ultralytics 8.3.96__py3-none-any.whl → 8.3.98__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_solutions.py +1 -0
- ultralytics/__init__.py +1 -1
- ultralytics/data/annotator.py +12 -11
- ultralytics/engine/exporter.py +13 -14
- ultralytics/models/nas/model.py +1 -0
- ultralytics/models/nas/predict.py +4 -24
- ultralytics/models/nas/val.py +1 -4
- ultralytics/nn/autobackend.py +3 -3
- ultralytics/utils/__init__.py +1 -1
- ultralytics/utils/callbacks/comet.py +1 -0
- ultralytics/utils/instance.py +7 -2
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/METADATA +69 -67
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/RECORD +17 -17
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/WHEEL +1 -1
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.96.dist-info → ultralytics-8.3.98.dist-info}/top_level.txt +0 -0
tests/test_solutions.py
CHANGED
ultralytics/__init__.py
CHANGED
ultralytics/data/annotator.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
from pathlib import Path
|
4
|
+
from typing import List, Optional, Union
|
4
5
|
|
5
6
|
from ultralytics import SAM, YOLO
|
6
7
|
|
7
8
|
|
8
9
|
def auto_annotate(
|
9
|
-
data,
|
10
|
-
det_model="yolo11x.pt",
|
11
|
-
sam_model="sam_b.pt",
|
12
|
-
device="",
|
13
|
-
conf=0.25,
|
14
|
-
iou=0.45,
|
15
|
-
imgsz=640,
|
16
|
-
max_det=300,
|
17
|
-
classes=None,
|
18
|
-
output_dir=None,
|
19
|
-
):
|
10
|
+
data: Union[str, Path],
|
11
|
+
det_model: str = "yolo11x.pt",
|
12
|
+
sam_model: str = "sam_b.pt",
|
13
|
+
device: str = "",
|
14
|
+
conf: float = 0.25,
|
15
|
+
iou: float = 0.45,
|
16
|
+
imgsz: int = 640,
|
17
|
+
max_det: int = 300,
|
18
|
+
classes: Optional[List[int]] = None,
|
19
|
+
output_dir: Optional[Union[str, Path]] = None,
|
20
|
+
) -> None:
|
20
21
|
"""
|
21
22
|
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
|
22
23
|
|
ultralytics/engine/exporter.py
CHANGED
@@ -58,6 +58,7 @@ TensorFlow.js:
|
|
58
58
|
import gc
|
59
59
|
import json
|
60
60
|
import os
|
61
|
+
import re
|
61
62
|
import shutil
|
62
63
|
import subprocess
|
63
64
|
import time
|
@@ -665,7 +666,7 @@ class Exporter:
|
|
665
666
|
@try_export
|
666
667
|
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
|
667
668
|
"""YOLO Paddle export."""
|
668
|
-
check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle", "x2paddle"))
|
669
|
+
check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle<3.0.0", "x2paddle"))
|
669
670
|
import x2paddle # noqa
|
670
671
|
from x2paddle.convert import pytorch2paddle # noqa
|
671
672
|
|
@@ -1222,26 +1223,24 @@ class Exporter:
|
|
1222
1223
|
raise ValueError("IMX export is not supported for end2end models.")
|
1223
1224
|
if "C2f" not in self.model.__str__():
|
1224
1225
|
raise ValueError("IMX export is only supported for YOLOv8n detection models")
|
1225
|
-
check_requirements(("model-compression-toolkit
|
1226
|
-
check_requirements("imx500-converter[pt]
|
1226
|
+
check_requirements(("model-compression-toolkit>=2.3.0", "sony-custom-layers>=0.3.0"))
|
1227
|
+
check_requirements("imx500-converter[pt]>=3.16.1") # Separate requirements for imx500-converter
|
1227
1228
|
|
1228
1229
|
import model_compression_toolkit as mct
|
1229
1230
|
import onnx
|
1230
|
-
from sony_custom_layers.pytorch.
|
1231
|
+
from sony_custom_layers.pytorch.nms import multiclass_nms
|
1231
1232
|
|
1232
1233
|
LOGGER.info(f"\n{prefix} starting export with model_compression_toolkit {mct.__version__}...")
