universal-mcp-agents 0.1.13__py3-none-any.whl → 0.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of universal-mcp-agents might be problematic. Click here for more details.

Files changed (49) hide show
  1. universal_mcp/agents/__init__.py +1 -1
  2. universal_mcp/agents/base.py +3 -0
  3. universal_mcp/agents/bigtool/__init__.py +1 -1
  4. universal_mcp/agents/bigtool/__main__.py +4 -3
  5. universal_mcp/agents/bigtool/agent.py +3 -2
  6. universal_mcp/agents/bigtool/graph.py +68 -31
  7. universal_mcp/agents/bigtool/prompts.py +2 -2
  8. universal_mcp/agents/bigtool/tools.py +17 -4
  9. universal_mcp/agents/builder/__main__.py +129 -28
  10. universal_mcp/agents/builder/builder.py +149 -161
  11. universal_mcp/agents/builder/helper.py +71 -0
  12. universal_mcp/agents/builder/prompts.py +94 -160
  13. universal_mcp/agents/codeact0/__init__.py +2 -1
  14. universal_mcp/agents/codeact0/agent.py +13 -5
  15. universal_mcp/agents/codeact0/langgraph_agent.py +14 -0
  16. universal_mcp/agents/codeact0/llm_tool.py +1 -2
  17. universal_mcp/agents/codeact0/playbook_agent.py +353 -0
  18. universal_mcp/agents/codeact0/prompts.py +126 -41
  19. universal_mcp/agents/codeact0/sandbox.py +43 -32
  20. universal_mcp/agents/codeact0/state.py +27 -3
  21. universal_mcp/agents/codeact0/tools.py +180 -0
  22. universal_mcp/agents/codeact0/utils.py +89 -75
  23. universal_mcp/agents/shared/__main__.py +44 -0
  24. universal_mcp/agents/shared/prompts.py +49 -98
  25. universal_mcp/agents/shared/tool_node.py +160 -176
  26. universal_mcp/agents/utils.py +71 -0
  27. universal_mcp/applications/ui/app.py +2 -2
  28. {universal_mcp_agents-0.1.13.dist-info → universal_mcp_agents-0.1.15.dist-info}/METADATA +3 -3
  29. universal_mcp_agents-0.1.15.dist-info/RECORD +50 -0
  30. universal_mcp/agents/codeact0/usecases/1-unsubscribe.yaml +0 -4
  31. universal_mcp/agents/codeact0/usecases/10-reddit2.yaml +0 -10
  32. universal_mcp/agents/codeact0/usecases/11-github.yaml +0 -13
  33. universal_mcp/agents/codeact0/usecases/2-reddit.yaml +0 -27
  34. universal_mcp/agents/codeact0/usecases/2.1-instructions.md +0 -81
  35. universal_mcp/agents/codeact0/usecases/2.2-instructions.md +0 -71
  36. universal_mcp/agents/codeact0/usecases/3-earnings.yaml +0 -4
  37. universal_mcp/agents/codeact0/usecases/4-maps.yaml +0 -41
  38. universal_mcp/agents/codeact0/usecases/5-gmailreply.yaml +0 -8
  39. universal_mcp/agents/codeact0/usecases/6-contract.yaml +0 -6
  40. universal_mcp/agents/codeact0/usecases/7-overnight.yaml +0 -14
  41. universal_mcp/agents/codeact0/usecases/8-sheets_chart.yaml +0 -25
  42. universal_mcp/agents/codeact0/usecases/9-learning.yaml +0 -9
  43. universal_mcp/agents/planner/__init__.py +0 -51
  44. universal_mcp/agents/planner/__main__.py +0 -28
  45. universal_mcp/agents/planner/graph.py +0 -85
  46. universal_mcp/agents/planner/prompts.py +0 -14
  47. universal_mcp/agents/planner/state.py +0 -11
  48. universal_mcp_agents-0.1.13.dist-info/RECORD +0 -63
  49. {universal_mcp_agents-0.1.13.dist-info → universal_mcp_agents-0.1.15.dist-info}/WHEEL +0 -0
@@ -0,0 +1,353 @@
1
+ import inspect
2
+ import json
3
+ import re
4
+ from collections.abc import Callable
5
+ from dataclasses import dataclass
6
+ from pathlib import Path
7
+ from typing import Literal, cast
8
+
9
+ from langchain_core.messages import AIMessage, RemoveMessage, ToolMessage
10
+ from langchain_core.tools import StructuredTool
11
+ from langchain_core.tools import tool as create_tool
12
+ from langgraph.checkpoint.base import BaseCheckpointSaver
13
+ from langgraph.graph import START, StateGraph
14
+ from langgraph.types import Command, RetryPolicy
15
+ from universal_mcp.tools.registry import ToolRegistry
16
+ from universal_mcp.types import ToolFormat, ToolConfig
17
+
18
+ from universal_mcp.agents.base import BaseAgent
19
