universal-mcp-agents 0.1.10__py3-none-any.whl → 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. universal_mcp/agents/__init__.py +17 -19
  2. universal_mcp/agents/base.py +10 -7
  3. universal_mcp/agents/{bigtoolcache → bigtool}/__init__.py +2 -2
  4. universal_mcp/agents/{bigtoolcache → bigtool}/__main__.py +0 -1
  5. universal_mcp/agents/{bigtoolcache → bigtool}/agent.py +0 -1
  6. universal_mcp/agents/{bigtoolcache → bigtool}/graph.py +6 -5
  7. universal_mcp/agents/builder/__main__.py +125 -0
  8. universal_mcp/agents/builder/builder.py +225 -0
  9. universal_mcp/agents/builder/prompts.py +173 -0
  10. universal_mcp/agents/builder/state.py +24 -0
  11. universal_mcp/agents/cli.py +3 -2
  12. universal_mcp/agents/codeact/__main__.py +2 -4
  13. universal_mcp/agents/codeact/agent.py +188 -108
  14. universal_mcp/agents/codeact/models.py +11 -0
  15. universal_mcp/agents/codeact/prompts.py +34 -43
  16. universal_mcp/agents/codeact/sandbox.py +78 -40
  17. universal_mcp/agents/codeact/state.py +5 -4
  18. universal_mcp/agents/codeact0/__init__.py +3 -0
  19. universal_mcp/agents/codeact0/__main__.py +35 -0
  20. universal_mcp/agents/codeact0/agent.py +136 -0
  21. universal_mcp/agents/codeact0/config.py +77 -0
  22. universal_mcp/agents/codeact0/langgraph_graph.py +17 -0
  23. universal_mcp/agents/codeact0/legacy_codeact.py +104 -0
  24. universal_mcp/agents/codeact0/llm_tool.py +379 -0
  25. universal_mcp/agents/codeact0/prompts.py +156 -0
  26. universal_mcp/agents/codeact0/sandbox.py +90 -0
  27. universal_mcp/agents/codeact0/state.py +12 -0
  28. universal_mcp/agents/codeact0/usecases/1-unsubscribe.yaml +4 -0
  29. universal_mcp/agents/codeact0/usecases/10-reddit2.yaml +10 -0
  30. universal_mcp/agents/codeact0/usecases/11-github.yaml +13 -0
  31. universal_mcp/agents/codeact0/usecases/2-reddit.yaml +27 -0
  32. universal_mcp/agents/codeact0/usecases/2.1-instructions.md +81 -0
  33. universal_mcp/agents/codeact0/usecases/2.2-instructions.md +71 -0
  34. universal_mcp/agents/codeact0/usecases/3-earnings.yaml +4 -0
  35. universal_mcp/agents/codeact0/usecases/4-maps.yaml +41 -0
  36. universal_mcp/agents/codeact0/usecases/5-gmailreply.yaml +8 -0
  37. universal_mcp/agents/codeact0/usecases/6-contract.yaml +6 -0
  38. universal_mcp/agents/codeact0/usecases/7-overnight.yaml +14 -0
  39. universal_mcp/agents/codeact0/usecases/8-sheets_chart.yaml +25 -0
  40. universal_mcp/agents/codeact0/usecases/9-learning.yaml +9 -0
  41. universal_mcp/agents/codeact0/utils.py +374 -0
  42. universal_mcp/agents/hil.py +4 -4
  43. universal_mcp/agents/planner/__init__.py +7 -1
  44. universal_mcp/agents/react.py +11 -3
  45. universal_mcp/agents/simple.py +12 -2
  46. universal_mcp/agents/utils.py +17 -0
  47. universal_mcp/applications/llm/__init__.py +3 -0
  48. universal_mcp/applications/llm/app.py +158 -0
  49. universal_mcp/applications/ui/app.py +118 -144
  50. {universal_mcp_agents-0.1.10.dist-info → universal_mcp_agents-0.1.12.dist-info}/METADATA +1 -1
  51. universal_mcp_agents-0.1.12.dist-info/RECORD +65 -0
