
|
|
|
260
275
|
# Emit intermediary UI update with created name/description
|
|
261
|
-
writer(
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
276
|
+
writer(
|
|
277
|
+
{
|
|
278
|
+
"type": "custom",
|
|
279
|
+
id: self.meta_id,
|
|
280
|
+
"name": "generating",
|
|
281
|
+
"data": {"update": False, "name": name, "description": description},
|
|
282
|
+
}
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
return Command(
|
|
286
|
+
goto="playbook",
|
|
287
|
+
update={
|
|
288
|
+
"playbook_mode": "generating",
|
|
289
|
+
"playbook_name": name,
|
|
290
|
+
"playbook_description": description,
|
|
291
|
+
},
|
|
292
|
+
)
|
|
269
293
|
if t == "i would like to modify the plan":
|
|
270
|
-
prompt_ai = AIMessage(
|
|
294
|
+
prompt_ai = AIMessage(
|
|
295
|
+
content="What would you like to change about the plan? Let me know and I'll update the plan accordingly.",
|
|
296
|
+
additional_kwargs={"stream": "true"},
|
|
297
|
+
)
|
|
271
298
|
return Command(update={"playbook_mode": "planning", "messages": [prompt_ai]})
|
|
272
299
|
if t == "let's do something else":
|
|
273
300
|
return Command(goto="call_model", update={"playbook_mode": "inactive"})
|
|
@@ -278,7 +305,7 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
278
305
|
elif playbook_mode == "generating":
|
|
279
306
|
generating_instructions = self.instructions + PLAYBOOK_GENERATING_PROMPT
|
|
280
307
|
messages = [{"role": "system", "content": generating_instructions}] + state["messages"]
|
|
281
|
-
|
|
308
|
+
|
|
282
309
|
model_with_structured_output = self.playbook_model_instance.with_structured_output(PlaybookCode)
|
|
283
310
|
response = model_with_structured_output.invoke(messages)
|
|
284
311
|
func_code = cast(PlaybookCode, response).code
|
|
@@ -291,12 +318,12 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
291
318
|
function_name = "generated_playbook"
|
|
292
319
|
|
|
293
320
|
# Use generated metadata if available
|
|
294
|
-
final_name = state.get("
|
|
321
|
+
final_name = state.get("playbook_.pyname") or function_name
|
|
295
322
|
final_description = state.get("playbook_description") or f"Generated playbook: {function_name}"
|
|
296
323
|
|
|
297
324
|
# Save or update an Agent using the helper registry
|
|
298
325
|
try:
|
|
299
|
-
if not self.playbook_registry:
|
|
326
|
+
if not self.playbook_registry:
|
|
300
327
|
raise ValueError("Playbook registry is not configured")
|
|
301
328
|
|
|
302
329
|
# Build instructions payload embedding the plan and function code
|
|
@@ -318,19 +345,21 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
318
345
|
except Exception as e:
|
|
319
346
|
raise e
|
|
320
347
|
|
|
321
|
-
writer(
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
|
|
326
|
-
"
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
348
|
+
writer(
|
|
349
|
+
{
|
|
350
|
+
"type": "custom",
|
|
351
|
+
id: self.meta_id,
|
|
352
|
+
"name": "generating",
|
|
353
|
+
"data": {
|
|
354
|
+
"id": str(res.id),
|
|
355
|
+
"update": bool(self.playbook),
|
|
356
|
+
"name": final_name,
|
|
357
|
+
"description": final_description,
|
|
358
|
+
},
|
|
330
359
|
}
|
|
331
|
-
|
|
360
|
+
)
|
|
332
361
|
mock_assistant_message = AIMessage(
|
|
333
|
-
content=json.dumps(response.