+ from universal_mcp.agents.codeact0.llm_tool import ai_classify, call_llm, data_extractor, smart_print
20
+ from universal_mcp.agents.codeact0.prompts import (
21
+ create_default_prompt,
22
+ )
23
+ from universal_mcp.agents.codeact0.sandbox import eval_unsafe, execute_ipython_cell
24
+ from universal_mcp.agents.codeact0.state import CodeActState
25
+ from universal_mcp.agents.codeact0.tools import create_meta_tools, enter_playbook_mode, exit_playbook_mode, get_valid_tools
26
+ from universal_mcp.agents.codeact0.utils import inject_context, smart_truncate
27
+ from universal_mcp.agents.llm import load_chat_model
28
+ from universal_mcp.agents.utils import filter_retry_on, get_message_text
29
+
30
+ PLAYBOOK_PLANNING_PROMPT = """Now, you are tasked with creating a reusable playbook from the user's previous workflow.
31
+
32
+ TASK: Analyze the conversation history and code execution to create a step-by-step plan for a reusable function. Do not include the searching and loading of tools. Assume that the tools have already been loaded.
33
+
34
+ Your plan should:
35
+ 1. Identify the key steps in the workflow
36
+ 2. Mark user-specific variables that should become the main playbook function parameters using `variable_name` syntax. Intermediate variables should not be highlighted using ``
37
+ 3. Keep the logic generic and reusable
38
+ 4. Be clear and concise
39
+
40
+ Example:
41
+ ```
42
+ 1. Connect to database using `db_connection_string`
43
+ 2. Query user data for `user_id`
44
+ 3. Process results and calculate `metric_name`
45
+ 4. Send notification to `email_address`
46
+ ```
47
+
48
+ Now create a plan based on the conversation history. Enclose it between ``` and ```. Ask the user if the plan is okay."""
49
+
50
+
51
+
52
+ PLAYBOOK_CONFIRMING_PROMPT = """Now, you are tasked with confirming the playbook plan. Return True if the user is happy with the plan, False otherwise. Do not say anything else in your response. The user response will be the last message in the chain.
53
+ """
54
+
55
+ PLAYBOOK_GENERATING_PROMPT = """Now, you are tasked with generating the playbook function. Return the function in Python code.
56
+ Do not include any other text in your response.
57
+ The function should be a single, complete piece of code that can be executed independently, based on previously executed code snippets that executed correctly.
58
+ The parameters of the function should be the same as the final confirmed playbook plan.
59
+ Do not include anything other than python code in your response
60
+ """
61
+
62
+
63
+ class CodeActPlaybookAgent(BaseAgent):
64
+ def __init__(
65
+ self,
66
+ name: str,
67
+ instructions: str,
68
+ model: str,
69
+ memory: BaseCheckpointSaver | None = None,
70
+ tools: ToolConfig | None = None,
71
+ registry: ToolRegistry | None = None,
72
+ sandbox_timeout: int = 20,
73
+ **kwargs,
74
+ ):
75
+ super().__init__(
76
+ name=name,
77
+ instructions=instructions,
78
+ model=model,
79
+ memory=memory,
80
+ **kwargs,
81
+ )
82
+ self.model_instance = load_chat_model(model, thinking=True)
83
+ self.tools_config = tools or []
84
+ self.registry = registry
85
+ self.eval_fn = eval_unsafe
86
+ self.sandbox_timeout = sandbox_timeout
87
+ self.processed_tools: list[StructuredTool | Callable] = []
88
+
89
+ async def _build_graph(self):
90
+ self.exported_tools = []
91
+ if self.tools_config:
92
+ # Convert dict format to list format if needed
93
+ if isinstance(self.tools_config, dict):
94
+ self.tools_config = [
95
+ f"{provider}__{tool}"
96
+ for provider, tools in self.tools_config.items()
97
+ for tool in tools
98
+ ]
99
+ if not self.registry:
100
+ raise ValueError("Tools are configured but no registry is provided")
101
+ # Langchain tools are fine
102
+ self.exported_tools = await self.registry.export_tools(self.tools_config, ToolFormat.LANGCHAIN)
103
+ meta_tools = create_meta_tools(self.registry)
104
