unique_toolkit 1.34.1__py3-none-any.whl → 1.35.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,19 @@
1
+ from unique_toolkit.agentic.loop_runner.base import LoopIterationRunner
2
+ from unique_toolkit.agentic.loop_runner.middleware import (
3
+ PlanningConfig,
4
+ PlanningMiddleware,
5
+ PlanningSchemaConfig,
6
+ )
7
+ from unique_toolkit.agentic.loop_runner.runners import (
8
+ BasicLoopIterationRunner,
9
+ BasicLoopIterationRunnerConfig,
10
+ )
11
+
12
+ __all__ = [
13
+ "LoopIterationRunner",
14
+ "PlanningConfig",
15
+ "PlanningMiddleware",
16
+ "PlanningSchemaConfig",
17
+ "BasicLoopIterationRunnerConfig",
18
+ "BasicLoopIterationRunner",
19
+ ]
@@ -0,0 +1,57 @@
1
+ from typing import Any, Required
2
+
3
+ from openai.types.chat import ChatCompletionNamedToolChoiceParam
4
+ from typing_extensions import TypedDict
5
+
6
+ from unique_toolkit import LanguageModelToolDescription
7
+ from unique_toolkit.agentic.loop_runner.base import _LoopIterationRunnerKwargs
8
+ from unique_toolkit.chat.functions import LanguageModelStreamResponse
9
+ from unique_toolkit.chat.service import LanguageModelMessages
10
+ from unique_toolkit.content import ContentChunk
11
+
12
+
13
+ class _StreamingHandlerKwargs(TypedDict, total=False):
14
+ messages: Required[LanguageModelMessages]
15
+ model_name: Required[str]
16
+ tools: list[LanguageModelToolDescription]
17
+ content_chunks: list[ContentChunk]
18
+ start_text: str
19
+ debug_info: dict[str, Any]
20
+ temperature: float
21
+ tool_choice: ChatCompletionNamedToolChoiceParam
22
+ other_options: dict[str, Any]
23
+
24
+
25
+ def _extract_streaming_kwargs(
26
+ kwargs: _LoopIterationRunnerKwargs,
27
+ ) -> _StreamingHandlerKwargs:
28
+ res = _StreamingHandlerKwargs(
29
+ messages=kwargs["messages"],
30
+ model_name=kwargs["model"].name,
31
+ )
32
+
33
+ for k in [
34
+ "tools",
35
+ "content_chunks",
36
+ "start_text",
37
+ "debug_info",
38
+ "temperature",
39
+ "other_options",
40
+ ]:
41
+ if k in kwargs:
42
+ res[k] = kwargs[k]
43
+
44
+ return res
45
+
46
+
47
+ async def stream_response(
48
+ loop_runner_kwargs: _LoopIterationRunnerKwargs,
49
+ **kwargs,
50
+ ) -> LanguageModelStreamResponse:
51
+ streaming_handler = loop_runner_kwargs["streaming_handler"]
52
+ streaming_hander_kwargs = _extract_streaming_kwargs(loop_runner_kwargs)
53
+ streaming_hander_kwargs.update(**kwargs)
54
+
55
+ return await streaming_handler.complete_with_references_async(
56
+ **streaming_hander_kwargs
57
+ )
@@ -0,0 +1,38 @@
1
+ from typing import Any, Protocol, Required, Unpack
2
+
3
+ from openai.types.chat import ChatCompletionNamedToolChoiceParam
4
+ from typing_extensions import TypedDict
5
+
6
+ from unique_toolkit import LanguageModelToolDescription
7
+ from unique_toolkit.chat.functions import LanguageModelStreamResponse
8
+ from unique_toolkit.chat.service import LanguageModelMessages
9
+ from unique_toolkit.content import ContentChunk
10
+ from unique_toolkit.language_model.infos import LanguageModelInfo
11
+ from unique_toolkit.protocols.support import (
12
+ SupportCompleteWithReferences,
13
+ )
14
+
15
+
16
+ class _LoopIterationRunnerKwargs(TypedDict, total=False):
17
+ iteration_index: Required[int]
18
+ streaming_handler: Required[SupportCompleteWithReferences]
19
+ messages: Required[LanguageModelMessages]
20
+ model: Required[LanguageModelInfo]
21
+ tools: list[LanguageModelToolDescription]
22
+ content_chunks: list[ContentChunk]
23
+ start_text: str
24
+ debug_info: dict[str, Any]
25
+ temperature: float
26
+ tool_choices: list[ChatCompletionNamedToolChoiceParam]
27
+ other_options: dict[str, Any]
28
+
29
+
30
+ class LoopIterationRunner(Protocol):
31
+ """
32
+ A loop iteration runner is responsible for running a single iteration of the loop, and returning the stream response for that iteration.
