ultralytics 8.3.89__py3-none-any.whl → 8.3.90__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (155) hide show
  1. tests/conftest.py +2 -2
  2. tests/test_cli.py +13 -11
  3. tests/test_cuda.py +10 -1
  4. tests/test_integrations.py +1 -5
  5. tests/test_python.py +16 -16
  6. tests/test_solutions.py +9 -9
  7. ultralytics/__init__.py +1 -1
  8. ultralytics/cfg/__init__.py +3 -1
  9. ultralytics/cfg/models/11/yolo11-cls.yaml +5 -5
  10. ultralytics/cfg/models/11/yolo11-obb.yaml +5 -5
  11. ultralytics/cfg/models/11/yolo11-pose.yaml +5 -5
  12. ultralytics/cfg/models/11/yolo11-seg.yaml +5 -5
  13. ultralytics/cfg/models/11/yolo11.yaml +5 -5
  14. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +5 -5
  15. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +5 -5
  16. ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -5
  17. ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -5
  18. ultralytics/cfg/models/v8/yolov8-p6.yaml +5 -5
  19. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -5
  20. ultralytics/cfg/models/v8/yolov8-world.yaml +5 -5
  21. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -5
  22. ultralytics/cfg/models/v8/yolov8.yaml +5 -5
  23. ultralytics/cfg/models/v9/yolov9c-seg.yaml +1 -1
  24. ultralytics/cfg/models/v9/yolov9c.yaml +1 -1
  25. ultralytics/cfg/models/v9/yolov9e-seg.yaml +1 -1
  26. ultralytics/cfg/models/v9/yolov9e.yaml +1 -1
  27. ultralytics/cfg/models/v9/yolov9m.yaml +1 -1
  28. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  29. ultralytics/cfg/models/v9/yolov9t.yaml +1 -1
  30. ultralytics/data/annotator.py +9 -14
  31. ultralytics/data/base.py +118 -30
  32. ultralytics/data/build.py +63 -24
  33. ultralytics/data/converter.py +5 -5
  34. ultralytics/data/dataset.py +207 -53
  35. ultralytics/data/loaders.py +1 -0
  36. ultralytics/data/split_dota.py +39 -12
  37. ultralytics/data/utils.py +13 -19
  38. ultralytics/engine/exporter.py +19 -17
  39. ultralytics/engine/model.py +67 -88
  40. ultralytics/engine/predictor.py +106 -21
  41. ultralytics/engine/trainer.py +32 -23
  42. ultralytics/engine/tuner.py +21 -18
  43. ultralytics/engine/validator.py +75 -41
  44. ultralytics/hub/__init__.py +12 -13
  45. ultralytics/hub/auth.py +9 -12
  46. ultralytics/hub/session.py +76 -21
  47. ultralytics/hub/utils.py +19 -17
  48. ultralytics/models/fastsam/model.py +20 -11
  49. ultralytics/models/fastsam/predict.py +36 -16
  50. ultralytics/models/fastsam/utils.py +5 -5
  51. ultralytics/models/fastsam/val.py +6 -6
  52. ultralytics/models/nas/model.py +22 -11
  53. ultralytics/models/nas/predict.py +9 -4
  54. ultralytics/models/nas/val.py +5 -5
  55. ultralytics/models/rtdetr/model.py +20 -11
  56. ultralytics/models/rtdetr/predict.py +18 -15
  57. ultralytics/models/rtdetr/train.py +20 -16
  58. ultralytics/models/rtdetr/val.py +42 -6
  59. ultralytics/models/sam/__init__.py +1 -1
  60. ultralytics/models/sam/amg.py +50 -4
  61. ultralytics/models/sam/model.py +8 -14
  62. ultralytics/models/sam/modules/decoders.py +18 -21
  63. ultralytics/models/sam/modules/encoders.py +25 -46
  64. ultralytics/models/sam/modules/memory_attention.py +19 -15
  65. ultralytics/models/sam/modules/sam.py +18 -25
  66. ultralytics/models/sam/modules/tiny_encoder.py +19 -29
  67. ultralytics/models/sam/modules/transformer.py +35 -57
  68. ultralytics/models/sam/modules/utils.py +15 -15
  69. ultralytics/models/sam/predict.py +0 -3
  70. ultralytics/models/utils/loss.py +87 -36
  71. ultralytics/models/utils/ops.py +26 -31
  72. ultralytics/models/yolo/classify/predict.py +24 -3
  73. ultralytics/models/yolo/classify/train.py +77 -10
  74. ultralytics/models/yolo/classify/val.py +40 -15
  75. ultralytics/models/yolo/detect/predict.py +23 -10
  76. ultralytics/models/yolo/detect/train.py +85 -15
  77. ultralytics/models/yolo/detect/val.py +145 -21
  78. ultralytics/models/yolo/model.py +1 -2
  79. ultralytics/models/yolo/obb/predict.py +12 -4