+ await self.registry.export_tools(["exa__search_with_filters"], ToolFormat.LANGCHAIN)
105
+ additional_tools = [smart_print, data_extractor, ai_classify, call_llm, meta_tools["web_search"]]
106
+ self.additional_tools = [t if isinstance(t, StructuredTool) else create_tool(t) for t in additional_tools]
107
+ self.final_instructions, self.tools_context = create_default_prompt(
108
+ self.exported_tools, self.additional_tools, self.instructions
109
+ )
110
+
111
+ def call_model(state: CodeActState) -> Command[Literal["sandbox", "execute_tools"]]:
112
+ messages = [{"role": "system", "content": self.final_instructions}] + state["messages"]
113
+
114
+ # Run the model and potentially loop for reflection
115
+ model_with_tools = self.model_instance.bind_tools(
116
+ tools=[
117
+ execute_ipython_cell,
118
+ enter_playbook_mode,
119
+ meta_tools["search_functions"],
120
+ meta_tools["load_functions"],
121
+ ],
122
+ tool_choice="auto",
123
+ )
124
+ response = cast(AIMessage, model_with_tools.invoke(messages))
125
+ if response.tool_calls:
126
+ return Command(goto="execute_tools", update={"messages": [response]})
127
+ else:
128
+ return Command(update={"messages": [response], "model_with_tools": model_with_tools})
129
+
130
+ # if response.tool_calls:
131
+ # if len(response.tool_calls) > 1:
132
+ # raise Exception("Not possible in Claude with llm.bind_tools(tools=tools, tool_choice='auto')")
133
+ # if response.tool_calls[0]["name"] == "enter_playbook_mode":
134
+ # return Command(goto="playbook", update = {"playbook_mode": "planning"})
135
+ # if response.tool_calls[0]["name"] != "execute_ipython_cell":
136
+ # raise Exception(
137
+ # f"Unexpected tool call: {response.tool_calls[0]['name']}. Expected 'execute_ipython_cell'."
138
+ # )
139
+ # if (
140
+ # response.tool_calls[0]["args"].get("snippet") is None
141
+ # or not response.tool_calls[0]["args"]["snippet"].strip()
142
+ # ):
143
+ # raise Exception("Tool call 'execute_ipython_cell' requires a non-empty 'snippet' argument.")
144
+ # return Command(goto="sandbox", update={"messages": [response]})
145
+ # else:
146
+ # return Command(update={"messages": [response]})
147
+
148
+ async def execute_tools(state: CodeActState) -> Command[Literal["call_model", "playbook", "sandbox"]]:
149
+ """Execute tool calls"""
150
+ last_message = state["messages"][-1]
151
+ tool_calls = last_message.tool_calls if isinstance(last_message, AIMessage) else []
152
+
153
+ tool_messages = []
154
+ new_tool_ids = []
155
+ ask_user = False
156
+ ai_msg = ""
157
+ tool_result = ""
158
+
159
+ for tool_call in tool_calls:
160
+ try:
161
+ if tool_call["name"] == "enter_playbook_mode":
162
+ tool_message = ToolMessage(
163
+ content=json.dumps("Entered Playbook Mode."),
164
+ name=tool_call["name"],
165
+ tool_call_id=tool_call["id"],
166
+ )
167
+ return Command(
168
+ goto="playbook",
169
+ update={"playbook_mode": "planning", "messages": [tool_message]}, #Entered Playbook mode
170
+ )
171
+ elif tool_call["name"] == "execute_ipython_cell":
172
+ return Command(goto="sandbox")
173
+ elif tool_call["name"] == "load_functions": # Handle load_functions separately
174
+ valid_tools, unconnected_links = await get_valid_tools(
175
+ tool_ids=tool_call["args"]["tool_ids"], registry=self.registry
176
+ )
177
+ new_tool_ids.extend(valid_tools)
178
+ # Create tool message response
179
+ tool_result = f"Successfully loaded {len(valid_tools)} tools: {valid_tools}"
180
+ links = "\n".join(unconnected_links)
181
+ if links:
182
+ ask_user = True
183
+ ai_msg = f"Please login to the following app(s) using the following links and let me know in order to proceed:\n {links} "
184
+ elif tool_call["name"] == "search_functions":
185
+ tool_result = await meta_tools["search_functions"].ainvoke(tool_call["args"])
186
+ except Exception as e:
187
+ tool_result = f"Error during {tool_call}: {e}"
188
+
189
+ tool_message = ToolMessage(
190
