ultralytics 8.3.88__py3-none-any.whl → 8.3.89__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. ultralytics/__init__.py +1 -1
  2. ultralytics/data/base.py +7 -9
  3. ultralytics/data/converter.py +30 -29
  4. ultralytics/data/utils.py +20 -28
  5. ultralytics/engine/model.py +2 -2
  6. ultralytics/engine/tuner.py +11 -21
  7. ultralytics/hub/__init__.py +13 -17
  8. ultralytics/models/fastsam/model.py +4 -7
  9. ultralytics/models/nas/model.py +8 -14
  10. ultralytics/models/nas/predict.py +7 -9
  11. ultralytics/models/nas/val.py +7 -9
  12. ultralytics/models/rtdetr/predict.py +6 -9
  13. ultralytics/models/rtdetr/train.py +5 -8
  14. ultralytics/models/rtdetr/val.py +5 -8
  15. ultralytics/models/yolo/classify/predict.py +6 -9
  16. ultralytics/models/yolo/classify/train.py +5 -8
  17. ultralytics/models/yolo/classify/val.py +5 -8
  18. ultralytics/models/yolo/detect/predict.py +6 -9
  19. ultralytics/models/yolo/detect/train.py +5 -8
  20. ultralytics/models/yolo/detect/val.py +5 -8
  21. ultralytics/models/yolo/obb/predict.py +6 -9
  22. ultralytics/models/yolo/obb/train.py +5 -8
  23. ultralytics/models/yolo/obb/val.py +10 -15
  24. ultralytics/models/yolo/pose/predict.py +6 -9
  25. ultralytics/models/yolo/pose/train.py +5 -8
  26. ultralytics/models/yolo/pose/val.py +12 -17
  27. ultralytics/models/yolo/segment/predict.py +6 -9
  28. ultralytics/models/yolo/segment/train.py +5 -8
  29. ultralytics/models/yolo/segment/val.py +10 -15
  30. ultralytics/models/yolo/world/train.py +5 -8
  31. ultralytics/models/yolo/world/train_world.py +21 -25
  32. ultralytics/nn/modules/__init__.py +9 -12
  33. ultralytics/nn/tasks.py +7 -12
  34. ultralytics/utils/__init__.py +5 -8
  35. ultralytics/utils/checks.py +25 -35
  36. ultralytics/utils/downloads.py +25 -48
  37. ultralytics/utils/instance.py +6 -8
  38. ultralytics/utils/ops.py +5 -9
  39. ultralytics/utils/plotting.py +8 -14
  40. ultralytics/utils/torch_utils.py +23 -33
  41. ultralytics/utils/tuner.py +5 -9
  42. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/METADATA +2 -2
  43. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/RECORD +47 -47
  44. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/LICENSE +0 -0
  45. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/WHEEL +0 -0
  46. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/entry_points.txt +0 -0
  47. {ultralytics-8.3.88.dist-info → ultralytics-8.3.89.dist-info}/top_level.txt +0 -0
ultralytics/utils/ops.py CHANGED
@@ -18,15 +18,11 @@ class Profile(contextlib.ContextDecorator):
18
18
  """
19
19
  YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.
20
20
 
21
- Example:
22
- ```python
23
- from ultralytics.utils.ops import Profile
24
-
25
- with Profile(device=device) as dt:
26
- pass # slow operation here
27
-
28
- print(dt) # prints "Elapsed time is 9.5367431640625e-07 s"
29
- ```
21
+ Examples:
22
+ >>> from ultralytics.utils.ops import Profile
23
+ >>> with Profile(device=device) as dt:
24
+ ... pass # slow operation here
25
+ >>> print(dt) # prints "Elapsed time is 9.5367431640625e-07 s"
30
26
  """
31
27
 
32
28
  def __init__(self, t=0.0, device: torch.device = None):
@@ -591,14 +591,11 @@ def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False,
591
591
  Returns:
592
592
  (numpy.ndarray): The cropped image.
593
593
 
