ultralytics 8.3.96__py3-none-any.whl → 8.3.98__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tests/test_solutions.py CHANGED
@@ -1,4 +1,5 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  # This is file for Ultralytics Solutions tests: https://docs.ultralytics.com/solutions/,
3
4
  # It includes every solution excluding DistanceCalculation and Security Alarm System.
4
5
 
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.96"
3
+ __version__ = "8.3.98"
4
4
 
5
5
  import os
6
6
 
@@ -1,22 +1,23 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  from pathlib import Path
4
+ from typing import List, Optional, Union
4
5
 
5
6
  from ultralytics import SAM, YOLO
6
7
 
7
8
 
8
9
  def auto_annotate(
9
- data,
10
- det_model="yolo11x.pt",
11
- sam_model="sam_b.pt",
12
- device="",
13
- conf=0.25,
14
- iou=0.45,
15
- imgsz=640,
16
- max_det=300,
17
- classes=None,
18
- output_dir=None,
19
- ):
10
+ data: Union[str, Path],
11
+ det_model: str = "yolo11x.pt",
12
+ sam_model: str = "sam_b.pt",
13
+ device: str = "",
14
+ conf: float = 0.25,
15
+ iou: float = 0.45,
16
+ imgsz: int = 640,
17
+ max_det: int = 300,
18
+ classes: Optional[List[int]] = None,
19
+ output_dir: Optional[Union[str, Path]] = None,
20
+ ) -> None:
20
21
  """
21
22
  Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
22
23
 
@@ -58,6 +58,7 @@ TensorFlow.js:
58
58
  import gc
59
59
  import json
60
60
  import os
61
+ import re
61
62
  import shutil
62
63
  import subprocess
63
64
  import time
@@ -665,7 +666,7 @@ class Exporter:
665
666
  @try_export
666
667
  def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
667
668
  """YOLO Paddle export."""
668
- check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle", "x2paddle"))
669
+ check_requirements(("paddlepaddle-gpu" if torch.cuda.is_available() else "paddlepaddle<3.0.0", "x2paddle"))
669
670
  import x2paddle # noqa
670
671
  from x2paddle.convert import pytorch2paddle # noqa
671
672
 
@@ -1222,26 +1223,24 @@ class Exporter:
1222
1223
  raise ValueError("IMX export is not supported for end2end models.")
1223
1224
  if "C2f" not in self.model.__str__():
1224
1225
  raise ValueError("IMX export is only supported for YOLOv8n detection models")
1225
- check_requirements(("model-compression-toolkit==2.1.1", "sony-custom-layers==0.2.0", "tensorflow==2.12.0"))
1226
- check_requirements("imx500-converter[pt]==3.14.3") # Separate requirements for imx500-converter
1226
+ check_requirements(("model-compression-toolkit>=2.3.0", "sony-custom-layers>=0.3.0"))
1227
+ check_requirements("imx500-converter[pt]>=3.16.1") # Separate requirements for imx500-converter
1227
1228
 
1228
1229
  import model_compression_toolkit as mct
1229
1230
  import onnx
1230
- from sony_custom_layers.pytorch.object_detection.nms import multiclass_nms
1231
+ from sony_custom_layers.pytorch.nms import multiclass_nms
1231
1232
 
1232
1233
  LOGGER.info(f"\n{prefix} starting export with model_compression_toolkit {mct.__version__}...")
1233
1234
 
1235
+ # Install Java>=17
1234
1236
  try:
1235
- out = subprocess.run(
1236
- ["java", "--version"], check=True, capture_output=True
1237
- ) # Java 17 is required for imx500-converter
1238
- if "openjdk 17" not in str(out.stdout):
1239
- raise FileNotFoundError
1240
- except FileNotFoundError:
1241
- c = ["apt", "install", "-y", "openjdk-17-jdk", "openjdk-17-jre"]
1242
- if is_sudo_available():
1243
- c.insert(0, "sudo")
1244
- subprocess.run(c, check=True)
1237
+ java_output = subprocess.run(["java", "--version"], check=True, capture_output=True).stdout.decode()
1238
+ version_match = re.search(r"(?:openjdk|java) (\d+)", java_output)
1239
+ java_version = int(version_match.group(1)) if version_match else 0
1240
+ assert java_version >= 17, "Java version too old"
1241
+ except (FileNotFoundError, subprocess.CalledProcessError, AssertionError):
1242
+ cmd = (["sudo"] if is_sudo_available() else []) + ["apt", "install", "-y", "default-jre"]
1243
+ subprocess.run(cmd, check=True)
1245
1244
 