  80. ultralytics/models/yolo/obb/train.py +7 -0
  81. ultralytics/models/yolo/obb/val.py +25 -7
  82. ultralytics/models/yolo/pose/predict.py +22 -6
  83. ultralytics/models/yolo/pose/train.py +17 -1
  84. ultralytics/models/yolo/pose/val.py +46 -21
  85. ultralytics/models/yolo/segment/predict.py +22 -8
  86. ultralytics/models/yolo/segment/train.py +6 -0
  87. ultralytics/models/yolo/segment/val.py +100 -14
  88. ultralytics/models/yolo/world/train.py +38 -8
  89. ultralytics/models/yolo/world/train_world.py +39 -10
  90. ultralytics/nn/autobackend.py +28 -14
  91. ultralytics/nn/modules/__init__.py +3 -0
  92. ultralytics/nn/modules/activation.py +12 -3
  93. ultralytics/nn/modules/block.py +587 -84
  94. ultralytics/nn/modules/conv.py +418 -54
  95. ultralytics/nn/modules/head.py +3 -4
  96. ultralytics/nn/modules/transformer.py +320 -34
  97. ultralytics/nn/modules/utils.py +17 -3
  98. ultralytics/nn/tasks.py +221 -69
  99. ultralytics/solutions/ai_gym.py +2 -2
  100. ultralytics/solutions/analytics.py +4 -4
  101. ultralytics/solutions/heatmap.py +4 -4
  102. ultralytics/solutions/instance_segmentation.py +10 -4
  103. ultralytics/solutions/object_blurrer.py +2 -2
  104. ultralytics/solutions/object_counter.py +2 -2
  105. ultralytics/solutions/object_cropper.py +2 -2
  106. ultralytics/solutions/parking_management.py +9 -9
  107. ultralytics/solutions/queue_management.py +1 -1
  108. ultralytics/solutions/region_counter.py +2 -2
  109. ultralytics/solutions/security_alarm.py +7 -7
  110. ultralytics/solutions/solutions.py +7 -4
  111. ultralytics/solutions/speed_estimation.py +2 -2
  112. ultralytics/solutions/streamlit_inference.py +6 -6
  113. ultralytics/solutions/trackzone.py +9 -2
  114. ultralytics/solutions/vision_eye.py +4 -4
  115. ultralytics/trackers/basetrack.py +1 -1
  116. ultralytics/trackers/bot_sort.py +23 -22
  117. ultralytics/trackers/byte_tracker.py +4 -4
  118. ultralytics/trackers/track.py +2 -1
  119. ultralytics/trackers/utils/gmc.py +26 -27
  120. ultralytics/trackers/utils/kalman_filter.py +31 -29
  121. ultralytics/trackers/utils/matching.py +7 -7
  122. ultralytics/utils/__init__.py +32 -27
  123. ultralytics/utils/autobatch.py +5 -5
  124. ultralytics/utils/benchmarks.py +111 -18
  125. ultralytics/utils/callbacks/base.py +3 -3
  126. ultralytics/utils/callbacks/clearml.py +11 -11
  127. ultralytics/utils/callbacks/comet.py +35 -22
  128. ultralytics/utils/callbacks/dvc.py +11 -10
  129. ultralytics/utils/callbacks/hub.py +8 -8
  130. ultralytics/utils/callbacks/mlflow.py +1 -1
  131. ultralytics/utils/callbacks/neptune.py +12 -10
  132. ultralytics/utils/callbacks/raytune.py +1 -1
  133. ultralytics/utils/callbacks/tensorboard.py +6 -6
  134. ultralytics/utils/callbacks/wb.py +16 -16
  135. ultralytics/utils/checks.py +116 -35
  136. ultralytics/utils/dist.py +15 -2
  137. ultralytics/utils/downloads.py +13 -9
  138. ultralytics/utils/files.py +12 -13
  139. ultralytics/utils/instance.py +112 -45
  140. ultralytics/utils/loss.py +28 -33
  141. ultralytics/utils/metrics.py +246 -181
  142. ultralytics/utils/ops.py +61 -53
  143. ultralytics/utils/patches.py +8 -6
  144. ultralytics/utils/plotting.py +64 -45
  145. ultralytics/utils/tal.py +88 -57
  146. ultralytics/utils/torch_utils.py +181 -33
  147. ultralytics/utils/triton.py +13 -3
  148. ultralytics/utils/tuner.py +8 -16
  149. {ultralytics-8.3.89.dist-info → ultralytics-8.3.90.dist-info}/METADATA +1 -1
  150. ultralytics-8.3.90.dist-info/RECORD +250 -0
  151. ultralytics-8.3.89.dist-info/RECORD +0 -250
  152. {ultralytics-8.3.89.dist-info → ultralytics-8.3.90.dist-info}/LICENSE +0 -0
  153. {ultralytics-8.3.89.dist-info → ultralytics-8.3.90.dist-info}/WHEEL +0 -0
  154. {ultralytics-8.3.89.dist-info → ultralytics-8.3.90.dist-info}/entry_points.txt +0 -0
  155. {ultralytics-8.3.89.dist-info → ultralytics-8.3.90.dist-info}/top_level.txt +0 -0
@@ -10,7 +10,14 @@ from .val import FastSAMValidator
10
10
 