|
1233
1234
|
|
1235
|
+
# Install Java>=17
|
1234
1236
|
try:
|
1235
|
-
|
1236
|
-
|
1237
|
-
|
1238
|
-
|
1239
|
-
|
1240
|
-
|
1241
|
-
|
1242
|
-
if is_sudo_available():
|
1243
|
-
c.insert(0, "sudo")
|
1244
|
-
subprocess.run(c, check=True)
|
1237
|
+
java_output = subprocess.run(["java", "--version"], check=True, capture_output=True).stdout.decode()
|
1238
|
+
version_match = re.search(r"(?:openjdk|java) (\d+)", java_output)
|
1239
|
+
java_version = int(version_match.group(1)) if version_match else 0
|
1240
|
+
assert java_version >= 17, "Java version too old"
|
1241
|
+
except (FileNotFoundError, subprocess.CalledProcessError, AssertionError):
|
1242
|
+
cmd = (["sudo"] if is_sudo_available() else []) + ["apt", "install", "-y", "default-jre"]
|
1243
|
+
subprocess.run(cmd, check=True)
|
1245
1244
|
|
1246
1245
|
def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)):
|
1247
1246
|
for batch in dataloader:
|
ultralytics/models/nas/model.py
CHANGED
@@ -81,6 +81,7 @@ class NAS(Model):
|
|
81
81
|
self.model.pt_path = weights # for export()
|
82
82
|
self.model.task = "detect" # for export()
|
83
83
|
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
|
84
|
+
self.model.eval()
|
84
85
|
|
85
86
|
def info(self, detailed: bool = False, verbose: bool = True):
|
86
87
|
"""
|
@@ -2,16 +2,15 @@
|
|
2
2
|
|
3
3
|
import torch
|
4
4
|
|
5
|
-
from ultralytics.
|
6
|
-
from ultralytics.engine.results import Results
|
5
|
+
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
7
6
|
from ultralytics.utils import ops
|
8
7
|
|
9
8
|
|
10
|
-
class NASPredictor(
|
9
|
+
class NASPredictor(DetectionPredictor):
|
11
10
|
"""
|
12
11
|
Ultralytics YOLO NAS Predictor for object detection.
|
13
12
|
|
14
|
-
This class extends the `
|
13
|
+
This class extends the `DetectionPredictor` from Ultralytics engine and is responsible for post-processing the
|
15
14
|
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
|
16
15
|
scaling the bounding boxes to fit the original image dimensions.
|
17
16
|
|
@@ -38,23 +37,4 @@ class NASPredictor(BasePredictor):
|
|
38
37
|
# Convert boxes from xyxy to xywh format and concatenate with class scores
|
39
38
|
boxes = ops.xyxy2xywh(preds_in[0][0])
|
40
39
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
41
|
-
|
42
|
-
# Apply non-maximum suppression to filter overlapping detections
|
43
|
-
preds = ops.non_max_suppression(
|
44
|
-
preds,
|
45
|
-
self.args.conf,
|
46
|
-
self.args.iou,
|
47
|
-
agnostic=self.args.agnostic_nms,
|
48
|
-
max_det=self.args.max_det,
|
49
|
-
classes=self.args.classes,
|
50
|
-
)
|
51
|
-
|
52
|
-
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
53
|
-
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
54
|
-
|
55
|
-
results = []
|
56
|
-
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
|
57
|
-
# Scale bounding boxes to match original image dimensions
|
58
|
-
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
59
|
-
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
60
|
-
return results
|
40
|
+
return super().postprocess(preds, img, orig_imgs)
|
ultralytics/models/nas/val.py
CHANGED
@@ -36,7 +36,4 @@ class NASValidator(DetectionValidator):
|
|
36
36
|
"""Apply Non-maximum suppression to prediction outputs."""
|
37
37
|
boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
|
38
38
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
|
39
|
-
return super().postprocess(
|
40
|
-
preds,
|
41
|
-
max_time_img=0.5,
|
42
|
-
)
|
39
|
+
return super().postprocess(preds)
|
ultralytics/nn/autobackend.py
CHANGED
@@ -222,12 +222,12 @@ class AutoBackend(nn.Module):
|
|
222
222
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
223
223
|
else:
|
224
224
|
check_requirements(
|
225
|
-
["model-compression-toolkit
|
225
|
+
["model-compression-toolkit>=2.3.0", "sony-custom-layers[torch]>=0.3.0", "onnxruntime-extensions"]
|
226
226
|
)
|
227
227
|
w = next(Path(w).glob("*.onnx"))
|
228
228
|
LOGGER.info(f"Loading {w} for ONNX IMX inference...")