594
- Example:
595
- ```python
596
- from ultralytics.utils.plotting import save_one_box
597
-
598
- xyxy = [50, 50, 150, 150]
599
- im = cv2.imread("image.jpg")
600
- cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)
601
- ```
594
+ Examples:
595
+ >>> from ultralytics.utils.plotting import save_one_box
596
+ >>> xyxy = [50, 50, 150, 150]
597
+ >>> im = cv2.imread("image.jpg")
598
+ >>> cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)
602
599
  """
603
600
  if not isinstance(xyxy, torch.Tensor): # may be list
604
601
  xyxy = torch.stack(xyxy)
@@ -800,12 +797,9 @@ def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False,
800
797
  on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
801
798
  Defaults to None.
802
799
 
803
- Example:
804
- ```python
805
- from ultralytics.utils.plotting import plot_results
806
-
807
- plot_results("path/to/results.csv", segment=True)
808
- ```
800
+ Examples:
801
+ >>> from ultralytics.utils.plotting import plot_results
802
+ >>> plot_results("path/to/results.csv", segment=True)
809
803
  """
810
804
  import pandas as pd # scope for faster 'import ultralytics'
811
805
  from scipy.ndimage import gaussian_filter1d
@@ -94,12 +94,10 @@ def autocast(enabled: bool, device: str = "cuda"):
94
94
  - For PyTorch versions 1.13 and newer, it uses `torch.amp.autocast`.
95
95
  - For older versions, it uses `torch.cuda.autocast`.
96
96
 
97
- Example:
98
- ```python
99
- with autocast(amp=True):
100
- # Your mixed precision operations here
101
- pass
102
- ```
97
+ Examples:
98
+ >>> with autocast(amp=True):
99
+ ... # Your mixed precision operations here
100
+ ... pass
103
101
  """
104
102
  if TORCH_1_13:
105
103
  return torch.amp.autocast(device, enabled=enabled)
@@ -345,17 +343,15 @@ def model_info_for_loggers(trainer):
345
343
  """
346
344
  Return model info dict with useful model information.
347
345
 
348
- Example:
346
+ Examples:
349
347
  YOLOv8n info for loggers
350
- ```python
351
- results = {
352
- "model/parameters": 3151904,
353
- "model/GFLOPs": 8.746,
354
- "model/speed_ONNX(ms)": 41.244,
355
- "model/speed_TensorRT(ms)": 3.211,
356
- "model/speed_PyTorch(ms)": 18.755,
357
- }
358
- ```
348
+ >>> results = {
349
+ ... "model/parameters": 3151904,
350
+ ... "model/GFLOPs": 8.746,
351
+ ... "model/speed_ONNX(ms)": 41.244,
352
+ ... "model/speed_TensorRT(ms)": 3.211,
353
+ ... "model/speed_PyTorch(ms)": 18.755,
354
+ ...}
359
355
  """
360
356
  if trainer.args.profile: # profile ONNX and TensorRT times
361
357
  from ultralytics.utils.benchmarks import ProfileModels
@@ -562,14 +558,11 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
562
558
  Returns:
563
559
  (dict): The combined checkpoint dictionary.
564
560
 
565
- Example:
566
- ```python
567
- from pathlib import Path
568
- from ultralytics.utils.torch_utils import strip_optimizer
569
-
570
- for f in Path("path/to/model/checkpoints").rglob("*.pt"):
571
- strip_optimizer(f)
572
- ```
561
+ Examples:
562
+ >>> from pathlib import Path
563
+ >>> from ultralytics.utils.torch_utils import strip_optimizer
564
+ >>> for f in Path("path/to/model/checkpoints").rglob("*.pt"):
565
+ >>> strip_optimizer(f)
573
566
 
574
567
  Note:
575
568
  Use `ultralytics.nn.torch_safe_load` for missing modules with `x = torch_safe_load(f)[0]`
@@ -660,15 +653,12 @@ def profile(input, ops, n=10, device=None, max_num_obj=0):
660
653
  """
661
654
  Ultralytics speed, memory and FLOPs profiler.
662
655
 