11
11
  class FastSAM(Model):
12
12
  """
13
- FastSAM model interface.
13
+ FastSAM model interface for segment anything tasks.
14
+
15
+ This class extends the base Model class to provide specific functionality for the FastSAM (Fast Segment Anything Model)
16
+ implementation, allowing for efficient and accurate image segmentation.
17
+
18
+ Attributes:
19
+ model (str): Path to the pre-trained FastSAM model file.
20
+ task (str): The task type, set to "segment" for FastSAM models.
14
21
 
15
22
  Examples:
16
23
  >>> from ultralytics import FastSAM
@@ -19,7 +26,7 @@ class FastSAM(Model):
19
26
  """
20
27
 
21
28
  def __init__(self, model="FastSAM-x.pt"):
22
- """Call the __init__ method of the parent class (YOLO) with the updated default model."""
29
+ """Initialize the FastSAM model with the specified pre-trained weights."""
23
30
  if str(model) == "FastSAM.pt":
24
31
  model = "FastSAM-x.pt"
25
32
  assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models."
@@ -29,19 +36,21 @@ class FastSAM(Model):
29
36
  """
30
37
  Perform segmentation prediction on image or video source.
31
38
 
32
- Supports prompted segmentation with bounding boxes, points, labels, and texts.
39
+ Supports prompted segmentation with bounding boxes, points, labels, and texts. The method packages these
40
+ prompts and passes them to the parent class predict method.
33
41
 
34
42
  Args:
35
- source (str | PIL.Image | numpy.ndarray): Input source.
36
- stream (bool): Enable real-time streaming.
37
- bboxes (list): Bounding box coordinates for prompted segmentation.
38
- points (list): Points for prompted segmentation.
39
- labels (list): Labels for prompted segmentation.
40
- texts (list): Texts for prompted segmentation.
41
- **kwargs (Any): Additional keyword arguments.
43
+ source (str | PIL.Image | numpy.ndarray): Input source for prediction, can be a file path, URL, PIL image,
44
+ or numpy array.
45
+ stream (bool): Whether to enable real-time streaming mode for video inputs.
46
+ bboxes (List): Bounding box coordinates for prompted segmentation in format [[x1, y1, x2, y2], ...].
47
+ points (List): Point coordinates for prompted segmentation in format [[x, y], ...].
48
+ labels (List): Class labels for prompted segmentation.
49
+ texts (List): Text prompts for segmentation guidance.
50
+ **kwargs (Any): Additional keyword arguments passed to the predictor.
42
51
 
43
52
  Returns:
44
- (list): Model predictions.
53
+ (List): List of Results objects containing the prediction results.
45
54
  """
46
55
  prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts)
47
56
  return super().predict(source, stream, prompts=prompts, **kwargs)
@@ -13,21 +13,42 @@ from .utils import adjust_bboxes_to_image_border
13
13
 
14
14
  class FastSAMPredictor(SegmentationPredictor):
15
15
  """
16
- FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
17
- YOLO framework.
16
+ FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks.
18
17
 
19
18
  This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
20
- adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
21
- class segmentation.
19
+ adjusts post-processing steps to incorporate mask prediction and non-maximum suppression while optimizing for
20
+ single-class segmentation.
21
+
22
+ Attributes:
23
+ prompts (Dict): Dictionary containing prompt information for segmentation (bboxes, points, labels, texts).
24
+ device (torch.device): Device on which model and tensors are processed.
25
+ clip_model (Any, optional): CLIP model for text-based prompting, loaded on demand.
26
+ clip_preprocess (Any, optional): CLIP preprocessing function for images, loaded on demand.
27
+
28
+ Methods:
29
+ postprocess: Applies box postprocessing for FastSAM predictions.
30
+ prompt: Performs image segmentation inference based on various prompt types.
31
+ _clip_inference: Performs CLIP inference to calculate similarity between images and text prompts.
32
+ set_prompts: Sets prompts to be used during inference.
22
33
  """
23
34
 
24
35
  def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
25
- """Initializes a FastSAMPredictor for fast SAM segmentation tasks in Ultralytics YOLO framework."""
36
+ """Initialize the FastSAMPredictor with configuration and callbacks."""
26
37
  super().__init__(cfg, overrides, _callbacks)
27
38
  self.prompts = {}
28
39
 