|
229
229
|
import mct_quantizers as mctq
|
230
|
-
from sony_custom_layers.pytorch.
|
230
|
+
from sony_custom_layers.pytorch.nms import nms_ort # noqa
|
231
231
|
|
232
232
|
session = onnxruntime.InferenceSession(
|
233
233
|
w, mctq.get_ort_session_options(), providers=["CPUExecutionProvider"]
|
@@ -435,7 +435,7 @@ class AutoBackend(nn.Module):
|
|
435
435
|
# PaddlePaddle
|
436
436
|
elif paddle:
|
437
437
|
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
|
438
|
-
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
|
438
|
+
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle<3.0.0")
|
439
439
|
import paddle.inference as pdi # noqa
|
440
440
|
|
441
441
|
w = Path(w)
|
ultralytics/utils/__init__.py
CHANGED
ultralytics/utils/instance.py
CHANGED
@@ -402,8 +402,13 @@ class Instances:
|
|
402
402
|
self.segments[..., 0] = self.segments[..., 0].clip(0, w)
|
403
403
|
self.segments[..., 1] = self.segments[..., 1].clip(0, h)
|
404
404
|
if self.keypoints is not None:
|
405
|
-
|
406
|
-
self.keypoints[...,
|
405
|
+
# Set out of bounds visibility to zero
|
406
|
+
self.keypoints[..., 2][
|
407
|
+
(self.keypoints[..., 0] < 0)
|
408
|
+
| (self.keypoints[..., 0] > w)
|
409
|
+
| (self.keypoints[..., 1] < 0)
|
410
|
+
| (self.keypoints[..., 1] > h)
|
411
|
+
] = 0.0
|
407
412
|
|
408
413
|
def remove_zero_area_boxes(self):
|
409
414
|
"""
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.98
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -86,7 +86,7 @@ Dynamic: license-file
|
|
86
86
|
|
87
87
|
<div align="center">
|
88
88
|
<p>
|
89
|
-
<a href="https://www.ultralytics.com/blog/
|
89
|
+
<a href="https://www.ultralytics.com/blog/ultralytics-yolo11-has-arrived-redefine-whats-possible-in-ai" target="_blank">
|
90
90
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
|
91
91
|
</p>
|
92
92
|
|
@@ -105,13 +105,14 @@ Dynamic: license-file
|
|
105
105
|
<a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
|
106
106
|
<a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
|
107
107
|
</div>
|
108
|
+
</div>
|
108
109
|
<br>
|
109
110
|
|
110
|
-
[Ultralytics](https://www.ultralytics.com/)
|
111
|
+
[Ultralytics](https://www.ultralytics.com/) creates cutting-edge, state-of-the-art (SOTA) [YOLO models](https://www.ultralytics.com/yolo) built on years of foundational research in computer vision and AI. Constantly updated for performance and flexibility, our models are **fast**, **accurate**, and **easy to use**. They excel at [object detection](https://docs.ultralytics.com/tasks/detect/), [tracking](https://docs.ultralytics.com/modes/track/), [instance segmentation](https://docs.ultralytics.com/tasks/segment/), [image classification](https://docs.ultralytics.com/tasks/classify/), and [pose estimation](https://docs.ultralytics.com/tasks/pose/) tasks.
|
111
112
|
|
112
|
-
|
113
|
+
Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.com/). Get support via [GitHub Issues](https://github.com/ultralytics/ultralytics/issues/new/choose). Join discussions on [Discord](https://discord.com/invite/ultralytics), [Reddit](https://reddit.com/r/ultralytics), and the [Ultralytics Community Forums](https://community.ultralytics.com/)!
|
113
114
|
|
114
|
-
|
115
|
+
Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
|
115
116
|
|
116
117
|
<a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
|
117
118
|
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
|
@@ -132,16 +133,15 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|
132
133
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
|
133
134
|
<a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
|
134
135
|
</div>
|
135
|
-
</div>
|
136
136
|
|
137
|
-
##
|
137
|
+
## 📄 Documentation
|
138
138
|
|
139
|
-
See below for
|
139
|
+
See below for quickstart installation and usage examples. For comprehensive guidance on training, validation, prediction, and deployment, refer to our full [Ultralytics Docs](https://docs.ultralytics.com/).