1246
1245
  def representative_dataset_gen(dataloader=self.get_int8_calibration_dataloader(prefix)):
1247
1246
  for batch in dataloader:
@@ -81,6 +81,7 @@ class NAS(Model):
81
81
  self.model.pt_path = weights # for export()
82
82
  self.model.task = "detect" # for export()
83
83
  self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
84
+ self.model.eval()
84
85
 
85
86
  def info(self, detailed: bool = False, verbose: bool = True):
86
87
  """
@@ -2,16 +2,15 @@
2
2
 
3
3
  import torch
4
4
 
5
- from ultralytics.engine.predictor import BasePredictor
6
- from ultralytics.engine.results import Results
5
+ from ultralytics.models.yolo.detect.predict import DetectionPredictor
7
6
  from ultralytics.utils import ops
8
7
 
9
8
 
10
- class NASPredictor(BasePredictor):
9
+ class NASPredictor(DetectionPredictor):
11
10
  """
12
11
  Ultralytics YOLO NAS Predictor for object detection.
13
12
 
14
- This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
13
+ This class extends the `DetectionPredictor` from Ultralytics engine and is responsible for post-processing the
15
14
  raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
16
15
  scaling the bounding boxes to fit the original image dimensions.
17
16
 
@@ -38,23 +37,4 @@ class NASPredictor(BasePredictor):
38
37
  # Convert boxes from xyxy to xywh format and concatenate with class scores
39
38
  boxes = ops.xyxy2xywh(preds_in[0][0])
40
39
  preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
41
-
42
- # Apply non-maximum suppression to filter overlapping detections
43
- preds = ops.non_max_suppression(
44
- preds,
45
- self.args.conf,
46
- self.args.iou,
47
- agnostic=self.args.agnostic_nms,
48
- max_det=self.args.max_det,
49
- classes=self.args.classes,
50
- )
51
-
52
- if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
53
- orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
54
-
55
- results = []
56
- for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
57
- # Scale bounding boxes to match original image dimensions
58
- pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
59
- results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
60
- return results
40
+ return super().postprocess(preds, img, orig_imgs)
@@ -36,7 +36,4 @@ class NASValidator(DetectionValidator):
36
36
  """Apply Non-maximum suppression to prediction outputs."""
37
37
  boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
38
38
  preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
39
- return super().postprocess(
40
- preds,
41
- max_time_img=0.5,
42
- )
39
+ return super().postprocess(preds)
@@ -222,12 +222,12 @@ class AutoBackend(nn.Module):
222
222
  session = onnxruntime.InferenceSession(w, providers=providers)
223
223
  else:
224
224
  check_requirements(
225
- ["model-compression-toolkit==2.1.1", "sony-custom-layers[torch]==0.2.0", "onnxruntime-extensions"]
225
+ ["model-compression-toolkit>=2.3.0", "sony-custom-layers[torch]>=0.3.0", "onnxruntime-extensions"]
226
226
  )
227
227
  w = next(Path(w).glob("*.onnx"))
228
228
  LOGGER.info(f"Loading {w} for ONNX IMX inference...")
229
229
  import mct_quantizers as mctq
230
- from sony_custom_layers.pytorch.object_detection import nms_ort # noqa
230
+ from sony_custom_layers.pytorch.nms import nms_ort # noqa
231
231
 
232
232
  session = onnxruntime.InferenceSession(
233
233
  w, mctq.get_ort_session_options(), providers=["CPUExecutionProvider"]
@@ -435,7 +435,7 @@ class AutoBackend(nn.Module):
435
435
  # PaddlePaddle
436
436
  elif paddle:
437
437
  LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
438
- check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
438
+ check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle<3.0.0")
439
439
  import paddle.inference as pdi # noqa
440
440
 