33
+ """
34
+
35
+ async def __call__(
36
+ self,
37
+ **kwargs: Unpack[_LoopIterationRunnerKwargs],
38
+ ) -> LanguageModelStreamResponse: ...
@@ -0,0 +1,7 @@
1
+ from unique_toolkit.agentic.loop_runner.middleware.planning import (
2
+ PlanningConfig,
3
+ PlanningMiddleware,
4
+ PlanningSchemaConfig,
5
+ )
6
+
7
+ __all__ = ["PlanningConfig", "PlanningMiddleware", "PlanningSchemaConfig"]
@@ -0,0 +1,9 @@
1
+ from unique_toolkit.agentic.loop_runner.middleware.planning.planning import (
2
+ PlanningConfig,
3
+ PlanningMiddleware,
4
+ )
5
+ from unique_toolkit.agentic.loop_runner.middleware.planning.schema import (
6
+ PlanningSchemaConfig,
7
+ )
8
+
9
+ __all__ = ["PlanningMiddleware", "PlanningConfig", "PlanningSchemaConfig"]
@@ -0,0 +1,85 @@
1
+ import json
2
+ import logging
3
+ from typing import Unpack
4
+
5
+ from pydantic import BaseModel
6
+
7
+ from unique_toolkit import LanguageModelService
8
+ from unique_toolkit._common.pydantic_helpers import get_configuration_dict
9
+ from unique_toolkit.agentic.history_manager.history_manager import HistoryManager
10
+ from unique_toolkit.agentic.loop_runner.base import (
11
+ LoopIterationRunner,
12
+ _LoopIterationRunnerKwargs,
13
+ )
14
+ from unique_toolkit.agentic.loop_runner.middleware.planning.schema import (
15
+ PlanningSchemaConfig,
16
+ get_planning_schema,
17
+ )
18
+ from unique_toolkit.agentic.tools.utils import failsafe_async
19
+ from unique_toolkit.chat.service import LanguageModelStreamResponse
20
+ from unique_toolkit.language_model import (
21
+ LanguageModelAssistantMessage,
22
+ )
23
+
24
+ _LOGGER = logging.getLogger(__name__)
25
+
26
+
27
+ class PlanningConfig(BaseModel):
28
+ model_config = get_configuration_dict()
29
+
30
+ planning_schema_config: PlanningSchemaConfig = PlanningSchemaConfig()
31
+
32
+
33
+ class PlanningMiddleware(LoopIterationRunner):
34
+ def __init__(
35
+ self,
36
+ *,
37
+ loop_runner: LoopIterationRunner,
38
+ config: PlanningConfig,
39
+ llm_service: LanguageModelService,
40
+ history_manager: HistoryManager | None = None,
41
+ ) -> None:
42
+ self._config = config
43
+ self._loop_runner = loop_runner
44
+ self._history_manager = history_manager
45
+ self._llm_service = llm_service
46
+
47
+ @failsafe_async(failure_return_value=None, logger=_LOGGER)
48
+ async def _run_plan_step(
49
+ self, **kwargs: Unpack[_LoopIterationRunnerKwargs]
50
+ ) -> LanguageModelAssistantMessage | None:
51
+ planning_schema = get_planning_schema(self._config.planning_schema_config)
52
+
53
+ response = await self._llm_service.complete_async(
54
+ messages=kwargs["messages"],
55
+ model_name=kwargs["model"].name,
56
+ structured_output_model=planning_schema,
57
+ other_options=kwargs.get("other_options", {}),
58
+ )
59
+
60
+ if response.choices[0].message.parsed is None:
61
+ _LOGGER.info("Error parsing planning response")
62
+ return None
63
+
64
+ return LanguageModelAssistantMessage(
65
+ content=json.dumps(response.choices[0].message.parsed)
66
+ )
67
+
68
+ async def __call__(
69
+ self, **kwargs: Unpack[_LoopIterationRunnerKwargs]
70
+ ) -> LanguageModelStreamResponse:
71
+ assistant_message = await self._run_plan_step(**kwargs)
72
+
73
+ if assistant_message is None:
74
+ _LOGGER.info(
75
+ "Error executing planning step, proceeding without planning step"
76
+ )
77
+ return await self._loop_runner(**kwargs)
78
+
79
+ if self._history_manager is not None:
80
+ self._history_manager.add_assistant_message(assistant_message)
81
+
82
+ kwargs["messages"] = (
83
+ kwargs["messages"].builder().append(assistant_message).build()
84
+ )
85
+ return await self._loop_runner(**kwargs)
@@ -0,0 +1,82 @@
1
+ import json
2
+ from typing import Annotated, Any
3
+
4
+ from pydantic import BaseModel, Field, RootModel, create_model
5
+
6
+ from unique_toolkit._common.pydantic_helpers import get_configuration_dict
7
+
8
+ _PLANNING_SCHEMA_DESCRIPTION = """
9
+ Think about the next step to take.