29
40
  def postprocess(self, preds, img, orig_imgs):
30
- """Applies box postprocess for FastSAM predictions."""
41
+ """
42
+ Apply postprocessing to FastSAM predictions and handle prompts.
43
+
44
+ Args:
45
+ preds (List[torch.Tensor]): Raw predictions from the model.
46
+ img (torch.Tensor): Input image tensor that was fed to the model.
47
+ orig_imgs (List[numpy.ndarray]): Original images before preprocessing.
48
+
49
+ Returns:
50
+ (List[Results]): Processed results with prompts applied.
51
+ """
31
52
  bboxes = self.prompts.pop("bboxes", None)
32
53
  points = self.prompts.pop("points", None)
33
54
  labels = self.prompts.pop("labels", None)
@@ -46,18 +67,17 @@ class FastSAMPredictor(SegmentationPredictor):
46
67
 
47
68
  def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
48
69
  """
49
- Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
50
- Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
70
+ Perform image segmentation inference based on cues like bounding boxes, points, and text prompts.
51
71
 
52
72
  Args:
53
- results (Results | List[Results]): The original inference results from FastSAM models without any prompts.
73
+ results (Results | List[Results]): Original inference results from FastSAM models without any prompts.
54
74
  bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
55
75
  points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
56
76
  labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
57
- texts (str | List[str], optional): Textual prompts, a list contains string objects.
77
+ texts (str | List[str], optional): Textual prompts, a list containing string objects.
58
78
 
59
79
  Returns:
60
- (List[Results]): The output results determined by prompts.
80
+ (List[Results]): Output results filtered and determined by the provided prompts.
61
81
  """
62
82
  if bboxes is None and points is None and texts is None:
63
83
  return results
@@ -121,14 +141,14 @@ class FastSAMPredictor(SegmentationPredictor):
121
141
 
122
142
  def _clip_inference(self, images, texts):
123
143
  """
124
- CLIP Inference process.
144
+ Perform CLIP inference to calculate similarity between images and text prompts.
125
145
 
126
146
  Args:
127
- images (List[PIL.Image]): A list of source images and each of them should be PIL.Image type with RGB channel order.
128
- texts (List[str]): A list of prompt texts and each of them should be string object.
147
+ images (List[PIL.Image]): List of source images, each should be PIL.Image with RGB channel order.
148
+ texts (List[str]): List of prompt texts, each should be a string object.
129
149
 
130
150
  Returns:
131
- (torch.Tensor): The similarity between given images and texts.
151
+ (torch.Tensor): Similarity matrix between given images and texts with shape (M, N).
132
152
  """
133
153
  try:
134
154
  import clip
@@ -146,5 +166,5 @@ class FastSAMPredictor(SegmentationPredictor):
146
166
  return (image_features * text_features[:, None]).sum(-1) # (M, N)
147
167
 
148
168
  def set_prompts(self, prompts):
149
- """Set prompts in advance."""
169
+ """Set prompts to be used during inference."""
150
170
  self.prompts = prompts
@@ -6,17 +6,17 @@ def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
6
6
  Adjust bounding boxes to stick to image border if they are within a certain threshold.
7
7
 
8
8
  Args:
9
- boxes (torch.Tensor): (n, 4)
10
- image_shape (tuple): (height, width)
11
- threshold (int): pixel threshold
9
+ boxes (torch.Tensor): Bounding boxes with shape (n, 4) in xyxy format.
10
+ image_shape (Tuple[int, int]): Image dimensions as (height, width).
11
+ threshold (int): Pixel threshold for considering a box close to the border.
12
12
 
13
13
  Returns:
14
- adjusted_boxes (torch.Tensor): adjusted bounding boxes
14
+ boxes (torch.Tensor): Adjusted bounding boxes with shape (n, 4).
15
15
  """
16
16
  # Image dimensions
17
17
  h, w = image_shape
18
18
 
19
- # Adjust boxes
19
+ # Adjust boxes that are close to image borders
20
20
  boxes[boxes[:, 0] < threshold, 0] = 0 # x1
21
21
  boxes[boxes[:, 1] < threshold, 1] = 0 # y1
22
22
  boxes[boxes[:, 2] > w - threshold, 2] = w # x2
@@ -13,11 +13,11 @@ class FastSAMValidator(SegmentationValidator):
13
13
  to avoid errors during validation.
14
14
 
15
15
  Attributes:
16
- dataloader: The data loader object used for validation.
17
- save_dir (str): The directory where validation results will be saved.
18
- pbar: A progress bar object.
19
- args: Additional arguments for customization.
20
- _callbacks: List of callback functions to be invoked during validation.
16
+ dataloader (torch.utils.data.DataLoader): The data loader object used for validation.
17
+ save_dir (Path): The directory where validation results will be saved.
18
+ pbar (tqdm.tqdm): A progress bar object for displaying validation progress.
19
+ args (SimpleNamespace): Additional arguments for customization of the validation process.
20
+ _callbacks (List): List of callback functions to be invoked during validation.
21
21
  """
22
22
 