441
441
  w = Path(w)
@@ -1005,7 +1005,7 @@ def threaded(func):
1005
1005
  Returns:
1006
1006
  (callable): A wrapper function that either returns a daemon thread or the direct function result.
1007
1007
 
1008
- Example:
1008
+ Examples:
1009
1009
  >>> @threaded
1010
1010
  ... def process_data(data):
1011
1011
  ... return data
@@ -1,4 +1,5 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
2
3
  from collections.abc import Callable
3
4
  from types import SimpleNamespace
4
5
  from typing import Any, List, Optional
@@ -402,8 +402,13 @@ class Instances:
402
402
  self.segments[..., 0] = self.segments[..., 0].clip(0, w)
403
403
  self.segments[..., 1] = self.segments[..., 1].clip(0, h)
404
404
  if self.keypoints is not None:
405
- self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
406
- self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)
405
+ # Set out of bounds visibility to zero
406
+ self.keypoints[..., 2][
407
+ (self.keypoints[..., 0] < 0)
408
+ | (self.keypoints[..., 0] > w)
409
+ | (self.keypoints[..., 1] < 0)
410
+ | (self.keypoints[..., 1] > h)
411
+ ] = 0.0
407
412
 
408
413
  def remove_zero_area_boxes(self):
409
414
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.96
3
+ Version: 8.3.98
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -86,7 +86,7 @@ Dynamic: license-file
86
86
 
87
87
  <div align="center">
88
88
  <p>
89
- <a href="https://www.ultralytics.com/blog/all-you-need-to-know-about-ultralytics-yolo11-and-its-applications" target="_blank">
89
+ <a href="https://www.ultralytics.com/blog/ultralytics-yolo11-has-arrived-redefine-whats-possible-in-ai" target="_blank">
90
90
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
91
91
  </p>
92
92
 
@@ -105,13 +105,14 @@ Dynamic: license-file
105
105
  <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
106
106
  <a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
107
107
  </div>
108
+ </div>
108
109
  <br>
109
110
 
110
- [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
111
+ [Ultralytics](https://www.ultralytics.com/) creates cutting-edge, state-of-the-art (SOTA) [YOLO models](https://www.ultralytics.com/yolo) built on years of foundational research in computer vision and AI. Constantly updated for performance and flexibility, our models are **fast**, **accurate**, and **easy to use**. They excel at [object detection](https://docs.ultralytics.com/tasks/detect/), [tracking](https://docs.ultralytics.com/modes/track/), [instance segmentation](https://docs.ultralytics.com/tasks/segment/), [image classification](https://docs.ultralytics.com/tasks/classify/), and [pose estimation](https://docs.ultralytics.com/tasks/pose/) tasks.
111
112
 
112
- We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://discord.com/invite/ultralytics">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com/">Forums</a>!
113
+ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.com/). Get support via [GitHub Issues](https://github.com/ultralytics/ultralytics/issues/new/choose). Join discussions on [Discord](https://discord.com/invite/ultralytics), [Reddit](https://reddit.com/r/ultralytics), and the [Ultralytics Community Forums](https://community.ultralytics.com/)!
113
114
 
114
- To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
115
+ Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
115
116
 
116
117
  <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
117
118
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
@@ -132,16 +133,15 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
132
133
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
133
134
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
134
135
  </div>
135
- </div>
136
136
 
137
- ## <div align="center">Documentation</div>
137
+ ## 📄 Documentation
138
138
 
139
- See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
139
+ See below for quickstart installation and usage examples. For comprehensive guidance on training, validation, prediction, and deployment, refer to our full [Ultralytics Docs](https://docs.ultralytics.com/).
140
140
 
141
141
  <details open>
142
142
  <summary>Install</summary>
143
143
 
144
- Pip install the Ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
144
+ Install the `ultralytics` package, including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml), in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
145
145
 