+ content=json.dumps(tool_result),
191
+ name=tool_call["name"],
192
+ tool_call_id=tool_call["id"],
193
+ )
194
+ tool_messages.append(tool_message)
195
+
196
+ if new_tool_ids:
197
+ self.tools_config.extend(new_tool_ids)
198
+ self.exported_tools = await self.registry.export_tools(self.tools_config, ToolFormat.LANGCHAIN)
199
+ self.final_instructions, self.tools_context = create_default_prompt(
200
+ self.exported_tools, self.additional_tools, self.instructions
201
+ )
202
+
203
+ if ask_user:
204
+ tool_messages.append(AIMessage(content=ai_msg))
205
+ return Command(update={"messages": tool_messages, "selected_tool_ids": new_tool_ids})
206
+
207
+ return Command(goto="call_model", update={"messages": tool_messages, "selected_tool_ids": new_tool_ids})
208
+
209
+ # If eval_fn is a async, we define async node function.
210
+ if inspect.iscoroutinefunction(self.eval_fn):
211
+ raise ValueError("eval_fn must be a synchronous function, not a coroutine.")
212
+ # async def sandbox(state: StateSchema):
213
+ # existing_context = state.get("context", {})
214
+ # context = {**existing_context, **tools_context}
215
+ # # Execute the script in the sandbox
216
+ # output, new_vars = await eval_fn(state["script"], context)
217
+ # new_context = {**existing_context, **new_vars}
218
+ # return {
219
+ # "messages": [{"role": "user", "content": output}],
220
+ # "context": new_context,
221
+ # }
222
+ else:
223
+
224
+ def sandbox(state: CodeActState) -> Command[Literal["call_model"]]:
225
+ tool_call = state["messages"][-1].tool_calls[0] # type: ignore
226
+ code = tool_call["args"]["snippet"]
227
+ previous_add_context = state.get("add_context", {})
228
+ add_context = inject_context(previous_add_context, self.tools_context)
229
+ existing_context = state.get("context", {})
230
+ context = {**existing_context, **add_context}
231
+ # Execute the script in the sandbox
232
+
233
+ output, new_context, new_add_context = self.eval_fn(
234
+ code, context, previous_add_context, 180
235
+ ) # default timeout 3 min
236
+ output = smart_truncate(output)
237
+
238
+ return Command(
239
+ goto="call_model",
240
+ update={
241
+ "messages": [
242
+ ToolMessage(
243
+ content=output,
244
+ name=tool_call["name"],
245
+ tool_call_id=tool_call["id"],
246
+ )
247
+ ],
248
+ "context": new_context,
249
+ "add_context": new_add_context,
250
+ },
251
+ )
252
+
253
+ def playbook(state: CodeActState) -> Command[Literal["call_model"]]:
254
+ playbook_mode = state.get("playbook_mode")
255
+ if playbook_mode == "planning":
256
+ planning_instructions = self.instructions + PLAYBOOK_PLANNING_PROMPT
257
+ messages = [{"role": "system", "content": planning_instructions}] + state["messages"]
258
+
259
+ response = self.model_instance.invoke(messages)
260
+ response = cast(AIMessage, response)
261
+ response_text = get_message_text(response)
262
+ # Extract plan from response text between triple backticks
263
+ plan_match = re.search(r'```(.*?)```', response_text, re.DOTALL)
264
+ if plan_match:
265
+ self.plan = plan_match.group(1).strip()
266
+ else:
267
+ self.plan = response_text.strip()
268
+ return Command(update={"messages": [response], "playbook_mode": "confirming"})
269
+
270
+
271
+ elif playbook_mode == "confirming":
272
+ confirmation_instructions = self.instructions + PLAYBOOK_CONFIRMING_PROMPT
273
+ messages = [{"role": "system", "content": confirmation_instructions}] + state["messages"]
274
+ response = self.model_instance.invoke(messages)
275
+ response = get_message_text(response)
276
+ if "true" in response.lower():
277
+ return Command(goto="playbook", update={"playbook_mode": "generating"})
278
+ else:
279
+ return Command(goto="playbook", update={"playbook_mode": "planning"})
280
+
281
+
282
+
283
+ elif playbook_mode == "generating":
284
+ generating_instructions = self.instructions + PLAYBOOK_GENERATING_PROMPT
285