|
|
362
|
+
content=json.dumps(response.model_dump()),
|
|
334
363
|
additional_kwargs={
|
|
335
364
|
"type": "generating",
|
|
336
365
|
"id": str(res.id),
|
|
@@ -340,17 +369,21 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
340
369
|
},
|
|
341
370
|
)
|
|
342
371
|
|
|
343
|
-
return Command(
|
|
344
|
-
update={"messages": [mock_assistant_message], "playbook_mode": "normal"}
|
|
345
|
-
)
|
|
372
|
+
return Command(update={"messages": [mock_assistant_message], "playbook_mode": "normal"})
|
|
346
373
|
|
|
347
374
|
async def route_entry(state: CodeActState) -> Literal["call_model", "playbook"]:
|
|
348
375
|
"""Route to either normal mode or playbook creation"""
|
|
349
|
-
|
|
350
|
-
|
|
351
|
-
|
|
376
|
+
all_tools = await self.registry.export_tools(state["selected_tool_ids"], ToolFormat.LANGCHAIN)
|
|
377
|
+
# print(all_tools)
|
|
378
|
+
|
|
379
|
+
# Create the initial system prompt and tools_context in one go
|
|
352
380
|
self.final_instructions, self.tools_context = create_default_prompt(
|
|
353
|
-
|
|
381
|
+
all_tools,
|
|
382
|
+
self.additional_tools,
|
|
383
|
+
self.instructions,
|
|
384
|
+
await get_connected_apps_string(self.registry),
|
|
385
|
+
self.playbook,
|
|
386
|
+
is_initial_prompt=True,
|
|
354
387
|
)
|
|
355
388
|
if state.get("playbook_mode") in ["planning", "confirming", "generating"]:
|
|
356
389
|
return "playbook"
|
|
@@ -361,5 +394,4 @@ class CodeActPlaybookAgent(BaseAgent):
|
|
|
361
394
|
agent.add_node(playbook)
|
|
362
395
|
agent.add_node(execute_tools)
|
|
363
396
|
agent.add_conditional_edges(START, route_entry)
|
|
364
|
-
# agent.add_edge(START, "call_model")
|
|
365
397
|
return agent.compile(checkpointer=self.memory)
|
|
@@ -3,6 +3,7 @@ import re
|
|
|
3
3
|
from collections.abc import Sequence
|
|
4
4
|
|
|
5
5
|
from langchain_core.tools import StructuredTool
|
|
6
|
+
|
|
6
7
|
from universal_mcp.agents.codeact0.utils import schema_to_signature
|
|
7
8
|
|
|
8
9
|
uneditable_prompt = """
|
|
@@ -137,13 +138,20 @@ def create_default_prompt(
|
|
|
137
138
|
base_prompt: str | None = None,
|
|
138
139
|
apps_string: str | None = None,
|
|
139
140
|
playbook: object | None = None,
|
|
141
|
+
is_initial_prompt: bool = False,
|
|
140
142
|
):
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
143
|
+
if is_initial_prompt:
|
|
144
|
+
system_prompt = uneditable_prompt.strip()
|
|
145
|
+
if apps_string:
|
|
146
|
+
system_prompt += f"\n\n**Connected external applications (These apps have been logged into by the user):**\n{apps_string}\n\n Use `search_functions` to search for functions you can perform using the above. You can also discover more applications using the `search_functions` tool to find additional tools and integrations, if required.\n"
|
|
147
|
+
system_prompt += (
|
|
148
|
+
"\n\nIn addition to the Python Standard Library, you can use the following external functions:\n"
|
|
149
|
+
)
|
|
150
|
+
else:
|
|
151
|
+
system_prompt = ""
|
|
152
|
+
|
|
146
153
|
tools_context = {}
|
|
154
|
+
tool_definitions = []
|
|
147
155
|
|
|
148
156
|
for tool in tools:
|
|
149
157
|
if hasattr(tool, "func") and tool.func is not None:
|
|
@@ -152,10 +160,11 @@ def create_default_prompt(
|
|
|
152
160
|
elif hasattr(tool, "coroutine") and tool.coroutine is not None:
|
|
153
161
|
tool_callable = tool.coroutine
|
|
154
162
|
is_async = True
|
|
155
|
-
|
|
163
|
+
tool_definitions.append(
|
|
164
|
+
f'''{"async " if is_async else ""}{schema_to_signature(tool.args, tool.name)}:
|
|
156
165
|
"""{tool.description}"""
|
|
157
|
-
...