146
146
  [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
147
147
 
@@ -149,7 +149,7 @@ Pip install the Ultralytics package including all [requirements](https://github.
149
149
  pip install ultralytics
150
150
  ```
151
151
 
152
- For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
152
+ For alternative installation methods, including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and building from source via Git, please consult the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
153
153
 
154
154
  [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
155
155
 
@@ -160,50 +160,51 @@ For alternative installation methods including [Conda](https://anaconda.org/cond
160
160
 
161
161
  ### CLI
162
162
 
163
- YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
163
+ You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
164
164
 
165
165
  ```bash
166
+ # Predict using a pretrained YOLO11n model on an image
166
167
  yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
167
168
  ```
168
169
 
169
- `yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
170
+ The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
170
171
 
171
172
  ### Python
172
173
 
173
- YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
174
+ Ultralytics YOLO can also be integrated directly into your Python projects. It accepts the same [configuration arguments](https://docs.ultralytics.com/usage/cfg/) as the CLI:
174
175
 
175
176
  ```python
176
177
  from ultralytics import YOLO
177
178
 
178
- # Load a model
179
+ # Load a pretrained YOLO11n model
179
180
  model = YOLO("yolo11n.pt")
180
181
 
181
- # Train the model
182
+ # Train the model on the COCO8 dataset for 100 epochs
182
183
  train_results = model.train(
183
- data="coco8.yaml", # path to dataset YAML
184
- epochs=100, # number of training epochs
185
- imgsz=640, # training image size
186
- device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
184
+ data="coco8.yaml", # Path to dataset configuration file
185
+ epochs=100, # Number of training epochs
186
+ imgsz=640, # Image size for training
187
+ device="cpu", # Device to run on (e.g., 'cpu', 0, [0,1,2,3])
187
188
  )
188
189
 
189
- # Evaluate model performance on the validation set
190
+ # Evaluate the model's performance on the validation set
190
191
  metrics = model.val()
191
192
 
192
193
  # Perform object detection on an image
193
- results = model("path/to/image.jpg")
194
- results[0].show()
194
+ results = model("path/to/image.jpg") # Predict on an image
195
+ results[0].show() # Display results
195
196
 