  52. universal_mcp/agents/bigtool2/__init__.py +0 -67
  53. universal_mcp/agents/bigtool2/__main__.py +0 -23
  54. universal_mcp/agents/bigtool2/agent.py +0 -13
  55. universal_mcp/agents/bigtool2/graph.py +0 -155
  56. universal_mcp/agents/bigtool2/meta_tools.py +0 -120
  57. universal_mcp/agents/bigtool2/prompts.py +0 -15
  58. universal_mcp/agents/bigtoolcache/state.py +0 -27
  59. universal_mcp/agents/builder.py +0 -204
  60. universal_mcp_agents-0.1.10.dist-info/RECORD +0 -42
  61. /universal_mcp/agents/{bigtoolcache → bigtool}/context.py +0 -0
  62. /universal_mcp/agents/{bigtoolcache → bigtool}/prompts.py +0 -0
  63. /universal_mcp/agents/{bigtool2 → bigtool}/state.py +0 -0
  64. /universal_mcp/agents/{bigtoolcache → bigtool}/tools.py +0 -0
  65. {universal_mcp_agents-0.1.10.dist-info → universal_mcp_agents-0.1.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,374 @@
1
+ import re
2
+ from collections.abc import Sequence
3
+ from typing import Any
4
+
5
+ from langchain_core.messages import BaseMessage
6
+ from pydantic import ValidationError
7
+ from requests import JSONDecodeError
8
+
9
+
10
+ def light_copy(data):
11
+ """
12
+ Deep copy a dict[str, any] or Sequence[any] with string truncation.
13
+
14
+ Args:
15
+ data: Either a dictionary with string keys, or a sequence of such dictionaries
16
+
17
+ Returns:
18
+ A deep copy where all string values are truncated to 30 characters
19
+ """
20
+
21
+ def truncate_string(value):
22
+ """Truncate string to 30 chars, preserve other types"""
23
+ if isinstance(value, str) and len(value) > 30:
24
+ return value[:30] + "..."
25
+ return value
26
+
27
+ def copy_dict(d):
28
+ """Recursively copy a dictionary, truncating strings"""
29
+ result = {}
30
+ for key, value in d.items():
31
+ if isinstance(value, dict):
32
+ result[key] = copy_dict(value)
33
+ elif isinstance(value, Sequence) and not isinstance(value, str):
34
+ result[key] = [
35
+ copy_dict(item) if isinstance(item, dict) else truncate_string(item) for item in value[:20]
36
+ ] # Limit to first 20 items
37
+ else:
38
+ result[key] = truncate_string(value)
39
+ return result
40
+
41
+ # Handle the two main cases
42
+ if isinstance(data, dict):
43
+ return copy_dict(data)
44
+ elif isinstance(data, Sequence) and not isinstance(data, str):
45
+ return [
46
+ copy_dict(item) if isinstance(item, dict) else truncate_string(item) for item in data[:20]
47
+ ] # Limit to first 20 items
48
+ else:
49
+ # For completeness, handle other types
50
+ return truncate_string(data)
51
+
52
+
53
+ def get_message_text(msg: BaseMessage) -> str:
54
+ """Get the text content of a message."""
55
+ content = msg.content
56
+ if isinstance(content, str):
57
+ return content
58
+ elif isinstance(content, dict):
59
+ return content.get("text", "")
60
+ else:
61
+ txts = [c if isinstance(c, str) else (c.get("text") or "") for c in content]
62
+ return "".join(txts).strip()
63
+
64
+
65
+ def make_safe_function_name(name: str) -> str:
66
+ """Convert a tool name to a valid Python function name."""