|
|
158
|
-
|
|
166
|
+
...'''
|
|
167
|
+
)
|
|
159
168
|
safe_name = make_safe_function_name(tool.name)
|
|
160
169
|
tools_context[safe_name] = tool_callable
|
|
161
170
|
|
|
@@ -166,34 +175,40 @@ def create_default_prompt(
|
|
|
166
175
|
elif hasattr(tool, "coroutine") and tool.coroutine is not None:
|
|
167
176
|
tool_callable = tool.coroutine
|
|
168
177
|
is_async = True
|
|
169
|
-
|
|
178
|
+
tool_definitions.append(
|
|
179
|
+
f'''{"async " if is_async else ""}def {tool.name} {str(inspect.signature(tool_callable))}:
|
|
170
180
|
"""{tool.description}"""
|
|
171
|
-
...
|
|
172
|
-
|
|
181
|
+
...'''
|
|
182
|
+
)
|
|
173
183
|
safe_name = make_safe_function_name(tool.name)
|
|
174
184
|
tools_context[safe_name] = tool_callable
|
|
175
185
|
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
186
|
+
system_prompt += "\n".join(tool_definitions)
|
|
187
|
+
|
|
188
|
+
if is_initial_prompt:
|
|
189
|
+
if base_prompt and base_prompt.strip():
|
|
190
|
+
system_prompt += (
|
|
191
|
+
f"\n\nUse the following information/instructions while completing your tasks:\n\n{base_prompt}"
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Append existing playbook (plan + code) if provided
|
|
195
|
+
try:
|
|
196
|
+
if playbook and hasattr(playbook, "instructions"):
|
|
197
|
+
pb = playbook.instructions or {}
|
|
198
|
+
plan = pb.get("playbookPlan")
|
|
199
|
+
code = pb.get("playbookScript")
|
|
200
|
+
if plan or code:
|
|
201
|
+
system_prompt += "\n\nExisting Playbook Provided:\n"
|
|
202
|
+
if plan:
|
|
203
|
+
if isinstance(plan, list):
|
|
204
|
+
plan_block = "\n".join(f"- {str(s)}" for s in plan)
|
|
205
|
+
else:
|
|
206
|
+
plan_block = str(plan)
|
|
207
|
+
system_prompt += f"Plan Steps:\n{plan_block}\n"
|
|
208
|
+
if code:
|
|
209
|
+
system_prompt += f"\nScript:\n```python\n{str(code)}\n```\n"
|
|
210
|
+
except Exception:
|
|
211
|
+
# Silently ignore formatting issues
|
|
212
|
+
pass
|
|
198
213
|
|
|
199
214
|
return system_prompt, tools_context
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
from typing import Annotated, Any
|
|
1
|
+
from typing import Annotated, Any
|
|
2
2
|
|
|
3
3
|
from langgraph.prebuilt.chat_agent_executor import AgentState
|
|
4
4
|
from pydantic import BaseModel, Field
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
class PlaybookPlan(BaseModel):
|
|
8
|
-
steps:
|
|
8
|
+
steps: list[str] = Field(description="The steps of the playbook.")