10
+
11
+ Instructions:
12
+ - Consider the user input and the context of the conversation.
13
+ - Consider any previous tool calls, their results and the instructions related to the available tool calls.
14
+ - Consider any failed tool calls.
15
+ Goals:
16
+ - Output a plan for the next step. It MUST be justified, meaning that you MUST explain why you choose to take this step.
17
+ - You MUST recover from any failed tool calls.
18
+ - You MUST explain what tool calls to call next and why.
19
+ - If ready to answer the user, justify why you have gathered enough information/ tried all possible ways and failed.
20
+ - If ready to answer the user, REMEMBER and mention any previous instructions you have in the history. This is a CRUCIAL step.
21
+
22
+ IMPORTANT:
23
+ - Tools will be available after the planning step.
24
+ """.strip()
25
+
26
+ _DEFAULT_PLANNING_PARAM_DESCRIPTION = """
27
+ Next step description:
28
+ - Decide what to do next.
29
+ - Justify it THOROUGLY.
30
+ """.strip()
31
+
32
+
33
+ class DefaultPlanningSchemaConfig(BaseModel):
34
+ """
35
+ Configuration for the default planning schema, which is a simple json with a single field: "planning".
36
+ """
37
+
38
+ model_config = get_configuration_dict()
39
+
40
+ description: str = Field(
41
+ default=_PLANNING_SCHEMA_DESCRIPTION,
42
+ description="Description of the planning schema. This will correspond to the description of the model in the json schema.",
43
+ )
44
+ plan_param_description: str = Field(
45
+ default=_DEFAULT_PLANNING_PARAM_DESCRIPTION,
46
+ description="The description of the `planning` parameter.",
47
+ )
48
+
49
+
50
+ class PlanningSchemaConfig(RootModel[DefaultPlanningSchemaConfig | str]):
51
+ model_config = get_configuration_dict()
52
+
53
+ root: (
54
+ Annotated[
55
+ DefaultPlanningSchemaConfig,
56
+ Field(
57
+ description="Configuration for the default planning schema, which is a simple json dict with a single `plan` field.",
58
+ title="Default Planning Schema",
59
+ ),
60
+ ]
61
+ | Annotated[
62
+ str,
63
+ Field(
64
+ description="Custom JSON Schema as string for the planning schema.",
65
+ title="Custom Planning Schema",
66
+ ),
67
+ ]
68
+ ) = Field(default=DefaultPlanningSchemaConfig())
69
+
70
+
71
+ def get_planning_schema(config: PlanningSchemaConfig) -> dict[str, Any]:
72
+ if isinstance(config.root, DefaultPlanningSchemaConfig):
73
+ return create_model(
74
+ "Planning",
75
+ plan=(
76
+ str,
77
+ Field(description=config.root.plan_param_description),
78
+ ),
79
+ __doc__=config.root.description,
80
+ ).model_json_schema()
81
+
82
+ return json.loads(config.root)
@@ -0,0 +1,6 @@
1
+ from unique_toolkit.agentic.loop_runner.runners.basic import (
2
+ BasicLoopIterationRunner,
3
+ BasicLoopIterationRunnerConfig,
4
+ )
5
+
6
+ __all__ = ["BasicLoopIterationRunnerConfig", "BasicLoopIterationRunner"]
@@ -0,0 +1,94 @@
1
+ import logging
2
+ from typing import Unpack, override
3
+
4
+ from pydantic import BaseModel
5
+
6
+ from unique_toolkit._common.pydantic_helpers import get_configuration_dict
7
+ from unique_toolkit.agentic.loop_runner._stream_handler_utils import stream_response
8
+ from unique_toolkit.agentic.loop_runner.base import (
9
+ LoopIterationRunner,
10
+ _LoopIterationRunnerKwargs,
11
+ )
12
+ from unique_toolkit.chat.functions import LanguageModelStreamResponse
13
+ from unique_toolkit.protocols.support import (
14
+ ResponsesLanguageModelStreamResponse,
15
+ )
16
+
17
+ _LOGGER = logging.getLogger(__name__)