67
+ # Replace non-alphanumeric characters with underscores
68
+ safe_name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
69
+ # Ensure the name doesn't start with a digit
70
+ if safe_name and safe_name[0].isdigit():
71
+ safe_name = f"tool_{safe_name}"
72
+ # Handle empty name edge case
73
+ if not safe_name:
74
+ safe_name = "unnamed_tool"
75
+ return safe_name
76
+
77
+
78
+ def filter_retry_on(exc: Exception) -> bool:
79
+ import httpx
80
+ import requests
81
+
82
+ if isinstance(
83
+ exc,
84
+ (
85
+ ConnectionError,
86
+ JSONDecodeError,
87
+ ValidationError,
88
+ ),
89
+ ):
90
+ return True
91
+ if isinstance(
92
+ exc,
93
+ (
94
+ ValueError,
95
+ TypeError,
96
+ ArithmeticError,
97
+ ImportError,
98
+ LookupError,
99
+ NameError,
100
+ SyntaxError,
101
+ RuntimeError,
102
+ ReferenceError,
103
+ StopIteration,
104
+ StopAsyncIteration,
105
+ OSError,
106
+ ),
107
+ ):
108
+ return False
109
+ if isinstance(exc, httpx.HTTPStatusError):
110
+ return 500 <= exc.response.status_code < 600
111
+ if isinstance(exc, requests.HTTPError):
112
+ return 500 <= exc.response.status_code < 600 if exc.response else True
113
+ return True
114
+
115
+
116
+ def derive_context(code: str, context: dict[str, Any]) -> dict[str, Any]:
117
+ """
118
+ Derive context from code by extracting classes, functions, and import statements.
119
+
120
+ Args:
121
+ code: Python code as a string
122
+ context: Existing context dictionary to append to
123
+
124
+ Returns:
125
+ Updated context dictionary with extracted entities
126
+ """
127
+ import ast
128
+ import re
129
+
130
+ # Initialize context keys if they don't exist
131
+ if "imports" not in context:
132
+ context["imports"] = []
133
+ if "classes" not in context:
134
+ context["classes"] = []
135
+ if "functions" not in context:
136
+ context["functions"] = []
137
+
138
+ try:
139
+ # Parse the code into an AST
140
+ tree = ast.parse(code)
141
+
142
+ # Extract imports
143
+ for node in ast.walk(tree):
144
+ if isinstance(node, ast.Import):
145
+ for alias in node.names:
146
+ if alias.asname:
147
+ import_stmt = f"import {alias.name} as {alias.asname}"
148
+ else:
149
+ import_stmt = f"import {alias.name}"
150
+ if import_stmt not in context["imports"]:
151
+ context["imports"].append(import_stmt)
152
+
153
+ elif isinstance(node, ast.ImportFrom):
154
+ module = node.module or ""
155
+ # Handle multiple imports in a single from statement
156
+ import_names = []
157
+ for alias in node.names:
158
+ if alias.asname:
159
+ import_names.append(f"{alias.name} as {alias.asname}")
160
+ else:
161
+ import_names.append(alias.name)
162
+
163
+ import_stmt = f"from {module} import {', '.join(import_names)}"
164
+ if import_stmt not in context["imports"]:
165
+ context["imports"].append(import_stmt)
166
+
167
+ # Extract class definitions
168
+ for node in ast.walk(tree):
169
+ if isinstance(node, ast.ClassDef):
170
+ # Get the class definition as a string
171
+ class_lines = code.split("\n")[node.lineno - 1 : node.end_lineno]
172
+ class_def = "\n".join(class_lines)
173
+
174
+ # Clean up the class definition (remove leading/trailing whitespace)
175
+ class_def = class_def.strip()
176
+
177
+ if class_def not in context["classes"]:
178
+ context["classes"].append(class_def)
179
+
180
+ # Extract function definitions (only top-level functions, not class methods)
181
+ for node in ast.walk(tree):
182
+ if isinstance(node, ast.FunctionDef):
183
+ # Get the function definition as a string
184