+ messages = [{"role": "system", "content": generating_instructions}] + state["messages"]
286
+ response = cast(AIMessage, self.model_instance.invoke(messages))
287
+ raw_content = get_message_text(response)
288
+ func_code = raw_content.strip()
289
+ func_code = func_code.replace("```python", "").replace("```", "")
290
+ func_code = func_code.strip()
291
+
292
+ # Extract function name (handle both regular and async functions)
293
+ match = re.search(r"^\s*(?:async\s+)?def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(", func_code, re.MULTILINE)
294
+ if match:
295
+ function_name = match.group(1)
296
+ else:
297
+ function_name = "generated_playbook"
298
+
299
+ try:
300
+ current_path = Path(__file__).resolve()
301
+ repo_root = None
302
+ for ancestor in current_path.parents:
303
+ if ancestor.name == "src":
304
+ repo_root = ancestor.parent
305
+ break
306
+ if repo_root is None:
307
+ repo_root = current_path.parents[-1]
308
+
309
+ playbooks_dir = repo_root / "playbooks"
310
+ playbooks_dir.mkdir(parents=True, exist_ok=True)
311
+
312
+ file_path = playbooks_dir / f"{function_name}.py"
313
+ file_path.write_text(func_code, encoding="utf-8")
314
+ saved_note = f"Playbook function saved to: {file_path} ```{func_code}```"
315
+ except Exception as e:
316
+ saved_note = f"Failed to save playbook function {function_name}: {e}"
317
+
318
+ # Mock tool call for exit_playbook_mode (for testing/demonstration)
319
+ mock_exit_tool_call = {
320
+ "name": "exit_playbook_mode",
321
+ "args": {},
322
+ "id": "mock_exit_playbook_123"
323
+ }
324
+ mock_assistant_message = AIMessage(
325
+ content="", # Can be empty or a brief message
326
+ tool_calls=[mock_exit_tool_call]
327
+ )
328
+
329
+
330
+ # Mock tool response for exit_playbook_mode
331
+ mock_exit_tool_response = ToolMessage(
332
+ content=json.dumps(f"Exited Playbook Mode.{saved_note}"),
333
+ name="exit_playbook_mode",
334
+ tool_call_id="mock_exit_playbook_123"
335
+ )
336
+
337
+ return Command(update={"messages": [mock_assistant_message, mock_exit_tool_response], "playbook_mode": "normal"})
338
+
339
+ def route_entry(state: CodeActState) -> Literal["call_model", "playbook"]:
340
+ """Route to either normal mode or playbook creation"""
341
+ if state.get("playbook_mode") in ["planning", "confirming", "generating"]:
342
+ return "playbook"
343
+
344
+ return "call_model"
345
+
346
+ agent = StateGraph(state_schema=CodeActState)
347
+ agent.add_node(call_model, retry_policy=RetryPolicy(max_attempts=3, retry_on=filter_retry_on))
348
+ agent.add_node(sandbox)
349
+ agent.add_node(playbook)
350
+ agent.add_node(execute_tools)
351
+ agent.add_conditional_edges(START, route_entry)
352
+ # agent.add_edge(START, "call_model")
353
+ return agent.compile(checkpointer=self.memory)
@@ -1,33 +1,112 @@
1
- uneditable_prompt = """
2
- You are Wingman, an AI Assistant created by AgentR. You are a creative, straight-forward and direct principal software engineer.
3
-
4
- Your job is to answer the user's question or perform the task they ask for.
5
- - Answer simple questions (which do not require you to write any code or access any external resources) directly. Note that any operation that involves using ONLY print functions should be answered directly.
6
- - For task requiring operations or access to external resources, you should achieve the task by executing Python code snippets.
7
- - You have access to `execute_ipython_cell` tool that allows you to execute Python code in an IPython notebook cell.
8
- - In writing or natural language processing tasks DO NOT answer directly. Instead use `execute_ipython_cell` tool with the AI functions provided to you for tasks like summarizing, text generation, classification, data extraction from text or unstructured data, etc.
9
- - The code you write will be executed in a sandbox environment, and you can use the output of previous executions in your code.