18
+
19
+
20
+ class BasicLoopIterationRunnerConfig(BaseModel):
21
+ model_config = get_configuration_dict()
22
+ max_loop_iterations: int
23
+
24
+
25
+ class BasicLoopIterationRunner(LoopIterationRunner):
26
+ def __init__(self, config: BasicLoopIterationRunnerConfig) -> None:
27
+ self._config = config
28
+
29
+ async def _handle_last_iteration(
30
+ self, **kwargs: Unpack[_LoopIterationRunnerKwargs]
31
+ ) -> LanguageModelStreamResponse:
32
+ _LOGGER.info(
33
+ "Reached last iteration, removing tools and producing final response"
34
+ )
35
+
36
+ return await stream_response(
37
+ loop_runner_kwargs=kwargs,
38
+ tools=None,
39
+ )
40
+
41
+ async def _handle_normal_iteration(
42
+ self, **kwargs: Unpack[_LoopIterationRunnerKwargs]
43
+ ) -> LanguageModelStreamResponse:
44
+ _LOGGER.info("Running loop iteration %d", kwargs["iteration_index"])
45
+
46
+ return await stream_response(loop_runner_kwargs=kwargs)
47
+
48
+ async def _handle_forced_tools_iteration(
49
+ self,
50
+ **kwargs: Unpack[_LoopIterationRunnerKwargs],
51
+ ) -> LanguageModelStreamResponse:
52
+ assert "tool_choices" in kwargs
53
+
54
+ tool_choices = kwargs["tool_choices"]
55
+ _LOGGER.info("Forcing tools calls: %s", tool_choices)
56
+
57
+ responses: list[LanguageModelStreamResponse] = []
58
+
59
+ for opt in tool_choices:
60
+ responses.append(
61
+ await stream_response(
62
+ loop_runner_kwargs=kwargs,
63
+ tool_choice=opt,
64
+ )
65
+ )
66
+
67
+ # Merge responses and refs:
68
+ tool_calls = []
69
+ references = []
70
+ for r in responses:
71
+ if r.tool_calls:
72
+ tool_calls.extend(r.tool_calls)
73
+ references.extend(r.message.references)
74
+
75
+ response = responses[0]
76
+ response.tool_calls = tool_calls if len(tool_calls) > 0 else None
77
+ response.message.references = references
78
+
79
+ return response
80
+
81
+ @override
82
+ async def __call__(
83
+ self,
84
+ **kwargs: Unpack[_LoopIterationRunnerKwargs],
85
+ ) -> LanguageModelStreamResponse | ResponsesLanguageModelStreamResponse:
86
+ tool_choices = kwargs.get("tool_choices", [])
87
+ iteration_index = kwargs["iteration_index"]
88
+
89
+ if len(tool_choices) > 0 and iteration_index == 0:
90
+ return await self._handle_forced_tools_iteration(**kwargs)
91
+ elif iteration_index == self._config.max_loop_iterations - 1:
92
+ return await self._handle_last_iteration(**kwargs)
93
+ else:
94
+ return await self._handle_normal_iteration(**kwargs)
@@ -46,7 +46,7 @@ def complete(
46
46
  timeout: int = DEFAULT_COMPLETE_TIMEOUT,
47
47
  tools: list[LanguageModelTool | LanguageModelToolDescription] | None = None,
48
48
  other_options: dict | None = None,
49
- structured_output_model: type[BaseModel] | None = None,
49
+ structured_output_model: type[BaseModel] | dict[str, Any] | None = None,
50
50
  structured_output_enforce_schema: bool = False,
51
51
  user_id: str | None = None,
52
52
  ) -> LanguageModelResponse:
@@ -110,7 +110,7 @@ async def complete_async(
110
110
  timeout: int = DEFAULT_COMPLETE_TIMEOUT,
111
111
  tools: list[LanguageModelTool | LanguageModelToolDescription] | None = None,
112
112
  other_options: dict | None = None,
113
- structured_output_model: type[BaseModel] | None = None,
113
+ structured_output_model: type[BaseModel] | dict[str, Any] | None = None,
114
114
  structured_output_enforce_schema: bool = False,
115
115
  ) -> LanguageModelResponse:
116
116
  """Call the completion endpoint asynchronously without streaming the response.