23
23
  def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
@@ -29,7 +29,7 @@ class FastSAMValidator(SegmentationValidator):
29
29
  save_dir (Path, optional): Directory to save results.
30
30
  pbar (tqdm.tqdm): Progress bar for displaying progress.
31
31
  args (SimpleNamespace): Configuration for the validator.
32
- _callbacks (dict): Dictionary to store various callback functions.
32
+ _callbacks (List): List of callback functions to be invoked during validation.
33
33
 
34
34
  Notes:
35
35
  Plots for ConfusionMatrix and other related metrics are disabled in this class to avoid errors.
@@ -28,31 +28,39 @@ class NAS(Model):
28
28
  This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
29
29
  It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
30
30
 
31
+ Attributes:
32
+ model (torch.nn.Module): The loaded YOLO-NAS model.
33
+ task (str): The task type for the model, defaults to 'detect'.
34
+ predictor (NASPredictor): The predictor instance for making predictions.
35
+ validator (NASValidator): The validator instance for model validation.
36
+
31
37
  Examples:
32
38
  >>> from ultralytics import NAS
33
39
  >>> model = NAS("yolo_nas_s")
34
40
  >>> results = model.predict("ultralytics/assets/bus.jpg")
35
41
 
36
- Attributes:
37
- model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.
38
-
39
- Note:
42
+ Notes:
40
43
  YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
41
44
  """
42
45
 
43
- def __init__(self, model="yolo_nas_s.pt") -> None:
44
- """Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model."""
46
+ def __init__(self, model: str = "yolo_nas_s.pt") -> None:
47
+ """Initialize the NAS model with the provided or default model."""
45
48
  assert Path(model).suffix not in {".yaml", ".yml"}, "YOLO-NAS models only support pre-trained models."
46
49
  super().__init__(model, task="detect")
47
50
 
48
51
  def _load(self, weights: str, task=None) -> None:
49
- """Loads an existing NAS model weights or creates a new NAS model with pretrained weights if not provided."""
52
+ """
53
+ Load an existing NAS model weights or create a new NAS model with pretrained weights.
54
+
55
+ Args:
56
+ weights (str): Path to the model weights file or model name.
57
+ task (str, optional): Task type for the model.
58
+ """
50
59
  import super_gradients
51
60
 
52
61
  suffix = Path(weights).suffix
53
62
  if suffix == ".pt":
54
63
  self.model = torch.load(attempt_download_asset(weights))
55
-
56
64
  elif suffix == "":
57
65
  self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
58
66
 
@@ -74,17 +82,20 @@ class NAS(Model):
74
82
  self.model.task = "detect" # for export()
75
83
  self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # for export()
76
84
 
77
- def info(self, detailed=False, verbose=True):
85
+ def info(self, detailed: bool = False, verbose: bool = True):
78
86
  """
79
- Logs model info.
87
+ Log model information.
80
88
 
81
89
  Args:
82
90
  detailed (bool): Show detailed information about model.
83
91
  verbose (bool): Controls verbosity.
92
+
93
+ Returns:
94
+ (dict): Model information dictionary.
84
95
  """
85
96
  return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
86
97
 
87
98
  @property
88
99
  def task_map(self):
89
- """Returns a dictionary mapping tasks to respective predictor and validator classes."""
100
+ """Return a dictionary mapping tasks to respective predictor and validator classes."""
90
101
  return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
@@ -16,26 +16,30 @@ class NASPredictor(BasePredictor):
16
16
  scaling the bounding boxes to fit the original image dimensions.
17
17
 
18
18
  Attributes:
19
- args (Namespace): Namespace containing various configurations for post-processing.
19
+ args (Namespace): Namespace containing various configurations for post-processing including confidence threshold,
20
+ IoU threshold, agnostic NMS flag, maximum detections, and class filtering options.
21
+ model (torch.nn.Module): The YOLO NAS model used for inference.
22
+ batch (List): Batch of inputs for processing.
20
23
 
21
24
  Examples:
22
25
  >>> from ultralytics import NAS
23
26
  >>> model = NAS("yolo_nas_s")
24
27
  >>> predictor = model.predictor
25
28
 
26
- Assumes that raw_preds, img, orig_imgs are available
29
+ Assume that raw_preds, img, orig_imgs are available
27
30
  >>> results = predictor.postprocess(raw_preds, img, orig_imgs)
28
31
 
29
- Note:
32
+ Notes:
30
33
  Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
31
34
  """
32
35
 
33
36
  def postprocess(self, preds_in, img, orig_imgs):
34
37
  """Postprocess predictions and returns a list of Results objects."""
35
- # Cat boxes and class scores
38
+ # Convert boxes from xyxy to xywh format and concatenate with class scores
36
39
  boxes = ops.xyxy2xywh(preds_in[0][0])
37
40
  preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
38
41
 
42
+ # Apply non-maximum suppression to filter overlapping detections
39
43
  preds = ops.non_max_suppression(
40
44
  preds,
41
45
  self.args.conf,
@@ -50,6 +54,7 @@ class NASPredictor(BasePredictor):
50
54
 