|
140
140
|
|
141
141
|
<details open>
|
142
142
|
<summary>Install</summary>
|
143
143
|
|
144
|
-
|
144
|
+
Install the `ultralytics` package, including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml), in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
|
145
145
|
|
146
146
|
[](https://pypi.org/project/ultralytics/) [](https://www.pepy.tech/projects/ultralytics) [](https://pypi.org/project/ultralytics/)
|
147
147
|
|
@@ -149,7 +149,7 @@ Pip install the Ultralytics package including all [requirements](https://github.
|
|
149
149
|
pip install ultralytics
|
150
150
|
```
|
151
151
|
|
152
|
-
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please
|
152
|
+
For alternative installation methods, including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and building from source via Git, please consult the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
|
153
153
|
|
154
154
|
[](https://anaconda.org/conda-forge/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics)
|
155
155
|
|
@@ -160,50 +160,51 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
|
|
160
160
|
|
161
161
|
### CLI
|
162
162
|
|
163
|
-
|
163
|
+
You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
|
164
164
|
|
165
165
|
```bash
|
166
|
+
# Predict using a pretrained YOLO11n model on an image
|
166
167
|
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
167
168
|
```
|
168
169
|
|
169
|
-
`yolo`
|
170
|
+
The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
|
170
171
|
|
171
172
|
### Python
|
172
173
|
|
173
|
-
YOLO
|
174
|
+
Ultralytics YOLO can also be integrated directly into your Python projects. It accepts the same [configuration arguments](https://docs.ultralytics.com/usage/cfg/) as the CLI:
|
174
175
|
|
175
176
|
```python
|
176
177
|
from ultralytics import YOLO
|
177
178
|
|
178
|
-
# Load a model
|
179
|
+
# Load a pretrained YOLO11n model
|
179
180
|
model = YOLO("yolo11n.pt")
|
180
181
|
|
181
|
-
# Train the model
|
182
|
+
# Train the model on the COCO8 dataset for 100 epochs
|
182
183
|
train_results = model.train(
|
183
|
-
data="coco8.yaml", #
|
184
|
-
epochs=100, #
|
185
|
-
imgsz=640, #
|
186
|
-
device="cpu", #
|
184
|
+
data="coco8.yaml", # Path to dataset configuration file
|
185
|
+
epochs=100, # Number of training epochs
|
186
|
+
imgsz=640, # Image size for training
|
187
|
+
device="cpu", # Device to run on (e.g., 'cpu', 0, [0,1,2,3])
|
187
188
|
)
|
188
189
|
|
189
|
-
# Evaluate model performance on the validation set
|
190
|
+
# Evaluate the model's performance on the validation set
|
190
191
|
metrics = model.val()
|
191
192
|
|
192
193
|
# Perform object detection on an image
|
193
|
-
results = model("path/to/image.jpg")
|
194
|
-
results[0].show()
|
194
|
+
results = model("path/to/image.jpg") # Predict on an image
|
195
|
+
results[0].show() # Display results
|
195
196
|
|
196
|
-
# Export the model to ONNX format
|
197
|
-
path = model.export(format="onnx") #
|
197
|
+
# Export the model to ONNX format for deployment
|
198
|
+
path = model.export(format="onnx") # Returns the path to the exported model
|
198
199
|
```
|
199
200
|
|
200
|
-
|
201
|
+
Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/usage/python/).