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class PlaybookCode(BaseModel):
|
|
@@ -4,16 +4,18 @@ from collections import defaultdict
|
|
|
4
4
|
from typing import Annotated, Any
|
|
5
5
|
|
|
6
6
|
from langchain_core.tools import tool
|
|
7
|
-
from loguru import logger
|
|
8
7
|
from pydantic import Field
|
|
9
8
|
from universal_mcp.agentr.registry import AgentrRegistry
|
|
10
9
|
from universal_mcp.types import ToolFormat
|
|
11
10
|
|
|
11
|
+
from universal_mcp.agents.codeact0.prompts import create_default_prompt
|
|
12
|
+
|
|
12
13
|
|
|
13
14
|
def enter_playbook_mode():
|
|
14
15
|
"""Call this function to enter playbook mode. Playbook mode is when the user wants to store a repeated task as a script with some inputs for the future."""
|
|
15
16
|
return
|
|
16
17
|
|
|
18
|
+
|
|
17
19
|
def create_meta_tools(tool_registry: AgentrRegistry) -> dict[str, Any]:
|
|
18
20
|
"""Create the meta tools for searching and loading tools"""
|
|
19
21
|
|
|
@@ -99,7 +101,9 @@ def create_meta_tools(tool_registry: AgentrRegistry) -> dict[str, Any]:
|
|
|
99
101
|
prioritized_app_id_list = [canonical_app_id]
|
|
100
102
|
else:
|
|
101
103
|
# 1. Perform an initial broad search for tools.
|
|
102
|
-
initial_tool_search_tasks = [
|
|
104
|
+
initial_tool_search_tasks = [
|
|
105
|
+
registry.search_tools(query=q, distance_threshold=THRESHOLD) for q in queries
|
|
106
|
+
]
|
|
103
107
|
initial_tool_results = await asyncio.gather(*initial_tool_search_tasks)
|
|
104
108
|
|
|
105
109
|
# 2. Search for relevant apps.
|
|
@@ -192,15 +196,53 @@ def create_meta_tools(tool_registry: AgentrRegistry) -> dict[str, Any]:
|
|
|
192
196
|
|
|
193
197
|
@tool
|
|
194
198
|
async def load_functions(tool_ids: list[str]) -> str:
|
|
195
|
-
"""
|
|
199
|
+
"""
|
|
200
|
+
Loads specified functions and returns their Python signatures and docstrings.
|
|
201
|
+
This makes the functions available for use inside the 'execute_ipython_cell' tool.
|
|
202
|
+
The agent MUST use the returned information to understand how to call the functions correctly.
|
|
196
203
|
|
|
197
204
|
Args:
|
|
198
|
-
tool_ids:
|
|
205
|
+
tool_ids: A list of function IDs in the format 'app__function'. Example: ['google_mail__send_email']
|
|
199
206
|
|
|
200
207
|
Returns:
|
|
201
|
-
|
|
208
|
+
A string containing the signatures and docstrings of the successfully loaded functions,
|
|
209
|
+
ready for the agent to use in its code.
|
|
202
210
|
"""
|
|
203
|
-
|
|
211
|
+
if not tool_ids:
|
|
212
|
+
return "No tool IDs provided to load."
|
|
213
|
+
|
|
214
|
+
# Step 1: Validate which tools are usable and get login links for others.
|
|
215
|
+
valid_tool_ids, unconnected_links = await get_valid_tools(tool_ids=tool_ids, registry=tool_registry)
|
|
216
|
+
|
|
217
|
+
if not valid_tool_ids:
|
|
218
|
+
return "Error: None of the provided tool IDs could be validated or loaded."
|
|
219
|
+
|
|
220
|
+
# Step 2: Export the schemas of the valid tools.
|
|
221
|
+
try:
|
|
222
|
+
# Create a temporary, clean registry to export only the requested tools
|
|
223
|
+
temp_registry = AgentrRegistry()
|
|
224
|
+
exported_tools = await temp_registry.export_tools(valid_tool_ids, ToolFormat.LANGCHAIN)
|
|
225
|
+
except Exception as e:
|
|
226
|
+
return f"Error exporting tools: {e}"