@@ -214,9 +214,21 @@ def _to_search_context(
214
214
 
215
215
  def _add_response_format_to_options(
216
216
  options: dict,
217
- structured_output_model: type[BaseModel],
217
+ structured_output_model: type[BaseModel] | dict[str, Any],
218
218
  structured_output_enforce_schema: bool = False,
219
219
  ) -> dict:
220
+ if isinstance(structured_output_model, dict):
221
+ name = structured_output_model.get("title", "DefaultName")
222
+ options["responseFormat"] = {
223
+ "type": "json_schema",
224
+ "json_schema": {
225
+ "name": name,
226
+ "strict": structured_output_enforce_schema,
227
+ "schema": structured_output_model,
228
+ },
229
+ }
230
+ return options
231
+
220
232
  options["responseFormat"] = {
221
233
  "type": "json_schema",
222
234
  "json_schema": {
@@ -235,7 +247,7 @@ def _prepare_completion_params_util(
235
247
  tools: Sequence[LanguageModelTool | LanguageModelToolDescription] | None = None,
236
248
  other_options: dict | None = None,
237
249
  content_chunks: list[ContentChunk] | None = None,
238
- structured_output_model: type[BaseModel] | None = None,
250
+ structured_output_model: type[BaseModel] | dict[str, Any] | None = None,
239
251
  structured_output_enforce_schema: bool = False,
240
252
  ) -> tuple[dict, str, dict, SearchContext | None]:
241
253
  """Prepare common parameters for completion requests.
@@ -283,7 +295,7 @@ def _prepare_openai_completion_params_util(
283
295
  tools: Sequence[LanguageModelTool | LanguageModelToolDescription] | None = None,
284
296
  other_options: dict | None = None,
285
297
  content_chunks: list[ContentChunk] | None = None,
286
- structured_output_model: type[BaseModel] | None = None,
298
+ structured_output_model: type[BaseModel] | dict[str, Any] | None = None,
287
299
  structured_output_enforce_schema: bool = False,
288
300
  ) -> tuple[dict, str, SearchContext | None]:
289
301
  """Prepare common parameters for completion requests.
@@ -355,7 +367,7 @@ def _prepare_all_completions_params_util(
355
367
  other_options: dict | None = None,
356
368
  content_chunks: list[ContentChunk] | None = None,
357
369
  tool_choice: ChatCompletionToolChoiceOptionParam | None = None,
358
- structured_output_model: type[BaseModel] | None = None,
370
+ structured_output_model: type[BaseModel] | dict[str, Any] | None = None,
359
371
  structured_output_enforce_schema: bool = False,
360
372
  ) -> tuple[
361
373
  dict,
@@ -226,7 +226,7 @@ class LanguageModelService:
226
226
  temperature: float = DEFAULT_COMPLETE_TEMPERATURE,
227
227
  timeout: int = DEFAULT_COMPLETE_TIMEOUT,
228
228
  tools: Optional[list[LanguageModelTool | LanguageModelToolDescription]] = None,
229
- structured_output_model: Optional[Type[BaseModel]] = None,
229
+ structured_output_model: Optional[Type[BaseModel] | dict[str, Any]] = None,
230
230
  structured_output_enforce_schema: bool = False,
231
231
  other_options: Optional[dict] = None,
232
232
  ) -> LanguageModelResponse:
@@ -254,7 +254,7 @@ class LanguageModelService:
254
254
  temperature: float = DEFAULT_COMPLETE_TEMPERATURE,
255
255
  timeout: int = DEFAULT_COMPLETE_TIMEOUT,
256
256
  tools: Optional[list[LanguageModelTool | LanguageModelToolDescription]] = None,
257
- structured_output_model: Optional[Type[BaseModel]] = None,
257
+ structured_output_model: Optional[Type[BaseModel] | dict[str, Any]] = None,
258
258
  structured_output_enforce_schema: bool = False,
259
259
  other_options: Optional[dict] = None,
260
260
  ) -> LanguageModelResponse:
@@ -286,7 +286,7 @@ class LanguageModelService:
286
286
  temperature: float = DEFAULT_COMPLETE_TEMPERATURE,
287
287
  timeout: int = DEFAULT_COMPLETE_TIMEOUT,
288
288
  tools: Optional[list[LanguageModelTool | LanguageModelToolDescription]] = None,
289
- structured_output_model: Optional[Type[BaseModel]] = None,
289
+ structured_output_model: Optional[Type[BaseModel] | dict[str, Any]] = None,
290
290
  structured_output_enforce_schema: bool = False,
291
291
  other_options: Optional[dict] = None,
292
292
  ) -> LanguageModelResponse:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: unique_toolkit
3
- Version: 1.34.1
3
+ Version: 1.35.0
4
4
  Summary:
5
5
  License: Proprietary
6
6
  Author: Cedric Klinkert
@@ -121,6 +121,9 @@ All notable changes to this project will be documented in this file.