|
201
202
|
|
202
203
|
</details>
|
203
204
|
|
204
|
-
##
|
205
|
+
## ✨ Models
|
205
206
|
|
206
|
-
YOLO11 [
|
207
|
+
Ultralytics YOLO11 offers models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
|
207
208
|
|
208
209
|
<a href="https://docs.ultralytics.com/tasks/" target="_blank">
|
209
210
|
<img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
|
@@ -213,7 +214,7 @@ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://d
|
|
213
214
|
|
214
215
|
<details open><summary>Detection (COCO)</summary>
|
215
216
|
|
216
|
-
|
217
|
+
Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
|
217
218
|
|
218
219
|
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
219
220
|
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
@@ -223,14 +224,14 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
223
224
|
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
|
224
225
|
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
|
225
226
|
|
226
|
-
- **mAP<sup>val</sup>** values
|
227
|
-
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce
|
227
|
+
- **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
|
228
|
+
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
228
229
|
|
229
230
|
</details>
|
230
231
|
|
231
232
|
<details><summary>Segmentation (COCO)</summary>
|
232
233
|
|
233
|
-
|
234
|
+
Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
|
234
235
|
|
235
236
|
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
236
237
|
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
@@ -240,14 +241,14 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
240
241
|
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
|
241
242
|
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
|
242
243
|
|
243
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce
|
244
|
-
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce
|
244
|
+
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
|
245
|
+
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
|
245
246
|
|
246
247
|
</details>
|
247
248
|
|
248
249
|
<details><summary>Classification (ImageNet)</summary>
|
249
250
|
|
250
|
-
|
251
|
+
Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
|
251
252
|
|
252
253
|
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
|
253
254
|
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
@@ -257,14 +258,14 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|
257
258
|
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 6.2 |
|
258
259
|
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 13.7 |
|
259
260
|
|
260
|
-
- **acc** values
|
261
|
-
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce
|
261
|
+
- **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
|
262
|
+
- **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
262
263
|
|
263
264
|
</details>
|
264
265
|
|
265
266
|
<details><summary>Pose (COCO)</summary>
|
266
267
|
|
267
|
-
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples
|
268
|
+
See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
|
268
269
|
|
269
270
|
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
270
271
|
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
@@ -274,14 +275,14 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
274
275
|
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
|
275
276
|
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
|
276
277
|
|
277
|
-
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://
|
278
|
-
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce
|
278
|
+
- **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
|
279
|
+
- **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
279
280
|
|
280
281
|
</details>
|
281
282
|
|
282
|
-
<details><summary>
|
283
|
+
<details><summary>Oriented Bounding Boxes (DOTAv1)</summary>
|
283
284
|
|
284
|
-
|
285
|
+
Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
|
285
286
|
|
286
287
|
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
287
288
|
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
@@ -291,16 +292,16 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
291
292
|
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
|
292
293
|
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
|
293
294
|
|
294
|
-
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/
|
295
|
-
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
295
|
+
- **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
|
296
|
+
- **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
296
297
|
|
297
298
|
</details>
|
298
299
|
|
299
|
-
##
|
300
|
+
## 🧩 Integrations
|
300
301
|
|
301
|
-
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [
|
302
|
+
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/), [Comet ML](https://docs.ultralytics.com/integrations/comet/), [Roboflow](https://docs.ultralytics.com/integrations/roboflow/), and [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow. Explore more at [Ultralytics Integrations](https://docs.ultralytics.com/integrations/).
|
302
303
|
|
303
|
-
<a href="https://
|
304
|
+
<a href="https://docs.ultralytics.com/integrations/" target="_blank">
|
304
305
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
|
305
306
|
</a>
|
306
307
|
<br>
|
@@ -310,46 +311,47 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
|
|
310
311
|
<a href="https://www.ultralytics.com/hub">
|
311
312
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
|
312
313
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
313
|
-
<a href="https://docs.
|
314
|
-
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="
|
314
|
+
<a href="https://docs.ultralytics.com/integrations/weights-biases/">
|
315
|
+
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
|
315
316
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
316
|
-
<a href="https://
|
317
|
+
<a href="https://docs.ultralytics.com/integrations/comet/">
|
317
318
|
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
|
318
319
|
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
|
319
|
-
<a href="https://
|
320
|
-
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="
|
320
|
+
<a href="https://docs.ultralytics.com/integrations/neural-magic/">
|
321
|
+
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
|
321
322
|
</div>
|
322
323
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://
|
324
|
+
| Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
|
325
|
+
| :----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------: |
|
326
|
+
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO11 models, resume training, and interactively visualize predictions. | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
|
326
327
|
|
327
|
-
##
|
328
|
+
## 🌟 Ultralytics HUB
|
328
329
|
|
329
|
-
Experience seamless AI with [Ultralytics HUB](https://
|
330
|
+
Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
|
330
331
|
|
331
332
|
<a href="https://www.ultralytics.com/hub" target="_blank">
|
332
333
|
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
|
333
334
|
|
334
|
-
##
|
335
|
+
## 🤝 Contribute
|
336
|
+
|
337
|
+
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA model it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
|
335
338
|
|
336
|
-
|
339
|
+
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=1280 -->
|
337
340
|
|
338
|
-
|
341
|
+
[](https://github.com/ultralytics/ultralytics/graphs/contributors)
|
339
342
|
|
340
|
-
|
341
|
-
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
|
343
|
+
We look forward to your contributions to help make the Ultralytics ecosystem even better!