51
55
  results = []
52
56
  for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
57
+ # Scale bounding boxes to match original image dimensions
53
58
  pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
54
59
  results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
55
60
  return results
@@ -17,25 +17,25 @@ class NASValidator(DetectionValidator):
17
17
  ultimately producing the final detections.
18
18
 
19
19
  Attributes:
20
- args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU.
20
+ args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU
21
+ thresholds.
21
22
  lb (torch.Tensor): Optional tensor for multilabel NMS.
22
23
 
23
24
  Examples:
24
25
  >>> from ultralytics import NAS
25
26
  >>> model = NAS("yolo_nas_s")
26
27
  >>> validator = model.validator
27
-
28
28
  Assumes that raw_preds are available
29
29
  >>> final_preds = validator.postprocess(raw_preds)
30
30
 
31
- Note:
31
+ Notes:
32
32
  This class is generally not instantiated directly but is used internally within the `NAS` class.
33
33
  """
34
34
 
35
35
  def postprocess(self, preds_in):
36
36
  """Apply Non-maximum suppression to prediction outputs."""
37
- boxes = ops.xyxy2xywh(preds_in[0][0])
38
- preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
37
+ boxes = ops.xyxy2xywh(preds_in[0][0]) # Convert bounding box format from xyxy to xywh
38
+ preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) # Concatenate boxes with scores and permute
39
39
  return super().postprocess(
40
40
  preds,
41
41
  max_time_img=0.5,
@@ -1,10 +1,12 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
  """
3
- Interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector. RT-DETR offers real-time
4
- performance and high accuracy, excelling in accelerated backends like CUDA with TensorRT. It features an efficient
5
- hybrid encoder and IoU-aware query selection for enhanced detection accuracy.
3
+ Interface for Baidu's RT-DETR, a Vision Transformer-based real-time object detector.
6
4
 
7
- For more information on RT-DETR, visit: https://arxiv.org/pdf/2304.08069.pdf
5
+ RT-DETR offers real-time performance and high accuracy, excelling in accelerated backends like CUDA with TensorRT.
6
+ It features an efficient hybrid encoder and IoU-aware query selection for enhanced detection accuracy.
7
+
8
+ References:
9
+ https://arxiv.org/pdf/2304.08069.pdf
8
10
  """
9
11
 
10
12
  from ultralytics.engine.model import Model
@@ -17,19 +19,26 @@ from .val import RTDETRValidator
17
19
 
18
20
  class RTDETR(Model):
19
21
  """
20
- Interface for Baidu's RT-DETR model. This Vision Transformer-based object detector provides real-time performance
21
- with high accuracy. It supports efficient hybrid encoding, IoU-aware query selection, and adaptable inference speed.
22
+ Interface for Baidu's RT-DETR model, a Vision Transformer-based real-time object detector.
23
+
24
+ This model provides real-time performance with high accuracy. It supports efficient hybrid encoding, IoU-aware query
25
+ selection, and adaptable inference speed.
22
26
 
23
27
  Attributes:
24
- model (str): Path to the pre-trained model. Defaults to 'rtdetr-l.pt'.
28
+ model (str): Path to the pre-trained model.
29
+
30
+ Examples:
31
+ >>> from ultralytics import RTDETR
32
+ >>> model = RTDETR("rtdetr-l.pt")
33
+ >>> results = model("image.jpg")
25
34
  """
26
35
 
27
- def __init__(self, model="rtdetr-l.pt") -> None:
36
+ def __init__(self, model: str = "rtdetr-l.pt") -> None:
28
37
  """
29
- Initializes the RT-DETR model with the given pre-trained model file. Supports .pt and .yaml formats.
38
+ Initialize the RT-DETR model with the given pre-trained model file.
30
39
 
31
40
  Args:
32
- model (str): Path to the pre-trained model. Defaults to 'rtdetr-l.pt'.
41
+ model (str): Path to the pre-trained model. Supports .pt, .yaml, and .yml formats.
33
42
 
34
43
  Raises:
35
44
  NotImplementedError: If the model file extension is not 'pt', 'yaml', or 'yml'.
@@ -42,7 +51,7 @@ class RTDETR(Model):
42
51
  Returns a task map for RT-DETR, associating tasks with corresponding Ultralytics classes.
43
52
 
44
53
  Returns:
45
- dict: A dictionary mapping task names to Ultralytics task classes for the RT-DETR model.
54
+ (Dict): A dictionary mapping task names to Ultralytics task classes for the RT-DETR model.
46
55
  """
47
56
  return {
48
57
  "detect": {
@@ -10,11 +10,16 @@ from ultralytics.utils import ops
10
10
 
11
11
  class RTDETRPredictor(BasePredictor):
12
12
  """
13
- RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using
14
- Baidu's RT-DETR model.
13
+ RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions.
15
14
 