|
|
227
|
+
|
|
228
|
+
# Step 3: Build the informational string for the agent.
|
|
229
|
+
tool_definitions, _ = create_default_prompt(exported_tools, [], is_initial_prompt=False)
|
|
230
|
+
|
|
231
|
+
result_parts = [
|
|
232
|
+
f"Successfully loaded {len(exported_tools)} functions. They are now available for use inside `execute_ipython_cell`:",
|
|
233
|
+
tool_definitions,
|
|
234
|
+
]
|
|
235
|
+
|
|
236
|
+
response_string = "\n\n".join(result_parts)
|
|
237
|
+
|
|
238
|
+
# Append login links if any apps were not connected
|
|
239
|
+
if unconnected_links:
|
|
240
|
+
links = "\n".join(unconnected_links)
|
|
241
|
+
response_string += (
|
|
242
|
+
f"\n\nPlease ask the user to log in to the following app(s) to use their full functionality:\n{links}"
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
return response_string
|
|
204
246
|
|
|
205
247
|
@tool
|
|
206
248
|
async def web_search(query: str) -> dict:
|
|
@@ -10,6 +10,26 @@ from universal_mcp.types import ToolConfig
|
|
|
10
10
|
MAX_CHARS = 5000
|
|
11
11
|
|
|
12
12
|
|
|
13
|
+
def build_anthropic_cache_message(text: str, role: str = "system", ttl: str = "1h") -> list[dict[str, Any]]:
|
|
14
|
+
"""Build a complete Anthropic cache messages array from text.
|
|
15
|
+
|
|
16
|
+
Returns a list with a single cache message whose content is the
|
|
17
|
+
cached Anthropic content array with ephemeral cache control and TTL.
|
|
18
|
+
"""
|
|
19
|
+
return [
|
|
20
|
+
{
|
|
21
|
+
"role": role,
|
|
22
|
+
"content": [
|
|
23
|
+
{
|
|
24
|
+
"type": "text",
|
|
25
|
+
"text": text,
|
|
26
|
+
"cache_control": {"type": "ephemeral", "ttl": ttl},
|
|
27
|
+
}
|
|
28
|
+
],
|
|
29
|
+
}
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
|
|
13
33
|
def add_tools(tool_config: ToolConfig, tools_to_add: ToolConfig):
|
|
14
34
|
for app_id, new_tools in tools_to_add.items():
|
|
15
35
|
all_tools = tool_config.get(app_id, []) + new_tools
|
|
@@ -375,6 +395,7 @@ def schema_to_signature(schema: dict, func_name: str = "my_function") -> str:
|
|
|
375
395
|
param_str = ",\n ".join(params)
|
|
376
396
|
return f"def {func_name}(\n {param_str},\n):"
|
|
377
397
|
|
|
398
|
+
|
|
378
399
|
def smart_truncate(
|
|
379
400
|
output: str, max_chars_full: int = 2000, max_lines_headtail: int = 20, summary_threshold: int = 10000
|
|
380
401
|
) -> str:
|
|
@@ -413,21 +434,21 @@ async def get_connected_apps_string(registry) -> str:
|
|
|
413
434
|
"""Get a formatted string of connected applications from the registry."""
|
|
414
435
|
if not registry:
|
|
415
436
|
return ""
|
|
416
|
-
|
|
437
|
+
|
|
417
438
|
try:
|
|
418
439
|
# Get connected apps from registry
|
|
419
440
|
connections = await registry.list_connected_apps()
|
|
420
441
|
if not connections:
|
|
421
442
|
return "No applications are currently connected."
|
|
422
|
-
|
|
443
|
+
|
|
423
444
|
# Extract app names from connections
|
|
424
445
|
connected_app_ids = {connection["app_id"] for connection in connections}
|
|
425
|
-
|
|
446
|
+
|
|
426
447
|
# Format the apps list
|
|
427
448
|
apps_list = []
|
|
428
449
|
for app_id in connected_app_ids:
|
|
429
450
|
apps_list.append(f"- {app_id}")
|
|
430
|
-
|
|
451
|
+
|
|
431
452
|
return "\n".join(apps_list)
|
|
432
453
|
except Exception:
|
|
433
|
-
return "Unable to retrieve connected applications."
|
|
454
|
+
return "Unable to retrieve connected applications."