|
342
344
|
|
343
|
-
##
|
345
|
+
## 📜 License
|
344
346
|
|
345
|
-
Ultralytics offers two licensing options to
|
347
|
+
Ultralytics offers two licensing options to suit different needs:
|
346
348
|
|
347
|
-
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/
|
348
|
-
- **Enterprise License**: Designed for commercial use, this license
|
349
|
+
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
|
350
|
+
- **Ultralytics Enterprise License**: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
|
349
351
|
|
350
|
-
##
|
352
|
+
## 📞 Contact
|
351
353
|
|
352
|
-
For
|
354
|
+
For bug reports and feature requests related to Ultralytics software, please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). For questions, discussions, and community support, join our active communities on [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), and the [Ultralytics Community Forums](https://community.ultralytics.com/). We're here to help with all things Ultralytics!
|
353
355
|
|
354
356
|
<br>
|
355
357
|
<div align="center">
|
@@ -6,8 +6,8 @@ tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
|
6
6
|
tests/test_exports.py,sha256=ONs5zF9gVOl_sabzLmFyhp5zQ2sv3uSWzXUjoTgJPME,9242
|
7
7
|
tests/test_integrations.py,sha256=ZgpddWHEVqiP4bGhVw8fLc2wdz0rCxuxr0FQ2dTgnIE,6067
|
8
8
|
tests/test_python.py,sha256=qfAjIhZ8R-g6QLtAo_bSf77U_7LexVKwstZlmoze5WI,23075
|
9
|
-
tests/test_solutions.py,sha256=
|
10
|
-
ultralytics/__init__.py,sha256=
|
9
|
+
tests/test_solutions.py,sha256=4TNQZ9aH1doWujQmh4pgxqHHCU2Umk-IBXjAZg7HIqk,5135
|
10
|
+
ultralytics/__init__.py,sha256=yH73VW38_luRC9ggHhgoGyn0aW4mw1WVv-7lwjAGCH8,709
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
13
|
ultralytics/cfg/__init__.py,sha256=h-VYq22NA05gVibxa5eVO-pMk9OqlcaUMx2NbgklnXM,39894
|
@@ -97,7 +97,7 @@ ultralytics/cfg/solutions/default.yaml,sha256=c-9thwI7y7VmIoIM6AW70Z0r825SToH2h7
|
|
97
97
|
ultralytics/cfg/trackers/botsort.yaml,sha256=D9doE5GQUe6HrAFzr7OfQFIGPFk0M_vJ0B_n7VjxH6Q,1080
|
98
98
|
ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
|
99
99
|
ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
|
100
|
-
ultralytics/data/annotator.py,sha256=
|
100
|
+
ultralytics/data/annotator.py,sha256=VEwb11FsEZm75qlEp8XDHFGKW0_rGsEaFDaBVd771Kw,2902
|
101
101
|
ultralytics/data/augment.py,sha256=kvXsDZB-ibPu--N9CuA5RXQcGmUEyxvo6HPsYSmevvU,120963
|
102
102
|
ultralytics/data/base.py,sha256=6-8ZIp5guIlIQa4wafrpBQl6lHSSneJnQY3KpgX6y6o,18449
|
103
103
|
ultralytics/data/build.py,sha256=56pavLie6PDFEVYChMxnGQGtGsxozYZRpFqC70DRGls,9650
|
@@ -107,7 +107,7 @@ ultralytics/data/loaders.py,sha256=_Gyp_BfGTZwsFdn4UnolXxdU_sAYZLIrv0L2TRI9R5g,2
|
|
107
107
|
ultralytics/data/split_dota.py,sha256=p8eVGht9tABSVbf9vwvxA_AQYEva3IGHePKlMeNrn64,11872
|
108
108
|
ultralytics/data/utils.py,sha256=aRPwIoLrCML_Kcd0dI9B6c5Ct4dvhdF36rDHtuf7Ww4,33217
|
109
109
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