121
121
  The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
122
122
  and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
123
123
 
124
+ ## [1.35.0] - 2025-12-04
125
+ - Add `LoopIterationRunner` abstraction and support for planning before every loop iteration.
126
+
124
127
  ## [1.34.1] - 2025-12-02
125
128
  - Update code interpreter tool instructions.
126
129
 
@@ -62,6 +62,15 @@ unique_toolkit/agentic/history_manager/history_construction_with_contents.py,sha
62
62
  unique_toolkit/agentic/history_manager/history_manager.py,sha256=7V7_173XkAjc8otBACF0G3dbqRs34FSlURbBPrE95Wk,9537
63
63
  unique_toolkit/agentic/history_manager/loop_token_reducer.py,sha256=4XUX2-yVBnaYthV8p0zj2scVBUdK_3IhxBgoNlrytyQ,18498
64
64
  unique_toolkit/agentic/history_manager/utils.py,sha256=VIn_UmcR3jHtpux0qp5lQQzczgAm8XYSeQiPo87jC3A,3143
65
+ unique_toolkit/agentic/loop_runner/__init__.py,sha256=QLCYmIyfcKQEbuv1Xm0VuR_xC8JyD2_aMIvt1TRFzvw,517
66
+ unique_toolkit/agentic/loop_runner/_stream_handler_utils.py,sha256=FTGc5y8wkDnwnRVSYEdandgKz-FiySOsrTFFMadwP6E,1706
67
+ unique_toolkit/agentic/loop_runner/base.py,sha256=3g4PalzV00o8kcRwHds2c2rtxW4idD7_7vS2Z7GkMvQ,1370
68
+ unique_toolkit/agentic/loop_runner/middleware/__init__.py,sha256=_yeRH8xYigfJZyQ5-5lZUo2RXDJkGfftCQrKFm2rWb4,217
69
+ unique_toolkit/agentic/loop_runner/middleware/planning/__init__.py,sha256=Y9MlihNA8suNREixW98RF45bj0EMtD_tQuDrO2MEML4,304
70
+ unique_toolkit/agentic/loop_runner/middleware/planning/planning.py,sha256=QiXqTGxQ-9Puc79blTBadD0piU7SY5INyndCdanfqA8,2877
71
+ unique_toolkit/agentic/loop_runner/middleware/planning/schema.py,sha256=76C36CWCLfDAYYqtaQlhXsmkWM1fCqf8j-l5afQREKA,2869
72
+ unique_toolkit/agentic/loop_runner/runners/__init__.py,sha256=raaNpHcTfXkYURy0ysyacispSdQzYPDoG17PyR57uK4,205
73
+ unique_toolkit/agentic/loop_runner/runners/basic.py,sha256=3swSPsefV1X-ltUC8iNAOrn9PL0abUUfWXJjhM4sShA,3116
65
74
  unique_toolkit/agentic/message_log_manager/__init__.py,sha256=3-KY_sGkPbNoSnrzwPY0FQIJNnsz4NHXvocXgGRUeuE,169
66
75
  unique_toolkit/agentic/message_log_manager/service.py,sha256=AiuIq2dKQg9Y8bEYgGcve1X8-WRRdqPZXaZXXLJxfFM,3057
67
76
  unique_toolkit/agentic/postprocessor/postprocessor_manager.py,sha256=s6HFhA61TE05aAay15NFTWI1JvdSlxmGpEVfpBbGFyM,7684
@@ -180,12 +189,12 @@ unique_toolkit/language_model/_responses_api_utils.py,sha256=LmxMIuKFDm70PPGZIcb
180
189
  unique_toolkit/language_model/builder.py,sha256=4OKfwJfj3TrgO1ezc_ewIue6W7BCQ2ZYQXUckWVPPTA,3369