16
- This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
17
- high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
15
+ This class leverages Vision Transformers to provide real-time object detection while maintaining high accuracy.
16
+ It supports key features like efficient hybrid encoding and IoU-aware query selection.
17
+
18
+ Attributes:
19
+ imgsz (int): Image size for inference (must be square and scale-filled).
20
+ args (dict): Argument overrides for the predictor.
21
+ model (torch.nn.Module): The loaded RT-DETR model.
22
+ batch (List): Current batch of processed inputs.
18
23
 
19
24
  Examples:
20
25
  >>> from ultralytics.utils import ASSETS
@@ -22,25 +27,23 @@ class RTDETRPredictor(BasePredictor):
22
27
  >>> args = dict(model="rtdetr-l.pt", source=ASSETS)
23
28
  >>> predictor = RTDETRPredictor(overrides=args)
24
29
  >>> predictor.predict_cli()
25
-
26
- Attributes:
27
- imgsz (int): Image size for inference (must be square and scale-filled).
28
- args (dict): Argument overrides for the predictor.
29
30
  """
30
31
 
31
32
  def postprocess(self, preds, img, orig_imgs):
32
33
  """
33
34
  Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
34
35
 
35
- The method filters detections based on confidence and class if specified in `self.args`.
36
+ The method filters detections based on confidence and class if specified in `self.args`. It converts
37
+ model predictions to Results objects containing properly scaled bounding boxes.
36
38
 
37
39
  Args:
38
- preds (list): List of [predictions, extra] from the model.
39
- img (torch.Tensor): Processed input images.
40
- orig_imgs (list or torch.Tensor): Original, unprocessed images.
40
+ preds (List | Tuple): List of [predictions, extra] from the model, where predictions contain
41
+ bounding boxes and scores.
42
+ img (torch.Tensor): Processed input images with shape (N, 3, H, W).
43
+ orig_imgs (List | torch.Tensor): Original, unprocessed images.
41
44
 
42
45
  Returns:
43
- (list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
46
+ (List[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
44
47
  and class labels.
45
48
  """
46
49
  if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
@@ -61,8 +64,8 @@ class RTDETRPredictor(BasePredictor):
61
64
  idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
62
65
  pred = torch.cat([bbox, max_score, cls], dim=-1)[idx] # filter
63
66
  oh, ow = orig_img.shape[:2]
64
- pred[..., [0, 2]] *= ow
65
- pred[..., [1, 3]] *= oh
67
+ pred[..., [0, 2]] *= ow # scale x coordinates to original width
68
+ pred[..., [1, 3]] *= oh # scale y coordinates to original height
66
69
  results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
67
70
  return results
68
71
 
@@ -13,9 +13,18 @@ from .val import RTDETRDataset, RTDETRValidator
13
13
 
14
14
  class RTDETRTrainer(DetectionTrainer):
15
15
  """
16
- Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
17
- class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
18
- Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.
16
+ Trainer class for the RT-DETR model developed by Baidu for real-time object detection.
17
+
18
+ This class extends the DetectionTrainer class for YOLO to adapt to the specific features and architecture of RT-DETR.
19
+ The model leverages Vision Transformers and has capabilities like IoU-aware query selection and adaptable inference
20
+ speed.
21
+
22
+ Attributes:
23
+ loss_names (Tuple[str]): Names of the loss components used for training.
24
+ data (Dict): Dataset configuration containing class count and other parameters.
25
+ args (Dict): Training arguments and hyperparameters.
26
+ save_dir (Path): Directory to save training results.
27
+ test_loader (DataLoader): DataLoader for validation/testing data.
19
28
 
20
29
  Notes:
21
30
  - F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
@@ -33,9 +42,9 @@ class RTDETRTrainer(DetectionTrainer):
33
42
  Initialize and return an RT-DETR model for object detection tasks.
34
43
 
35
44
  Args:
36
- cfg (dict, optional): Model configuration. Defaults to None.
37
- weights (str, optional): Path to pre-trained model weights. Defaults to None.
38
- verbose (bool): Verbose logging if True. Defaults to True.
45
+ cfg (Dict, optional): Model configuration.
46
+ weights (str, optional): Path to pre-trained model weights.
47
+ verbose (bool): Verbose logging if True.
39
48
 
40
49
  Returns:
41
50
  (RTDETRDetectionModel): Initialized model.
@@ -52,7 +61,7 @@ class RTDETRTrainer(DetectionTrainer):
52
61
  Args:
53
62
  img_path (str): Path to the folder containing images.
54
63
  mode (str): Dataset mode, either 'train' or 'val'.
55
- batch (int, optional): Batch size for rectangle training. Defaults to None.
64
+ batch (int, optional): Batch size for rectangle training.
56
65
 
57
66
  Returns:
58
67
  (RTDETRDataset): Dataset object for the specific mode.
@@ -73,24 +82,19 @@ class RTDETRTrainer(DetectionTrainer):
73
82
  )
74
83
 