+ func_lines = code.split("\n")[node.lineno - 1 : node.end_lineno]
185
+ func_def = "\n".join(func_lines)
186
+
187
+ # Check if this is a top-level function by looking at indentation
188
+ # Top-level functions should start at column 0 (no indentation)
189
+ if node.col_offset == 0:
190
+ # Clean up the function definition (remove leading/trailing whitespace)
191
+ func_def = func_def.strip()
192
+
193
+ if func_def not in context["functions"]:
194
+ context["functions"].append(func_def)
195
+
196
+ except SyntaxError:
197
+ # If the code has syntax errors, try a simpler regex-based approach
198
+
199
+ # Extract import statements using regex
200
+ import_patterns = [
201
+ r"import\s+(\w+(?:\.\w+)*)(?:\s+as\s+(\w+))?",
202
+ r"from\s+(\w+(?:\.\w+)*)\s+import\s+(\w+(?:\s+as\s+\w+)?)",
203
+ ]
204
+
205
+ for pattern in import_patterns:
206
+ matches = re.finditer(pattern, code)
207
+ for match in matches:
208
+ if "from" in pattern:
209
+ module = match.group(1)
210
+ imports = match.group(2).split(",")
211
+ for imp in imports:
212
+ imp = imp.strip()
213
+ if " as " in imp:
214
+ name, alias = imp.split(" as ")
215
+ import_stmt = f"from {module} import {name.strip()} as {alias.strip()}"
216
+ else:
217
+ import_stmt = f"from {module} import {imp}"
218
+ if import_stmt not in context["imports"]:
219
+ context["imports"].append(import_stmt)
220
+ else:
221
+ module = match.group(1)
222
+ alias = match.group(2)
223
+ if alias:
224
+ import_stmt = f"import {module} as {alias}"
225
+ else:
226
+ import_stmt = f"import {module}"
227
+ if import_stmt not in context["imports"]:
228
+ context["imports"].append(import_stmt)
229
+
230
+ # Extract class definitions using regex
231
+ class_pattern = r"class\s+(\w+).*?(?=class\s+\w+|def\s+\w+|$)"
232
+ class_matches = re.finditer(class_pattern, code, re.DOTALL)
233
+ for match in class_matches:
234
+ class_def = match.group(0).strip()
235
+ if class_def not in context["classes"]:
236
+ context["classes"].append(class_def)
237
+
238
+ # Extract function definitions using regex
239
+ func_pattern = r"def\s+(\w+).*?(?=class\s+\w+|def\s+\w+|$)"
240
+ func_matches = re.finditer(func_pattern, code, re.DOTALL)
241
+ for match in func_matches:
242
+ func_def = match.group(0).strip()
243
+ if func_def not in context["functions"]:
244
+ context["functions"].append(func_def)
245
+
246
+ return context
247
+
248
+
249
+ def inject_context(
250
+ context_dict: dict[str, list[str]], existing_namespace: dict[str, Any] | None = None
251
+ ) -> dict[str, Any]:
252
+ """
253
+ Inject Python entities from a dictionary into a namespace.
254
+
255
+ This function takes a dictionary where keys represent entity types (imports, classes, functions, etc.)
256
+ and values are lists of entity definitions. It attempts to import or create these entities and returns
257
+ them in a namespace dictionary. Can optionally build upon an existing namespace and apply additional aliases.
258
+
259
+ Args:
260
+ context_dict: Dictionary with entity types as keys and lists of entity definitions as values.
261
+ Supported keys: 'imports', 'classes', 'functions'
262
+ - 'imports': List of import statements as strings (e.g., ['import pandas', 'import numpy as np'])
263
+ - 'classes': List of class definitions as strings
264
+ - 'functions': List of function definitions as strings
265
+ existing_namespace: Optional existing namespace to build upon. If provided, new entities
266
+ will be added to this namespace rather than creating a new one.