110
|
-
ultralytics/engine/exporter.py,sha256=
|
110
|
+
ultralytics/engine/exporter.py,sha256=tSj7-Nwc1cEMlPhZVJHZ26vxzWnuVS_KYiihNau2CMk,77651
|
111
111
|
ultralytics/engine/model.py,sha256=uAqzcgn9EjmKG1lO7rwcW5sIMIwJTHHC-popARr2QSU,52902
|
112
112
|
ultralytics/engine/predictor.py,sha256=ozPvmwlek6QRN5canK-BTQJI8KbBynWozF3AYN1ghE8,21626
|
113
113
|
ultralytics/engine/results.py,sha256=H3pFJhUjYKvVyOUqqZjfIn8vnCpl81aYNOnregMrBoQ,79716
|
@@ -126,9 +126,9 @@ ultralytics/models/fastsam/predict.py,sha256=2aLLu5nCCRlPLXcfidqI_bS95C0lWesSFEa
|
|
126
126
|
ultralytics/models/fastsam/utils.py,sha256=gqoktYI_DYpqmPCOEweMd_x0aJDDwERHn0DFpxJiH1k,899
|
127
127
|
ultralytics/models/fastsam/val.py,sha256=NK6rE4f_-KOQGYJdeObCopkCxhLFsxbTWiRsDT_hzMU,2114
|
128
128
|
ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
|
129
|
-
ultralytics/models/nas/model.py,sha256=
|
130
|
-
ultralytics/models/nas/predict.py,sha256=
|
131
|
-
ultralytics/models/nas/val.py,sha256=
|
129
|
+
ultralytics/models/nas/model.py,sha256=uWhLNixkVWHbJ_xa3vjIFFOopq6J8vpbP2TaOk3rtiM,3810
|
130
|
+
ultralytics/models/nas/predict.py,sha256=Cpn2OnSVtpAEIFCKyfQQ5NA7ZkUH5M-IerRubRlALC0,1731
|
131
|
+
ultralytics/models/nas/val.py,sha256=jIDgS656XGaBEEJ_jhyMub-qIieneH5nTXerEoLib9A,1546
|
132
132
|
ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
|
133
133
|
ultralytics/models/rtdetr/model.py,sha256=zx9UKpReYCRL7Is2DXIX9ZcJE25KE_fPZ-NYx5vF6E4,2119
|
134
134
|
ultralytics/models/rtdetr/predict.py,sha256=5VNvyULxegg_NfGo7ugfIKHrtKhpaspJZdagU1haQmo,3942
|
@@ -177,7 +177,7 @@ ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn
|
|
177
177
|
ultralytics/models/yolo/world/train.py,sha256=HfOVrWvbnqPqW3MpwFRVbkDHC2hZ8S0A-TnzaPtO1lI,4876
|
178
178
|
ultralytics/models/yolo/world/train_world.py,sha256=GbXY3IJOvtYHHyuuhipMxCizrffgJ0iAjbcNcLpliMo,6360
|
179
179
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
180
|
-
ultralytics/nn/autobackend.py,sha256=
|
180
|
+
ultralytics/nn/autobackend.py,sha256=lTv6wQ8S3BG0VV5lBzKFzNIyiNSaIa165K5vZO1w8LI,38210
|
181
181
|
ultralytics/nn/tasks.py,sha256=az5yjT2S3vbOTgZ2NXwUbIuRvIyGiITwt1WI4jIuBJE,52678
|
182
182
|
ultralytics/nn/modules/__init__.py,sha256=R_qrw30VU_cgg1YyowVpzAbqh87WfYXkPZe4Og_bQqk,2951
|
183
183
|
ultralytics/nn/modules/activation.py,sha256=_DL_rQw4QmhNO0CaftNR8HRvqNnTGRbmjyD6HGbPjxw,1392
|
@@ -213,7 +213,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
213
213
|
ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
|
214
214
|
ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
|
215
215
|
ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
|
216
|
-
ultralytics/utils/__init__.py,sha256=
|
216
|
+
ultralytics/utils/__init__.py,sha256=vkL5eXMA-1CvTJou5D16FkIdO_ANDwPUJPB4NovnMQw,50197
|
217
217
|
ultralytics/utils/autobatch.py,sha256=KnvmNSAO_6H3ZLJ4fOFMTFbOaMlbp025LiJqrdKIz8c,4998
|
218
218
|