10
- - Read and understand the output of the previous code snippet and use it to answer the user's request. Note that the code output is not visible to the user, so after the task is complete, you have to give the output to the user in a markdown format.
11
- - If needed, feel free to ask for more information from the user (without using the execute_ipython_cell tool) to clarify the task.
12
-
13
- GUIDELINES for writing code:
14
- - Variables defined at the top level of previous code snippets can be referenced in your code.
15
- - External functions which return a dict or list[dict] are ambiguous. Therefore, you MUST explore the structure of the returned data using `smart_print()` statements before using it, printing keys and values.
16
- - Ensure to not print large amounts of data, use string truncation to limit the output to a few lines when checking the data structure.
17
- - When an operation involves running a fixed set of steps on a list of items, run one run correctly and then use a for loop to run the steps on each item in the list.
18
- - In a single code snippet, try to achieve as much as possible.
19
- - You can only import libraries that come pre-installed with Python, and these have to be imported at the top of every code snippet where required.
20
- - Wrap await calls in a function and call it using `asyncio.run` to use async functions.
21
-
22
- NOTE: If any function throws an error requiring authentication, provide the user with a Markdown link to the authentication page and prompt them to authenticate.
23
- """
24
1
  import inspect
25
2
  import re
26
3
  from collections.abc import Sequence
27
- from datetime import datetime
28
4
 
29
5
  from langchain_core.tools import StructuredTool
30
6
 
7
+ from universal_mcp.agents.codeact0.utils import schema_to_signature
8
+
9
+ uneditable_prompt = """
10
+ You are **Wingmen**, an AI Assistant created by AgentR — a creative, straight-forward, and direct principal software engineer with access to tools.
11
+
12
+ ## Responsibilities
13
+
14
+ - **Answer directly** if the task is simple (e.g. print, math, general knowledge).
15
+ - For any task requiring logic, execution, or data handling, use `execute_ipython_cell`.
16
+ - For writing or NLP tasks (summarizing, generating, extracting), always use AI functions via code — never respond directly.
17
+
18
+ ## Tool vs. Function: Required Separation
19
+
20
+ You must clearly distinguish between tools (called via the tool calling API) and internal functions (used inside code blocks).
21
+
22
+ ### Tools — Must Be Called via Tool Calling API
23
+
24
+ These must be called using **tool calling**, not from inside code blocks:
25
+
26
+ - `execute_ipython_cell` — For running any Python code or logic.
27
+ - `search_functions` — To discover available functions for a task.
28
+ - `load_functions` — To load a specific function by full ID.
29
+
30
+ **Do not attempt to call these inside `python` code.**
31
+ Use tool calling syntax for these operations.
32
+
33
+ ### Functions — Must Be Used Inside Code Blocks
34
+
35
+ All other functions, including LLM functions, must always be used within code executed by `execute_ipython_cell`. These include:
36
+
37
+ - `smart_print()` — For inspecting unknown data structures before looping.
38
+ - `asyncio.run()` — For wrapping and executing asynchronous logic. You must not use await outside an async function. And the async function must be called by `asyncio.run()`.
39
+ - Any functions for applications loaded via `load_functions`.
40
+ - Any logic, data handling, writing, NLP, generation, summarization, or extraction functionality of LLMs.
41
+
42
+ These must be called **inside a Python code block**, and that block must be executed using `execute_ipython_cell`.
43
+
44
+ ## Tool/Function Usage Policy
45
+
46
+ 1. **Always Use Tools/Functions for Required Tasks**
47
+ Any searching, loading, or executing must be done using a tool/function call. Never answer manually if a tool/function is appropriate.
48
+
49
+ 2. **Use Existing Functions First**
50
+ Use existing functions if available. Otherwise, use `search_functions` with a concise query describing the task.
51
+
52
+ 3. **Load Only Relevant Tools**
53
+ When calling `load_functions`, include only relevant function IDs.
54
+ - Prefer connected applications over unconnected ones.
55
+ - If multiple functions match (i.e. if none are connected, or multiple are connected), ask the user to choose.
56
+ - After loading a tool, you do not need to import/declare it again. It can be called directly in further cells.
57
+
58
+ 4. **Follow First Turn Process Strictly**
59
+ On the **first turn**, do only **one** of the following:
60
+ - Handle directly (if trivial)
61
+ - Use a tool/function (`execute_ipython_cell`, `search_functions`, etc.)