267
+
268
+ Returns:
269
+ Dictionary containing the injected entities as key-value pairs
270
+
271
+ Example:
272
+ context = {
273
+ 'imports': ['import pandas as pd', 'import numpy as np'],
274
+ 'classes': ['class MyClass:\n def __init__(self, x):\n self.x = x'],
275
+ 'functions': ['def my_function(x):\n return x * 2']
276
+ }
277
+ existing_ns = {'math': <math module>, 'data': [1, 2, 3]}
278
+ namespace = inject_context(context, existing_ns)
279
+ # namespace will contain: {'math': <math module>, 'data': [1, 2, 3], 'pandas': <module>, 'pd': <module>, 'numpy': <module>, 'np': <module>, 'MyClass': <class>, 'MC': <class>, 'my_function': <function>, ...}
280
+ """
281
+ import importlib
282
+ from typing import Any
283
+
284
+ # Start with existing namespace or create new one
285
+ namespace: dict[str, Any] = existing_namespace.copy() if existing_namespace is not None else {}
286
+
287
+ # Handle imports (execute import statements as strings)
288
+ if "imports" in context_dict:
289
+ for import_statement in context_dict["imports"]:
290
+ try:
291
+ # Execute the import statement in the current namespace
292
+ exec(import_statement, namespace)
293
+ except Exception as e:
294
+ # If execution fails, try to extract module name and create placeholder
295
+ import re
296
+
297
+ # Handle different import patterns
298
+ import_match = re.search(r"import\s+(\w+)(?:\s+as\s+(\w+))?", import_statement)
299
+ if import_match:
300
+ module_name = import_match.group(1)
301
+ alias_name = import_match.group(2)
302
+
303
+ try:
304
+ # Try to import the module manually
305
+ module = importlib.import_module(module_name)
306
+ namespace[module_name] = module
307
+ if alias_name:
308
+ namespace[alias_name] = module
309
+ except ImportError:
310
+ # Create placeholders for missing imports
311
+ namespace[module_name] = f"<import '{module_name}' not available>"
312
+ if alias_name:
313
+ namespace[alias_name] = f"<import '{module_name}' as '{alias_name}' not available>"
314
+ else:
315
+ # If we can't parse the import statement, create a generic placeholder
316
+ namespace[f"import_{len(namespace)}"] = f"<import statement failed: {str(e)}>"
317
+
318
+ # Handle classes - execute class definitions as strings
319
+ if "classes" in context_dict:
320
+ for class_definition in context_dict["classes"]:
321
+ try:
322
+ # Execute the class definition in the current namespace
323
+ exec(class_definition, namespace)
324
+ except Exception:
325
+ # If execution fails, try to extract class name and create placeholder
326
+ import re
327
+
328
+ class_match = re.search(r"class\s+(\w+)", class_definition)
329
+ if class_match:
330
+ class_name = class_match.group(1)
331
+
332
+ # Create a placeholder class
333
+ class PlaceholderClass:
334
+ def __init__(self, *args, **kwargs):
335
+ raise NotImplementedError(f"Class '{class_name}' failed to load: {str(e)}")
336
+
337
+ namespace[class_name] = PlaceholderClass
338
+ else:
339
+ # If we can't extract class name, create a generic placeholder
340
+ class GenericPlaceholderClass:
341
+ def __init__(self, *args, **kwargs):
342
+ raise NotImplementedError(f"Class definition failed to load: {str(e)}")
343
+
344
+ namespace[f"class_{len(namespace)}"] = GenericPlaceholderClass
345
+
346
+ # Handle functions - execute function definitions as strings
347
+ if "functions" in context_dict:
348
+ for function_definition in context_dict["functions"]:
349
+ try:
350
+ # Execute the function definition in the current namespace
351
+ exec(function_definition, namespace)
352
+ except Exception:
353
+ # If execution fails, try to extract function name and create placeholder
354
+ import re
355
+
356
+ func_match = re.search(r"def\s+(\w+)", function_definition)
357
+ if func_match:
358
+ func_name = func_match.group(1)
359
+
360
+ # Create a placeholder function
361
+ def placeholder_func(*args, **kwargs):
362
+ raise NotImplementedError(f"Function '{func_name}' failed to load: {str(e)}")
363
+
364
+ placeholder_func.__name__ = func_name
365
+ namespace[func_name] = placeholder_func