ultralytics/utils/benchmarks.py,sha256=0lhuwA_yJ1uGYqL-yMFZrrGZQrLVp09xklKITKYHX_c,30246
|
219
219
|
ultralytics/utils/checks.py,sha256=d30cJY1G3wBWWTlq3C3yGVmDhAUtfXa9U3nuTO4sXQo,32677
|
@@ -221,7 +221,7 @@ ultralytics/utils/dist.py,sha256=seNVxWYY0_OyLYQqSEcTiRIFsk3eojSj06FvrzJCKn8,279
|
|
221
221
|
ultralytics/utils/downloads.py,sha256=2aZBnYtWADXNelIUucW9eaGlrE_m_X9aEYZpfzsDkek,21898
|
222
222
|
ultralytics/utils/errors.py,sha256=sXKDEd8ws3L-yIfG_-P_h86axbm37sJNha7kFBJbQMQ,844
|
223
223
|
ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
|
224
|
-
ultralytics/utils/instance.py,sha256=
|
224
|
+
ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
|
225
225
|
ultralytics/utils/loss.py,sha256=NKisGlygcaDkBjHcH0Y2G6TpcNKjb7iZ_Dt6WQctNLE,34334
|
226
226
|
ultralytics/utils/metrics.py,sha256=mCQwIH3am95OR3yvHWTqWAD0Unal7n2MYg4liFFygbA,53669
|
227
227
|
ultralytics/utils/ops.py,sha256=Ag69Hvy8HxKLvewrtfQRseveboc_RGzlMYmO1B2U1Lk,34215
|
@@ -234,7 +234,7 @@ ultralytics/utils/tuner.py,sha256=mJLrORb67FqnTvKD5Y3dM7LxhkMcJpZwWVYfv9yfQ8w,59
|
|
234
234
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
235
235
|
ultralytics/utils/callbacks/base.py,sha256=QMdltbVe806lekq-w_7ohpXysoZjuB8gStZ14wPaS78,5877
|
236
236
|
ultralytics/utils/callbacks/clearml.py,sha256=jxTL2QSt8Cjp_BkK2XUDPg5t2XnykMYXJFRp6B66ulA,6005
|
237
|
-
ultralytics/utils/callbacks/comet.py,sha256=
|
237
|
+
ultralytics/utils/callbacks/comet.py,sha256=5WlPesVXRcW_VvQh4fVb5dYc4mrzc7Vb50Kid-aTGk8,18051
|
238
238
|
ultralytics/utils/callbacks/dvc.py,sha256=tF8oN8_zkXVsjxQmZjUK4klB9I2I-oRdLxkIr1afCys,5168
|
239
239
|
ultralytics/utils/callbacks/hub.py,sha256=dPSeSStRE1x-WYyqrUghCp_VtBxNZ5-Bmb4wW2KYV2Y,4073
|
240
240
|
ultralytics/utils/callbacks/mlflow.py,sha256=olMilfFKKLb9X53sJxFCn-AHnbcvTmXwtU_CVqSqzeE,5434
|
@@ -242,9 +242,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=TQDHJsgAdnMtSdLeQyVTJ1zBdvuwLm-U4U
|
|
242
242
|
ultralytics/utils/callbacks/raytune.py,sha256=omVZNNuzYxsZZXrF9xpbFv7R1Wjdx1j-gv0xXuZrQas,1122
|
243
243
|
ultralytics/utils/callbacks/tensorboard.py,sha256=rnyja6LpSyixwuL0WKovgARe6RPiX8ORuknlre3VEu4,4255
|
244
244
|
ultralytics/utils/callbacks/wb.py,sha256=AZH7-bARpHhnonnN57dvoPpfK35xBnu7rINZzHeugeg,6851
|
245
|
-
ultralytics-8.3.
|
246
|
-
ultralytics-8.3.
|
247
|
-
ultralytics-8.3.
|
248
|
-
ultralytics-8.3.
|
249
|
-
ultralytics-8.3.
|
250
|
-
ultralytics-8.3.
|
245
|
+
ultralytics-8.3.98.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
246
|
+
ultralytics-8.3.98.dist-info/METADATA,sha256=H6xfzIDPvOzE4ofSrwDprCweIVNF9yJTTRHnOgkzKOM,37156
|
247
|
+
ultralytics-8.3.98.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
248
|
+
ultralytics-8.3.98.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
249
|
+
ultralytics-8.3.98.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
250
|
+
ultralytics-8.3.98.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|