62
+
63
+ **Do not extend the conversation on the first message.**
64
+
65
+ ## Coding Rules
66
+
67
+ - Use `smart_print()` to inspect unknown structures, especially those received from function outputs, before looping or branching.
68
+ - Validate logic with a single item before processing lists or large inputs.
69
+ - Try to achieve as much as possible in a single code block.
70
+ - Use only pre-installed Python libraries. Do import them once before using.
71
+ - Outer level functions, variables, classes, and imports declared previously can be used in later cells.
72
+ - For all functions, call using keyword arguments only. DO NOT use any positional arguments.
73
+
74
+ ### **Async Function Usage — Critical**
75
+
76
+ When calling asynchronous functions:
77
+ - You must define or use an **inner async function**.
78
+ - Use `await` only **inside** that async function.
79
+ - Run it using `asyncio.run(<function_name>())` **without** `await` at the outer level.
80
+
81
+ **Wrong - Using `await` outside an async function**
82
+ ```
83
+ result = await some_async_function()
84
+ ```
85
+ **Wrong - Attaching await before asyncio.run**.
86
+ `await asyncio.run(main())`
87
+ These will raise SyntaxError: 'await' outside async function
88
+ The correct method is the following-
89
+ ```
90
+ import asyncio
91
+ async def some_async_function():
92
+ ...
93
+
94
+ async def main():
95
+ result = await some_async_function()
96
+ print(result)
97
+
98
+ asyncio.run(main())
99
+ #or
100
+ result = asyncio.run(some_async_function(arg1 = <arg1>))
101
+ ```
102
+ ## Output Formatting
103
+ - All code results must be returned in **Markdown**.
104
+ - The user cannot see raw output, so format results clearly:
105
+ - Use tables for structured data.
106
+ - Provide links for files or images.
107
+ - Be explicit in formatting to ensure readability.
108
+ """
109
+
31
110
 
32
111
  def make_safe_function_name(name: str) -> str:
33
112
  """Convert a tool name to a valid Python function name."""
@@ -121,6 +200,7 @@ def indent(text, prefix, predicate=None):
121
200
 
122
201
  def create_default_prompt(
123
202
  tools: Sequence[StructuredTool],
203
+ additional_tools: Sequence[StructuredTool],
124
204
  base_prompt: str | None = None,
125
205
  ):
126
206
  system_prompt = uneditable_prompt.strip() + (
@@ -128,28 +208,33 @@ def create_default_prompt(
128
208
  )
129
209
  tools_context = {}
130
210
  for tool in tools:
131
- # Create a safe function name
132
- safe_name = make_safe_function_name(tool.name)
133
- # Use coroutine if it exists, otherwise use func
134
- if hasattr(tool, "coroutine") and tool.coroutine is not None:
211
+ if hasattr(tool, "func") and tool.func is not None:
212
+ tool_callable = tool.func
213
+ is_async = False
214
+ elif hasattr(tool, "coroutine") and tool.coroutine is not None:
135
215
  tool_callable = tool.coroutine
136
- signature = inspect.signature(tool_callable)
137
216
  is_async = True
138
- elif hasattr(tool, "func") and tool.func is not None:
217
+ system_prompt += f'''{"async " if is_async else ""}{schema_to_signature(tool.args, tool.name)}:
218
+ """{tool.description}"""
219
+ ...
220
+ '''
221
+ safe_name = make_safe_function_name(tool.name)
222
+ tools_context[safe_name] = tool_callable
223
+
224
+ for tool in additional_tools:
225
+ if hasattr(tool, "func") and tool.func is not None:
139
226
  tool_callable = tool.func
140
- signature = inspect.signature(tool_callable)
141
227
  is_async = False
142
- else:
143
- raise ValueError(f"Tool {tool.name} does not have a callable coroutine or function.")
144
- tools_context[safe_name] = tool_callable
145
- system_prompt += f'''
146
- {"async " if is_async else ""}def {safe_name}{str(signature)}:
147
- """
148
- {indent(dedent(tool.description), " ")}
149
- """
228
+ elif hasattr(tool, "coroutine") and tool.coroutine is not None:
229
+ tool_callable = tool.coroutine
230
+ is_async = True
231
+ system_prompt += f'''{"async " if is_async else ""}def {tool.name} {str(inspect.signature(tool_callable))}:
232
+ """{tool.description}"""
150
233
  ...