366
+ else:
367
+ # If we can't extract function name, create a generic placeholder
368
+ def generic_placeholder_func(*args, **kwargs):
369
+ raise NotImplementedError(f"Function definition failed to load: {str(e)}")
370
+
371
+ generic_placeholder_func.__name__ = f"func_{len(namespace)}"
372
+ namespace[generic_placeholder_func.__name__] = generic_placeholder_func
373
+
374
+ return namespace
@@ -74,7 +74,7 @@ def handle_interrupt(interrupt: Interrupt) -> str | bool:
74
74
 
75
75
  class HilAgent(BaseAgent):
76
76
  def __init__(self, name: str, instructions: str, model: str):
77
- super().__init__(name, instructions, model)
77
+ super().__init__(name=name, instructions=instructions, model=model)
78
78
  self.llm = load_chat_model(model)
79
79
  self._graph = self._build_graph()
80
80
 
@@ -103,9 +103,9 @@ if __name__ == "__main__":
103
103
  import asyncio
104
104
 
105
105
  agent = HilAgent(
106
- "Hil Agent",
107
- "You are a friendly agent that asks for the user's name and greets them.",
108
- "openrouter/auto",
106
+ name="Hil Agent",
107
+ instructions="You are a friendly agent that asks for the user's name and greets them.",
108
+ model="openrouter/auto",
109
109
  )
110
110
 
111
111
  asyncio.run(agent.run_interactive())
@@ -20,7 +20,13 @@ class PlannerAgent(BaseAgent):
20
20
  executor_agent_cls: type[BaseAgent] = ReactAgent,
21
21
  **kwargs,
22
22
  ):
23
- super().__init__(name, instructions, model, memory, **kwargs)
23
+ super().__init__(
24
+ name=name,
25
+ instructions=instructions,
26
+ model=model,
27
+ memory=memory,
28
+ **kwargs,
29
+ )
24
30
  self.app_registry = registry
25
31
  self.llm = load_chat_model(model)
26
32
  self.executor_agent_cls = executor_agent_cls
@@ -1,10 +1,10 @@
1
1
  from langgraph.checkpoint.base import BaseCheckpointSaver
2
2
  from langgraph.prebuilt import create_react_agent
3
3
  from loguru import logger
4
+ from rich import print
4
5
  from universal_mcp.agentr.registry import AgentrRegistry
5
6
  from universal_mcp.tools.registry import ToolRegistry
6
7
  from universal_mcp.types import ToolConfig, ToolFormat
7
- from rich import print
8
8
 
9
9
  from universal_mcp.agents.base import BaseAgent
10
10
  from universal_mcp.agents.llm import load_chat_model
@@ -37,7 +37,13 @@ class ReactAgent(BaseAgent):
37
37
  max_iterations: int = 10,
38
38
  **kwargs,
39
39
  ):
40
- super().__init__(name, instructions, model, memory, **kwargs)
40
+ super().__init__(
41
+ name=name,
42
+ instructions=instructions,
43
+ model=model,
44
+ memory=memory,
45
+ **kwargs,
46
+ )
41
47
  self.llm = load_chat_model(model)
42
48
  self.tools = tools or {}
43
49
  if "ui" not in self.tools:
@@ -52,6 +58,8 @@ class ReactAgent(BaseAgent):
52
58
  "http_delete",
53
59
  "http_patch",
54
60
  "read_file",
61
+ "web_search",
62
+ "web_content",
55
63
  ]
56
64
  self.max_iterations = max_iterations
57
65
  self.registry = registry
@@ -80,7 +88,7 @@ class ReactAgent(BaseAgent):
80
88
 
81
89
  async def main():
82
90
  agent = ReactAgent(
83
- "Universal React Agent",
91
+ name="Universal React Agent",
84
92
  instructions="Be very concise in your answers.",
85
93
  model="azure/gpt-4o",
86
94
  tools={"google-mail": ["send_email"]},
@@ -32,7 +32,13 @@ class SimpleAgent(BaseAgent):
32
32
  memory: BaseCheckpointSaver = None,
33
33
  **kwargs,
34
34
  ):
35
- super().__init__(name, instructions, model, memory, **kwargs)
35
+ super().__init__(
36
+ name=name,
37
+ instructions=instructions,
38
+ model=model,
39
+ memory=memory,
40
+ **kwargs,
41
+ )
36
42
  self.llm = load_chat_model(model)
37
43
 
38
44
  def _build_system_message(self):
@@ -55,7 +61,11 @@ class SimpleAgent(BaseAgent):
55
61
 
56
62
 
57
63
  async def main():
58
- agent = SimpleAgent("Simple Agent", "Act as a 14 year old kid, reply in Gen-Z lingo", "azure/gpt-5-mini")
64
+ agent = SimpleAgent(
65
+ name="Simple Agent",
66
+ instructions="Act as a 14 year old kid, reply in Gen-Z lingo",
67
+ model="azure/gpt-5-mini",
68
+ )
59
69
  output = await agent.invoke("What is the capital of France?")