196
- # Export the model to ONNX format
197
- path = model.export(format="onnx") # return path to exported model
197
+ # Export the model to ONNX format for deployment
198
+ path = model.export(format="onnx") # Returns the path to the exported model
198
199
  ```
199
200
 
200
- See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
201
+ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/usage/python/).
201
202
 
202
203
  </details>
203
204
 
204
- ## <div align="center">Models</div>
205
+ ## Models
205
206
 
206
- YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
207
+ Ultralytics YOLO11 offers models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
207
208
 
208
209
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
209
210
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -213,7 +214,7 @@ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://d
213
214
 
214
215
  <details open><summary>Detection (COCO)</summary>
215
216
 
216
- See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
217
+ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
217
218
 
218
219
  | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
219
220
  | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
@@ -223,14 +224,14 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
223
224
  | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
224
225
  | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
225
226
 
226
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
227
- - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
227
+ - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
228
+ - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
228
229
 
229
230
  </details>
230
231
 
231
232
  <details><summary>Segmentation (COCO)</summary>
232
233
 
233
- See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
234
+ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
234
235
 
235
236
  | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
236
237
  | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
@@ -240,14 +241,14 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
240
241
  | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
241
242
  | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
242
243
 
243
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
244
- - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`
244
+ - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
245
+ - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
245
246
 
246
247
  </details>
247
248
 
248
249
  <details><summary>Classification (ImageNet)</summary>
249
250
 
250
- See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
251
+ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
251
252
 
252
253
  | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
253
254
  | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
@@ -257,14 +258,14 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
257
258
  | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 6.2 |
258
259
  | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 13.7 |
259
260
 
260
- - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
261
- - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
261
+ - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
262
+ - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
262
263
 
263
264
  </details>
264
265
 
265
266
  <details><summary>Pose (COCO)</summary>
266
267
 
267
- See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
268
+ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
268
269
 
269
270
  | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
270
271
  | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
@@ -274,14 +275,14 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
274
275
  | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
275
276
  | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
276
277
 
277
- - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
278
- - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
278
+ - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
279
+ - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
279
280
 
280
281
  </details>
281
282
 
282
- <details><summary>OBB (DOTAv1)</summary>
283
+ <details><summary>Oriented Bounding Boxes (DOTAv1)</summary>
283
284
 
284
- See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
285
+ Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
285
286
 
286
287
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
287
288
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