151
- '''
152
- system_prompt += f"\n\nThe current time is {datetime.now().strftime('%H:%M:%S')}"
234
+ '''
235
+ safe_name = make_safe_function_name(tool.name)
236
+ tools_context[safe_name] = tool_callable
237
+
153
238
  if base_prompt and base_prompt.strip():
154
239
  system_prompt += f"Your goal is to perform the following task:\n\n{base_prompt}"
155
240
 
@@ -14,55 +14,66 @@ from universal_mcp.agents.codeact0.utils import derive_context
14
14
 
15
15
 
16
16
  def eval_unsafe(
17
- code: str, _locals: dict[str, Any], add_context: dict[str, Any]
17
+ code: str, _locals: dict[str, Any], add_context: dict[str, Any], timeout: int = 180
18
18
  ) -> tuple[str, dict[str, Any], dict[str, Any]]:
19
- # print(_locals)
19
+ """
20
+ Execute code safely with a timeout.
21
+ - Returns (output_str, filtered_locals_dict, new_add_context)
22
+ - Errors or timeout are returned as output_str.
23
+ - Previous variables in _locals persist across calls.
24
+ """
25
+
20
26
  EXCLUDE_TYPES = (
21
- types.ModuleType, # modules
27
+ types.ModuleType,
22
28
  type(re.match("", "")),
23
- type(threading.Lock()), # instead of threading.Lock
24
- type(threading.RLock()), # reentrant lock
25
- threading.Event, # events
26
- threading.Condition, # condition vars
27
- threading.Semaphore, # semaphores
28
- queue.Queue, # thread-safe queues
29
- socket.socket, # network sockets
30
- io.IOBase, # file handles (and StringIO/BytesIO)
29
+ type(threading.Lock()),
30
+ type(threading.RLock()),
31
+ threading.Event,
32
+ threading.Condition,
33
+ threading.Semaphore,
34
+ queue.Queue,
35
+ socket.socket,
36
+ io.IOBase,
31
37
  )
32
- try:
33
- with contextlib.redirect_stdout(io.StringIO()) as f:
34
- # Execute the code in the provided locals context
35
- # Using exec to allow dynamic code execution
36
- # This is a simplified version; in production, consider security implications
37
- exec(code, _locals, _locals)
38
- result = f.getvalue()
39
- if not result:
40
- result = "<code ran, no output printed to stdout>"
41
- except Exception as e:
42
- result = f"Error during execution: {repr(e)}"
43
-
44
- # Return all variables in locals except __builtins__ and unpicklable objects (including tools)
38
+
39
+ result_container = {"output": "<no output>"}
40
+
41
+ def target():
42
+ try:
43
+ with contextlib.redirect_stdout(io.StringIO()) as f:
44
+ exec(code, _locals, _locals)
45
+ result_container["output"] = f.getvalue() or "<code ran, no output printed to stdout>"
46
+ except Exception as e:
47
+ result_container["output"] = "Error during execution: " + str(e)
48
+
49
+ thread = threading.Thread(target=target)
50
+ thread.start()
51
+ thread.join(timeout)
52
+
53
+ if thread.is_alive():
54
+ result_container["output"] = f"Code timeout: code execution exceeded {timeout} seconds."
55
+
56
+ # Filter locals for picklable/storable variables
45
57
  all_vars = {}
46
58
  for key, value in _locals.items():
47
59
  if key == "__builtins__":
48
60
  continue
49
-
50
- # Skip coroutines, async generators, and coroutine functions
51
61
  if inspect.iscoroutine(value) or inspect.iscoroutinefunction(value):
52
62
  continue
53
63
  if inspect.isasyncgen(value) or inspect.isasyncgenfunction(value):
54
64
  continue
55
-
56
- # Skip "obviously unpicklable" types
57
65
  if isinstance(value, EXCLUDE_TYPES):
58
66
  continue
59
-
60
- # Keep if it's not a callable OR if it has no __name__ attribute
61
67
  if not callable(value) or not hasattr(value, "__name__"):
62
68
  all_vars[key] = value
63
69
 
64
- new_add_context = derive_context(code, add_context)
65
- return result, all_vars, new_add_context
70
+ # Safely derive context
71
+ try:
72
+ new_add_context = derive_context(code, add_context)
73
+ except Exception:
74
+ new_add_context = add_context
75
+
76
+ return result_container["output"], all_vars, new_add_context
66
77
 
67
78
 
68
79
  @tool(parse_docstring=True)