181
190
  unique_toolkit/language_model/constants.py,sha256=B-topqW0r83dkC_25DeQfnPk3n53qzIHUCBS7YJ0-1U,119
182
191
  unique_toolkit/language_model/default_language_model.py,sha256=-_DBsJhLCsFdaU4ynAkyW0jYIl2lhrPybZm1K-GgVJs,125
183
- unique_toolkit/language_model/functions.py,sha256=nGxlV4OO70jdH_7AgRWDMpbzmmKLZ-5Tk4gu5nxB2ko,17735
192
+ unique_toolkit/language_model/functions.py,sha256=PTBm2BBkuqISVHoyUqMIGHGXT-RMSAfz0F_Ylo2esQ8,18246
184
193
  unique_toolkit/language_model/infos.py,sha256=sZJOOij-dfReDxJWfd7ZwP3qx4KcN1LVqNchRafKmrY,79877
185
194
  unique_toolkit/language_model/prompt.py,sha256=JSawaLjQg3VR-E2fK8engFyJnNdk21zaO8pPIodzN4Q,3991
186
195
  unique_toolkit/language_model/reference.py,sha256=nkX2VFz-IrUz8yqyc3G5jUMNwrNpxITBrMEKkbqqYoI,8583
187
196
  unique_toolkit/language_model/schemas.py,sha256=ATiHjhfGxoubS332XuhL9PKSoFewcWvPTUVBaNGWlJo,23994
188
- unique_toolkit/language_model/service.py,sha256=rt5LoQnDifIa5TnykGkJNl03lj0QhCMdXSdNA-bXn1c,11904
197
+ unique_toolkit/language_model/service.py,sha256=fI2S5JLawJRRkKg086Ysz2Of4AOBHPN-4tdsUtagdjs,11955
189
198
  unique_toolkit/language_model/utils.py,sha256=bPQ4l6_YO71w-zaIPanUUmtbXC1_hCvLK0tAFc3VCRc,1902
190
199
  unique_toolkit/protocols/support.py,sha256=ZEnbQL5w2-T_1AeM8OHycZJ3qbdfVI1nXe0nL9esQEw,5544
191
200
  unique_toolkit/services/__init__.py,sha256=90-IT5FjMcnlqxjp5kme9Fqgp_on46rggctIqHMdqsw,195
@@ -199,7 +208,7 @@ unique_toolkit/short_term_memory/service.py,sha256=5PeVBu1ZCAfyDb2HLVvlmqSbyzBBu
199
208
  unique_toolkit/smart_rules/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
200
209
  unique_toolkit/smart_rules/compile.py,sha256=Ozhh70qCn2yOzRWr9d8WmJeTo7AQurwd3tStgBMPFLA,1246
201
210
  unique_toolkit/test_utilities/events.py,sha256=_mwV2bs5iLjxS1ynDCjaIq-gjjKhXYCK-iy3dRfvO3g,6410
202
- unique_toolkit-1.34.1.dist-info/LICENSE,sha256=GlN8wHNdh53xwOPg44URnwag6TEolCjoq3YD_KrWgss,193
203
- unique_toolkit-1.34.1.dist-info/METADATA,sha256=Ebl8qfOh2p3WyhNkml3We-HIKFemQ6goX9hDjoC8jEo,45594
204
- unique_toolkit-1.34.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
205
- unique_toolkit-1.34.1.dist-info/RECORD,,
211
+ unique_toolkit-1.35.0.dist-info/LICENSE,sha256=GlN8wHNdh53xwOPg44URnwag6TEolCjoq3YD_KrWgss,193
212
+ unique_toolkit-1.35.0.dist-info/METADATA,sha256=9VeZPMOuD-dYgXiIG2dVpTHxYsqJKXM5sADlIGF1pIc,45714
213
+ unique_toolkit-1.35.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
214
+ unique_toolkit-1.35.0.dist-info/RECORD,,