60
70
  print(messages_to_list(output["messages"]))
61
71
 
@@ -2,6 +2,7 @@ import json
2
2
  from contextlib import contextmanager
3
3
 
4
4
  from langchain_core.messages.base import BaseMessage
5
+ from loguru import logger
5
6
  from rich.console import Console
6
7
  from rich.live import Live
7
8
  from rich.markdown import Markdown
@@ -126,3 +127,19 @@ Available commands:
126
127
 
127
128
  def messages_to_list(messages: list[BaseMessage]):
128
129
  return [{"type": message.type, "content": message.content} for message in messages]
130
+
131
+
132
+ def get_message_text(message: BaseMessage):
133
+ try:
134
+ if isinstance(message.content, str):
135
+ return message.content
136
+ elif isinstance(message.content, dict):
137
+ return message.content.get("text", "")
138
+ elif isinstance(message.content, list):
139
+ return " ".join([c.get("text", "") for c in message.content])
140
+ else:
141
+ return ""
142
+ except Exception as e:
143
+ logger.error(f"Error getting message text: {e}")
144
+ logger.error(f"Message: {message}")
145
+ raise e
@@ -0,0 +1,3 @@
1
+ from .app import LLMApp
2
+
3
+ __all__ = ["LLMApp"]
@@ -0,0 +1,158 @@
1
+ import json
2
+ from typing import Any, Literal, cast
3
+
4
+ from langchain.chat_models import init_chat_model
5
+ from langchain_openai import AzureChatOpenAI
6
+ from pydantic import BaseModel, Field
7
+ from universal_mcp.applications.application import BaseApplication
8
+
9
+ MAX_RETRIES = 3
10
+
11
+
12
+ def _get_context_as_string(source: Any | list[Any] | dict[str, Any]) -> str:
13
+ """Converts context to a string representation.
14
+
15
+ Args:
16
+ source: The source data to be converted. Can be a single value, a list of values, or a dictionary.
17
+
18
+ Returns:
19
+ A string representation of the source data, formatted with XML-like tags for dictionaries.
20
+ """
21
+
22
+ if not isinstance(source, dict):
23
+ if isinstance(source, list):
24
+ source = {f"doc_{i + 1}": str(doc) for i, doc in enumerate(source)}
25
+ else:
26
+ source = {"content": str(source)}
27
+
28
+ return "\n".join(f"<{k}>\n{str(v)}\n</{k}>" for k, v in source.items())
29
+
30
+
31
+ class LLMApp(BaseApplication):
32
+ """
33
+ An application for leveraging Large Language Models (LLMs) for advanced text processing tasks.
34
+ """
35
+
36
+ def __init__(self, **kwargs):
37
+ """Initialize the LLMApp."""
38
+ super().__init__(name="llm")
39
+
40
+ def generate_text(
41
+ self,
42
+ task: str,
43
+ context: Any | list[Any] | dict[str, Any],
44
+ tone: str = "normal",
45
+ output_format: Literal["markdown", "html", "plain"] = "markdown",
46
+ length: Literal["very-short", "concise", "normal", "long"] = "concise",
47
+ ) -> str:
48
+ """
49
+ Generates well-written text for a high-level task using the provided context.
50
+
51
+ Use this function for creative writing, summarization, and other text generation tasks.
52
+
53
+ Args:
54
+ task: The main writing task or directive.
55
+ context: A single string, list of strings, or dictionary mapping labels to content.
56
+ tone: The desired tone of the output (e.g., "formal", "casual", "technical").
57
+ output_format: The desired output format ('markdown', 'html', 'plain').
58
+ length: The desired length of the output ('very-short', 'concise', 'normal', 'long').
59
+
60
+ Returns:
61
+ The generated text as a string.