|
{universal_mcp_agents-0.1.23rc1.dist-info → universal_mcp_agents-0.1.23rc2.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: universal-mcp-agents
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.23rc2
|
|
4
4
|
Summary: Add your description here
|
|
5
5
|
Project-URL: Homepage, https://github.com/universal-mcp/applications
|
|
6
6
|
Project-URL: Repository, https://github.com/universal-mcp/applications
|
|
@@ -12,8 +12,8 @@ Requires-Dist: langchain-google-genai>=2.1.10
|
|
|
12
12
|
Requires-Dist: langchain-openai>=0.3.32
|
|
13
13
|
Requires-Dist: langgraph>=0.6.6
|
|
14
14
|
Requires-Dist: typer>=0.17.4
|
|
15
|
-
Requires-Dist: universal-mcp-applications>=0.1.
|
|
16
|
-
Requires-Dist: universal-mcp>=0.1.
|
|
15
|
+
Requires-Dist: universal-mcp-applications>=0.1.25
|
|
16
|
+
Requires-Dist: universal-mcp>=0.1.24rc26
|
|
17
17
|
Provides-Extra: dev
|
|
18
18
|
Requires-Dist: pre-commit; extra == 'dev'
|
|
19
19
|
Requires-Dist: ruff; extra == 'dev'
|
{universal_mcp_agents-0.1.23rc1.dist-info → universal_mcp_agents-0.1.23rc2.dist-info}/RECORD
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
universal_mcp/agents/__init__.py,sha256=
|
|
1
|
+
universal_mcp/agents/__init__.py,sha256=bW7WJopR6YZSLxghLf8nhohhHPWzm0wdGoZlmKDAcZ4,1078
|
|
2
2
|
universal_mcp/agents/base.py,sha256=CEnY8y2as_XR311t9v2iqd4DOCSyhpOPOBDcZKNJMpc,7378
|
|
3
|
-
universal_mcp/agents/cli.py,sha256=
|
|
3
|
+
universal_mcp/agents/cli.py,sha256=9CG7majpWUz7C6t0d8xr-Sg2ZPKBuQdykTbYS6KIZ3A,922
|
|
4
4
|
universal_mcp/agents/hil.py,sha256=_5PCK6q0goGm8qylJq44aSp2MadP-yCPvhOJYKqWLMo,3808
|
|
5
5
|
universal_mcp/agents/llm.py,sha256=hVRwjZs3MHl5_3BWedmurs2Jt1oZDfFX0Zj9F8KH7fk,1787
|
|
6
6
|
universal_mcp/agents/react.py,sha256=8XQvJ0HLVgc-K0qn9Ml48WGcgUGuIKtL67HatlT6Da0,3334
|
|
@@ -21,16 +21,16 @@ universal_mcp/agents/builder/helper.py,sha256=8igR1b3Gy_N2u3WxHYKIWzvw7F5BMnfpO2
|
|
|
21
21
|
universal_mcp/agents/builder/prompts.py,sha256=8Xs6uzTUHguDRngVMLak3lkXFkk2VV_uQXaDllzP5cI,4670
|
|
22
22
|
universal_mcp/agents/builder/state.py,sha256=7DeWllxfN-yD6cd9wJ3KIgjO8TctkJvVjAbZT8W_zqk,922
|
|
23
23
|
universal_mcp/agents/codeact0/__init__.py,sha256=8-fvUo1Sm6dURGI-lW-X3Kd78LqySYbb5NMkNJ4NDwg,76
|
|
24
|
-
universal_mcp/agents/codeact0/__main__.py,sha256=
|
|
25
|
-
universal_mcp/agents/codeact0/agent.py,sha256
|
|
24
|
+
universal_mcp/agents/codeact0/__main__.py,sha256=EHW9ePVePEemGI5yMUBc2Mp_JlrP6Apk1liab1y2Rd8,782