75
84
  def get_validator(self):
76
- """
77
- Returns a DetectionValidator suitable for RT-DETR model validation.
78
-
79
- Returns:
80
- (RTDETRValidator): Validator object for model validation.
81
- """
85
+ """Returns a DetectionValidator suitable for RT-DETR model validation."""
82
86
  self.loss_names = "giou_loss", "cls_loss", "l1_loss"
83
87
  return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
84
88
 
85
89
  def preprocess_batch(self, batch):
86
90
  """
87
- Preprocess a batch of images. Scales and converts the images to float format.
91
+ Preprocess a batch of images by scaling and converting to float format.
88
92
 
89
93
  Args:
90
- batch (dict): Dictionary containing a batch of images, bboxes, and labels.
94
+ batch (Dict): Dictionary containing a batch of images, bboxes, and labels.
91
95
 
92
96
  Returns:
93
- (dict): Preprocessed batch.
97
+ (Dict): Preprocessed batch with ground truth bounding boxes and classes separated by batch index.
94
98
  """
95
99
  batch = super().preprocess_batch(batch)
96
100
  bs = len(batch["img"])
@@ -22,13 +22,20 @@ class RTDETRDataset(YOLODataset):
22
22
  """Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
23
23
  super().__init__(*args, data=data, **kwargs)
24
24
 
25
- # NOTE: add stretch version load_image for RTDETR mosaic
26
25
  def load_image(self, i, rect_mode=False):
27
26
  """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
28
27
  return super().load_image(i=i, rect_mode=rect_mode)
29
28
 
30
29
  def build_transforms(self, hyp=None):
31
- """Temporary, only for evaluation."""
30
+ """
31
+ Build transformation pipeline for the dataset.
32
+
33
+ Args:
34
+ hyp (Dict, optional): Hyperparameters for transformations.
35
+
36
+ Returns:
37
+ (Compose): Composition of transformation functions.
38
+ """
32
39
  if self.augment:
33
40
  hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
34
41
  hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
@@ -75,7 +82,10 @@ class RTDETRValidator(DetectionValidator):
75
82
  Args:
76
83
  img_path (str): Path to the folder containing images.
77
84
  mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
78
- batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
85
+ batch (int, optional): Size of batches, this is for `rect`.
86
+
87
+ Returns:
88
+ (RTDETRDataset): Dataset configured for RT-DETR validation.
79
89
  """
80
90
  return RTDETRDataset(
81
91
  img_path=img_path,
@@ -90,7 +100,15 @@ class RTDETRValidator(DetectionValidator):
90
100
  )
91
101
 
92
102
  def postprocess(self, preds):
93
- """Apply Non-maximum suppression to prediction outputs."""
103
+ """
104
+ Apply Non-maximum suppression to prediction outputs.
105
+
106
+ Args:
107
+ preds (List | Tuple | torch.Tensor): Raw predictions from the model.
108
+
109
+ Returns:
110
+ (List[torch.Tensor]): List of processed predictions for each image in batch.
111
+ """
94
112
  if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
95
113
  preds = [preds, None]
96
114
 
@@ -111,7 +129,16 @@ class RTDETRValidator(DetectionValidator):
111
129
  return outputs
112
130
 
113
131
  def _prepare_batch(self, si, batch):
114
- """Prepares a batch for training or inference by applying transformations."""
132
+ """
133
+ Prepares a batch for validation by applying necessary transformations.
134
+
135
+ Args:
136
+ si (int): Batch index.
137
+ batch (Dict): Batch data containing images and annotations.
138
+
139
+ Returns:
140
+ (Dict): Prepared batch with transformed annotations.
141
+ """
115
142
  idx = batch["batch_idx"] == si
116
143
  cls = batch["cls"][idx].squeeze(-1)
117
144
  bbox = batch["bboxes"][idx]
@@ -125,7 +152,16 @@ class RTDETRValidator(DetectionValidator):
125
152
  return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
126
153
 
127
154
  def _prepare_pred(self, pred, pbatch):
128
- """Prepares and returns a batch with transformed bounding boxes and class labels."""
155
+ """
156
+ Prepares predictions by scaling bounding boxes to original image dimensions.
157
+
158
+ Args:
159
+ pred (torch.Tensor): Raw predictions.
160
+ pbatch (Dict): Prepared batch information.
161
+
162
+ Returns:
163
+ (torch.Tensor): Predictions scaled to original image dimensions.
164
+ """
129
165
  predn = pred.clone()
130
166
  predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
131
167
  predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
@@ -3,4 +3,4 @@
3
3
  from .model import SAM
4
4
  from .predict import Predictor, SAM2Predictor, SAM2VideoPredictor
5
5
 
6
- __all__ = "SAM", "Predictor", "SAM2Predictor", "SAM2VideoPredictor" # tuple or list
6
+ __all__ = "SAM", "Predictor", "SAM2Predictor", "SAM2VideoPredictor" # tuple or list of exportable items