62
+ """
63
+ context_str = _get_context_as_string(context)
64
+
65
+ prompt = f"{task.strip()}\n\n"
66
+ if output_format == "markdown":
67
+ prompt += "Please write in Markdown format.\n\n"
68
+ elif output_format == "html":
69
+ prompt += "Please write in HTML format.\n\n"
70
+ else:
71
+ prompt += "Please write in plain text format. Do not use markdown or HTML.\n\n"
72
+
73
+ if tone not in ["normal", "default", ""]:
74
+ prompt = f"{prompt} (Tone instructions: {tone})"
75
+
76
+ if length not in ["normal", "default", ""]:
77
+ prompt = f"{prompt} (Length instructions: {length})"
78
+
79
+ full_prompt = f"{prompt}\n\nContext:\n{context_str}\n\n"
80
+
81
+ model = AzureChatOpenAI(model="gpt-4o", temperature=0.7)
82
+ response = model.with_retry(stop_after_attempt=MAX_RETRIES).invoke(full_prompt)
83
+ return str(response.content)
84
+
85
+ def classify_data(
86
+ self,
87
+ task: str,
88
+ context: Any | list[Any] | dict[str, Any],
89
+ class_descriptions: dict[str, str],
90
+ ) -> dict[str, Any]:
91
+ """
92
+ Classifies data into one of several categories based on a given task and context.
93
+
94
+ Args:
95
+ task: The classification question and any specific rules or requirements.
96
+ context: The data to be classified, provided as a string, list, or dictionary.
97
+ class_descriptions: A dictionary mapping class names to their descriptions.
98
+
99
+ Returns:
100
+ A dictionary containing the classification probabilities, the reasoning, and the top class.
101
+ """
102
+ context_str = _get_context_as_string(context)
103
+
104
+ prompt = (
105
+ f"{task}\n\n"
106
+ f"This is a classification task.\nPossible classes and descriptions:\n"
107
+ f"{json.dumps(class_descriptions, indent=2)}\n\n"
108
+ f"Context:\n{context_str}\n\n"
109
+ "Return ONLY a valid JSON object, no extra text."
110
+ )
111
+
112
+ model = init_chat_model(model="claude-4-sonnet-20250514", temperature=0)
113
+
114
+ class ClassificationResult(BaseModel):
115
+ probabilities: dict[str, float] = Field(..., description="The probabilities for each class.")
116
+ reason: str = Field(..., description="The reasoning behind the classification.")
117
+ top_class: str = Field(..., description="The class with the highest probability.")
118
+
119
+ response = (
120
+ model.with_structured_output(schema=ClassificationResult, method="json_mode")
121
+ .with_retry(stop_after_attempt=MAX_RETRIES)
122
+ .invoke(prompt)
123
+ )
124
+ return cast(dict[str, Any], response)
125
+
126
+ def extract_data(
127
+ self,
128
+ task: str,
129
+ source: Any | list[Any] | dict[str, Any],
130
+ output_schema: dict[str, Any],
131
+ ) -> dict[str, Any]:
132
+ """
133
+ Extracts structured data from unstructured text based on a provided JSON schema.
134
+
135
+ Args:
136
+ task: A description of the data to be extracted.
137
+ source: The unstructured data to extract from (e.g., document, webpage content).
138
+ output_schema: A valid JSON schema with a 'title' and 'description'.
139
+
140
+ Returns:
141
+ A dictionary containing the extracted data, matching the provided schema.
142
+ """
143
+ context_str = _get_context_as_string(source)
144
+
145
+ prompt = (
146
+ f"{task}\n\n"
147
+ f"Context:\n{context_str}\n\n"
148
+ "Return ONLY a valid JSON object that conforms to the provided schema, with no extra text."
149
+ )
150
+
151
+ model = init_chat_model(model="claude-4-sonnet-20250514", temperature=0)
152
+
153
+ response = (
154
+ model.with_structured_output(schema=output_schema, method="json_mode")
155
+ .with_retry(stop_after_attempt=MAX_RETRIES)
156
+ .invoke(prompt)
157
+ )
158
+ return cast(dict[str, Any], response)