|
|
25
|
+
universal_mcp/agents/codeact0/agent.py,sha256=9YwcCeRE_bSl77JG54SOJjQxqZxCd_ZfdBJmgb1N0RA,18818
|
|
26
26
|
universal_mcp/agents/codeact0/config.py,sha256=H-1woj_nhSDwf15F63WYn723y4qlRefXzGxuH81uYF0,2215
|
|
27
27
|
universal_mcp/agents/codeact0/langgraph_agent.py,sha256=8nz2wq-LexImx-l1y9_f81fK72IQetnCeljwgnduNGY,420
|
|
28
28
|
universal_mcp/agents/codeact0/llm_tool.py,sha256=-pAz04OrbZ_dJ2ueysT1qZd02DrbLY4EbU0tiuF_UNU,798
|
|
29
|
-
universal_mcp/agents/codeact0/prompts.py,sha256=
|
|
29
|
+
universal_mcp/agents/codeact0/prompts.py,sha256=qFcGDsISqW3iUNpW4yNDCH_vDwx75QS0acQsWI0Ul2w,11666
|
|
30
30
|
universal_mcp/agents/codeact0/sandbox.py,sha256=Xw4tbUV_6haYIZZvteJi6lIYsW6ni_3DCRCOkslTKgM,4459
|
|
31
|
-
universal_mcp/agents/codeact0/state.py,sha256=
|
|
32
|
-
universal_mcp/agents/codeact0/tools.py,sha256=
|
|
33
|
-
universal_mcp/agents/codeact0/utils.py,sha256=
|
|
31
|
+
universal_mcp/agents/codeact0/state.py,sha256=ESlxz68bwudasuL8jCI7GhweTqgLbYQqZM0mPkE06hQ,1938
|
|
32
|
+
universal_mcp/agents/codeact0/tools.py,sha256=bCIJDNkyE_6SULoU8LGvupOrRrvaa9JZVMPMTdsGDEs,15017
|
|
33
|
+
universal_mcp/agents/codeact0/utils.py,sha256=Gvft0W0Sg1qlFWm8ciX14yssCa8y3x037lql92yGsBQ,18164
|
|
34
34
|
universal_mcp/agents/shared/__main__.py,sha256=XxH5qGDpgFWfq7fwQfgKULXGiUgeTp_YKfcxftuVZq8,1452
|
|
35
35
|
universal_mcp/agents/shared/prompts.py,sha256=yjP3zbbuKi87qCj21qwTTicz8TqtkKgnyGSeEjMu3ho,3761
|
|
36
36
|
universal_mcp/agents/shared/tool_node.py,sha256=DC9F-Ri28Pam0u3sXWNODVgmj9PtAEUb5qP1qOoGgfs,9169
|
|
@@ -39,6 +39,6 @@ universal_mcp/applications/filesystem/app.py,sha256=0TRjjm8YnslVRSmfkXI7qQOAlqWl
|
|
|
39
39
|
universal_mcp/applications/llm/__init__.py,sha256=_XGRxN3O1--ZS5joAsPf8IlI9Qa6negsJrwJ5VJXno0,46
|
|
40
40
|
universal_mcp/applications/llm/app.py,sha256=g9mK-luOLUshZzBGyQZMOHBeCSXmh2kCKir40YnsGUo,12727
|
|
41
41
|
universal_mcp/applications/ui/app.py,sha256=c7OkZsO2fRtndgAzAQbKu-1xXRuRp9Kjgml57YD2NR4,9459
|
|
42
|
-
universal_mcp_agents-0.1.
|
|
43
|
-
universal_mcp_agents-0.1.
|
|
44
|
-
universal_mcp_agents-0.1.
|
|
42
|
+
universal_mcp_agents-0.1.23rc2.dist-info/METADATA,sha256=v2vW8cUeI8cn6XY502FcEhBaYVeLpXu1n2D9FpUmJ4Y,881
|
|
43
|
+
universal_mcp_agents-0.1.23rc2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
44
|
+
universal_mcp_agents-0.1.23rc2.dist-info/RECORD,,
|
|
File without changes
|