@@ -291,16 +292,16 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
291
292
  | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
292
293
  | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
293
294
 
294
- - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
295
- - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
295
+ - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
296
+ - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
296
297
 
297
298
  </details>
298
299
 
299
- ## <div align="center">Integrations</div>
300
+ ## 🧩 Integrations
300
301
 
301
- Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
302
+ Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/), [Comet ML](https://docs.ultralytics.com/integrations/comet/), [Roboflow](https://docs.ultralytics.com/integrations/roboflow/), and [Intel OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow. Explore more at [Ultralytics Integrations](https://docs.ultralytics.com/integrations/).
302
303
 
303
- <a href="https://www.ultralytics.com/hub" target="_blank">
304
+ <a href="https://docs.ultralytics.com/integrations/" target="_blank">
304
305
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
305
306
  </a>
306
307
  <br>
@@ -310,46 +311,47 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
310
311
  <a href="https://www.ultralytics.com/hub">
311
312
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
312
313
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
313
- <a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
314
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="ClearML logo"></a>
314
+ <a href="https://docs.ultralytics.com/integrations/weights-biases/">
315
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
315
316
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
316
- <a href="https://bit.ly/yolov8-readme-comet">
317
+ <a href="https://docs.ultralytics.com/integrations/comet/">
317
318
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
318
319
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
319
- <a href="https://bit.ly/yolov5-neuralmagic">
320
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
320
+ <a href="https://docs.ultralytics.com/integrations/neural-magic/">
321
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
321
322
  </div>
322
323
 
323
- | Ultralytics HUB 🚀 | W&B | Comet ⭐ NEW | Neural Magic |
324
- | :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
325
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
324
+ | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
325
+ | :----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------: |
326
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO11 models, resume training, and interactively visualize predictions. | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
326
327
 
327
- ## <div align="center">Ultralytics HUB</div>
328
+ ## 🌟 Ultralytics HUB
328
329
 
329
- Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
330
+ Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
330
331
 
331
332
  <a href="https://www.ultralytics.com/hub" target="_blank">
332
333
  <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
333
334
 
334
- ## <div align="center">Contribute</div>
335
+ ## 🤝 Contribute
336
+
337
+ We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA model it is without contributions from developers like you. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started. We also welcome your feedback—share your experience by completing our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A huge **Thank You** 🙏 to everyone who contributes!
335
338
 
336
- We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
339
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=1280 -->
337
340
 
338
- <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
341
+ [![Ultralytics open-source contributors](https://github.com/ultralytics/assets/raw/main/im/image-contributors.png)](https://github.com/ultralytics/ultralytics/graphs/contributors)
339
342
 
340
- <a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
341
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
343
+ We look forward to your contributions to help make the Ultralytics ecosystem even better!
342
344
 
343
- ## <div align="center">License</div>
345
+ ## 📜 License
344
346
 
345
- Ultralytics offers two licensing options to accommodate diverse use cases:
347
+ Ultralytics offers two licensing options to suit different needs:
346
348
 
347
- - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
348
- - **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).
349
+ - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
350
+ - **Ultralytics Enterprise License**: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
349
351
 
350
- ## <div align="center">Contact</div>
352
+ ## 📞 Contact
351
353
 
352
- For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). Become a member of the Ultralytics [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), or [Forums](https://community.ultralytics.com/) for asking questions, sharing projects, learning discussions, or for help with all things Ultralytics!
354
+ For bug reports and feature requests related to Ultralytics software, please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). For questions, discussions, and community support, join our active communities on [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), and the [Ultralytics Community Forums](https://community.ultralytics.com/). We're here to help with all things Ultralytics!
353
355
 
354
356
  <br>
355
357
  <div align="center">
@@ -6,8 +6,8 @@ tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
6
6
  tests/test_exports.py,sha256=ONs5zF9gVOl_sabzLmFyhp5zQ2sv3uSWzXUjoTgJPME,9242
7
7
  tests/test_integrations.py,sha256=ZgpddWHEVqiP4bGhVw8fLc2wdz0rCxuxr0FQ2dTgnIE,6067
8
8
  tests/test_python.py,sha256=qfAjIhZ8R-g6QLtAo_bSf77U_7LexVKwstZlmoze5WI,23075
9
- tests/test_solutions.py,sha256=xh5cPoQ8Ht0rNbdalWW8C3f0f_-asgu4aZSiMMn3yRY,5134
10
- ultralytics/__init__.py,sha256=3gLXdYzafXnB-94hlmOragQmR1qIytBTEL00-SkbTLA,709
9
+ tests/test_solutions.py,sha256=4TNQZ9aH1doWujQmh4pgxqHHCU2Umk-IBXjAZg7HIqk,5135
10
+ ultralytics/__init__.py,sha256=yH73VW38_luRC9ggHhgoGyn0aW4mw1WVv-7lwjAGCH8,709
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=h-VYq22NA05gVibxa5eVO-pMk9OqlcaUMx2NbgklnXM,39894
@@ -97,7 +97,7 @@ ultralytics/cfg/solutions/default.yaml,sha256=c-9thwI7y7VmIoIM6AW70Z0r825SToH2h7
97
97
  ultralytics/cfg/trackers/botsort.yaml,sha256=D9doE5GQUe6HrAFzr7OfQFIGPFk0M_vJ0B_n7VjxH6Q,1080
98
98
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
99
99
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
100
- ultralytics/data/annotator.py,sha256=o3vA5FEt_Q0YOyCL3qSkkbihWp-7WMu2gA3iMUxF52k,2729
100
+ ultralytics/data/annotator.py,sha256=VEwb11FsEZm75qlEp8XDHFGKW0_rGsEaFDaBVd771Kw,2902
101
101
  ultralytics/data/augment.py,sha256=kvXsDZB-ibPu--N9CuA5RXQcGmUEyxvo6HPsYSmevvU,120963
102
102
  ultralytics/data/base.py,sha256=6-8ZIp5guIlIQa4wafrpBQl6lHSSneJnQY3KpgX6y6o,18449
103
103
  ultralytics/data/build.py,sha256=56pavLie6PDFEVYChMxnGQGtGsxozYZRpFqC70DRGls,9650
@@ -107,7 +107,7 @@ ultralytics/data/loaders.py,sha256=_Gyp_BfGTZwsFdn4UnolXxdU_sAYZLIrv0L2TRI9R5g,2
107
107
  ultralytics/data/split_dota.py,sha256=p8eVGht9tABSVbf9vwvxA_AQYEva3IGHePKlMeNrn64,11872
108
108
  ultralytics/data/utils.py,sha256=aRPwIoLrCML_Kcd0dI9B6c5Ct4dvhdF36rDHtuf7Ww4,33217
109
109
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
110
- ultralytics/engine/exporter.py,sha256=_0o3QN1gDTm8MJMSv5CsaWoqw3UyvVPBt_hppUgsGrk,77566
110
+ ultralytics/engine/exporter.py,sha256=tSj7-Nwc1cEMlPhZVJHZ26vxzWnuVS_KYiihNau2CMk,77651
111
111
  ultralytics/engine/model.py,sha256=uAqzcgn9EjmKG1lO7rwcW5sIMIwJTHHC-popARr2QSU,52902
112
112
  ultralytics/engine/predictor.py,sha256=ozPvmwlek6QRN5canK-BTQJI8KbBynWozF3AYN1ghE8,21626
113
113
  ultralytics/engine/results.py,sha256=H3pFJhUjYKvVyOUqqZjfIn8vnCpl81aYNOnregMrBoQ,79716
@@ -126,9 +126,9 @@ ultralytics/models/fastsam/predict.py,sha256=2aLLu5nCCRlPLXcfidqI_bS95C0lWesSFEa
126
126
  ultralytics/models/fastsam/utils.py,sha256=gqoktYI_DYpqmPCOEweMd_x0aJDDwERHn0DFpxJiH1k,899
127
127
  ultralytics/models/fastsam/val.py,sha256=NK6rE4f_-KOQGYJdeObCopkCxhLFsxbTWiRsDT_hzMU,2114
128
128
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
129
- ultralytics/models/nas/model.py,sha256=t9EwhjdRa31PJxZwEtml456qxD2Rr3vtBoenEkFm1aI,3784
130
- ultralytics/models/nas/predict.py,sha256=W4b_Ax_08-ORV7X-Ppbmz2CsL8OEq3Z9lgQokoo7ReE,2550
131
- ultralytics/models/nas/val.py,sha256=nnXmurDz3LrfWqKA2cZZhZRqNDoz8umoRaHspAQWfDA,1599
129
+ ultralytics/models/nas/model.py,sha256=uWhLNixkVWHbJ_xa3vjIFFOopq6J8vpbP2TaOk3rtiM,3810
130
+ ultralytics/models/nas/predict.py,sha256=Cpn2OnSVtpAEIFCKyfQQ5NA7ZkUH5M-IerRubRlALC0,1731
131
+ ultralytics/models/nas/val.py,sha256=jIDgS656XGaBEEJ_jhyMub-qIieneH5nTXerEoLib9A,1546
132
132
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
133
133
  ultralytics/models/rtdetr/model.py,sha256=zx9UKpReYCRL7Is2DXIX9ZcJE25KE_fPZ-NYx5vF6E4,2119
134
134
  ultralytics/models/rtdetr/predict.py,sha256=5VNvyULxegg_NfGo7ugfIKHrtKhpaspJZdagU1haQmo,3942
@@ -177,7 +177,7 @@ ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn
177
177
  ultralytics/models/yolo/world/train.py,sha256=HfOVrWvbnqPqW3MpwFRVbkDHC2hZ8S0A-TnzaPtO1lI,4876
178
178
  ultralytics/models/yolo/world/train_world.py,sha256=GbXY3IJOvtYHHyuuhipMxCizrffgJ0iAjbcNcLpliMo,6360
179
179
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
180
- ultralytics/nn/autobackend.py,sha256=k1f2Nxq1aoc4t2MKaF9i9LjMtL2N-ICXImaVXFLsSd0,38217
180
+ ultralytics/nn/autobackend.py,sha256=lTv6wQ8S3BG0VV5lBzKFzNIyiNSaIa165K5vZO1w8LI,38210
181
181
  ultralytics/nn/tasks.py,sha256=az5yjT2S3vbOTgZ2NXwUbIuRvIyGiITwt1WI4jIuBJE,52678
182
182
  ultralytics/nn/modules/__init__.py,sha256=R_qrw30VU_cgg1YyowVpzAbqh87WfYXkPZe4Og_bQqk,2951
183
183
  ultralytics/nn/modules/activation.py,sha256=_DL_rQw4QmhNO0CaftNR8HRvqNnTGRbmjyD6HGbPjxw,1392
@@ -213,7 +213,7 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
213
213
  ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
214
214
  ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
215
215
  ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
216
- ultralytics/utils/__init__.py,sha256=IT6lSICVVAYy9giWtc0RDv6IT3UAVnFmF7Xm2RHoZf0,50196
216
+ ultralytics/utils/__init__.py,sha256=vkL5eXMA-1CvTJou5D16FkIdO_ANDwPUJPB4NovnMQw,50197
217
217
  ultralytics/utils/autobatch.py,sha256=KnvmNSAO_6H3ZLJ4fOFMTFbOaMlbp025LiJqrdKIz8c,4998
218
218
  ultralytics/utils/benchmarks.py,sha256=0lhuwA_yJ1uGYqL-yMFZrrGZQrLVp09xklKITKYHX_c,30246
219
219
  ultralytics/utils/checks.py,sha256=d30cJY1G3wBWWTlq3C3yGVmDhAUtfXa9U3nuTO4sXQo,32677
@@ -221,7 +221,7 @@ ultralytics/utils/dist.py,sha256=seNVxWYY0_OyLYQqSEcTiRIFsk3eojSj06FvrzJCKn8,279
221
221
  ultralytics/utils/downloads.py,sha256=2aZBnYtWADXNelIUucW9eaGlrE_m_X9aEYZpfzsDkek,21898
222
222
  ultralytics/utils/errors.py,sha256=sXKDEd8ws3L-yIfG_-P_h86axbm37sJNha7kFBJbQMQ,844
223
223
  ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
224
- ultralytics/utils/instance.py,sha256=jGvPXgFWKZKQZQf4gAwfdreN3jJ-PjH0OSHpv8YLWiI,17939
224
+ ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
225
225
  ultralytics/utils/loss.py,sha256=NKisGlygcaDkBjHcH0Y2G6TpcNKjb7iZ_Dt6WQctNLE,34334
226
226
  ultralytics/utils/metrics.py,sha256=mCQwIH3am95OR3yvHWTqWAD0Unal7n2MYg4liFFygbA,53669
227
227
  ultralytics/utils/ops.py,sha256=Ag69Hvy8HxKLvewrtfQRseveboc_RGzlMYmO1B2U1Lk,34215
@@ -234,7 +234,7 @@ ultralytics/utils/tuner.py,sha256=mJLrORb67FqnTvKD5Y3dM7LxhkMcJpZwWVYfv9yfQ8w,59
234
234
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
235
235
  ultralytics/utils/callbacks/base.py,sha256=QMdltbVe806lekq-w_7ohpXysoZjuB8gStZ14wPaS78,5877
236
236
  ultralytics/utils/callbacks/clearml.py,sha256=jxTL2QSt8Cjp_BkK2XUDPg5t2XnykMYXJFRp6B66ulA,6005
237
- ultralytics/utils/callbacks/comet.py,sha256=GoEuJQLJE9MRf5vYO0Swy6bUV86SUBe2fZo7hznPx84,18050
237
+ ultralytics/utils/callbacks/comet.py,sha256=5WlPesVXRcW_VvQh4fVb5dYc4mrzc7Vb50Kid-aTGk8,18051
238
238
  ultralytics/utils/callbacks/dvc.py,sha256=tF8oN8_zkXVsjxQmZjUK4klB9I2I-oRdLxkIr1afCys,5168
239
239
  ultralytics/utils/callbacks/hub.py,sha256=dPSeSStRE1x-WYyqrUghCp_VtBxNZ5-Bmb4wW2KYV2Y,4073
240
240
  ultralytics/utils/callbacks/mlflow.py,sha256=olMilfFKKLb9X53sJxFCn-AHnbcvTmXwtU_CVqSqzeE,5434
@@ -242,9 +242,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=TQDHJsgAdnMtSdLeQyVTJ1zBdvuwLm-U4U
242
242
  ultralytics/utils/callbacks/raytune.py,sha256=omVZNNuzYxsZZXrF9xpbFv7R1Wjdx1j-gv0xXuZrQas,1122
243
243
  ultralytics/utils/callbacks/tensorboard.py,sha256=rnyja6LpSyixwuL0WKovgARe6RPiX8ORuknlre3VEu4,4255
244
244
  ultralytics/utils/callbacks/wb.py,sha256=AZH7-bARpHhnonnN57dvoPpfK35xBnu7rINZzHeugeg,6851
245
- ultralytics-8.3.96.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
246
- ultralytics-8.3.96.dist-info/METADATA,sha256=8_j3CoQthbCrxOQ-CmGy3PBon8qSwo2q6qjXK33EAdU,35250
247
- ultralytics-8.3.96.dist-info/WHEEL,sha256=DK49LOLCYiurdXXOXwGJm6U4DkHkg4lcxjhqwRa0CP4,91
248
- ultralytics-8.3.96.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
249
- ultralytics-8.3.96.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
250
- ultralytics-8.3.96.dist-info/RECORD,,
245
+ ultralytics-8.3.98.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
246
+ ultralytics-8.3.98.dist-info/METADATA,sha256=H6xfzIDPvOzE4ofSrwDprCweIVNF9yJTTRHnOgkzKOM,37156
247
+ ultralytics-8.3.98.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
248
+ ultralytics-8.3.98.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
249
+ ultralytics-8.3.98.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
250
+ ultralytics-8.3.98.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.0.2)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5