663
- Example:
664
- ```python
665
- from ultralytics.utils.torch_utils import profile
666
-
667
- input = torch.randn(16, 3, 640, 640)
668
- m1 = lambda x: x * torch.sigmoid(x)
669
- m2 = nn.SiLU()
670
- profile(input, [m1, m2], n=100) # profile over 100 iterations
671
- ```
656
+ Examples:
657
+ >>> from ultralytics.utils.torch_utils import profile
658
+ >>> input = torch.randn(16, 3, 640, 640)
659
+ >>> m1 = lambda x: x * torch.sigmoid(x)
660
+ >>> m2 = nn.SiLU()
661
+ >>> profile(input, [m1, m2], n=100) # profile over 100 iterations
672
662
  """
673
663
  results = []
674
664
  if not isinstance(device, torch.device):
@@ -26,16 +26,12 @@ def run_ray_tune(
26
26
  Returns:
27
27
  (dict): A dictionary containing the results of the hyperparameter search.
28
28
 
29
- Example:
30
- ```python
31
- from ultralytics import YOLO
29
+ Examples:
30
+ >>> from ultralytics import YOLO
31
+ >>> model = YOLO("yolo11n.pt") # Load a YOLO11n model
32
32
 
33
- # Load a YOLO11n model
34
- model = YOLO("yolo11n.pt")
35
-
36
- # Start tuning hyperparameters for YOLO11n training on the COCO8 dataset
37
- result_grid = model.tune(data="coco8.yaml", use_ray=True)
38
- ```
33
+ Start tuning hyperparameters for YOLO11n training on the COCO8 dataset
34
+ >>> result_grid = model.tune(data="coco8.yaml", use_ray=True)
39
35
  """
40
36
  LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
41
37
  if train_args is None:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ultralytics
3
- Version: 8.3.88
3
+ Version: 8.3.89
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -65,7 +65,7 @@ Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_versio
65
65
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
66
66
  Requires-Dist: openvino!=2025.0.0,>=2024.0.0; extra == "export"
67
67
  Requires-Dist: tensorflow>=2.0.0; extra == "export"
68
- Requires-Dist: tensorflowjs>=3.9.0; extra == "export"
68
+ Requires-Dist: tensorflowjs>=4.0.0; extra == "export"
69
69
  Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
70
70
  Requires-Dist: keras; extra == "export"
71
71
  Requires-Dist: flatbuffers<100,>=23.5.26; platform_machine == "aarch64" and extra == "export"
@@ -7,7 +7,7 @@ tests/test_exports.py,sha256=dpUT_FXFXzFoItfZwbxkPFXgEfaVqyfYwkIQW4teL38,9223
7
7
  tests/test_integrations.py,sha256=p3DMnnPMKsV0Qm82JVJUIY1UZ67xRgF9E8AaL76TEHE,6154
8
8
  tests/test_python.py,sha256=tW-EFJC2rjl_DvAa8khXGWYdypseQjrLjGHhe2p9r9A,23238
9
9
  tests/test_solutions.py,sha256=s7f0t8YTkR7oLF9YkEEAHj1DjqZ-Rgj0hMNC1v8CkCY,5111
10
- ultralytics/__init__.py,sha256=Y3Bo3zwPtYrJj4cEUqII9s_5sZ3yeeU3sbA6-f2sxMg,709
10
+ ultralytics/__init__.py,sha256=FXm1QLldjsY-BcLa53HgZLwEkfXxZCJBOM-uvjeK4ps,709
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=Bh0McMrE8fwelWLRWiUHmkesrPXNQBDBvJxQSd_5Lt4,39811
@@ -99,41 +99,41 @@ ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypg
99
99
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
100
100
  ultralytics/data/annotator.py,sha256=88Qf4CPhmmKJi99VQiKNrLQMP4kPAX799_iftScfh2g,3085
101
101
  ultralytics/data/augment.py,sha256=wlAbsWqmDIfSB4Ys4iN354FTTnH7SmHueUH19j7JpF4,120963
102
- ultralytics/data/base.py,sha256=JBmVrbrbvk0ImFVCMj3mDQ1GPY0PHak0LEFfw79iIX0,15214
102
+ ultralytics/data/base.py,sha256=X69R8DfyWHMt5TUHN87LlO0qE-jD1WBlGtgfIdrlHvw,15199
103
103
  ultralytics/data/build.py,sha256=gOU5SNABBNxwo5012N--WhjEnLK2ewycXIryMpbHg6U,7685
104
- ultralytics/data/converter.py,sha256=tKPTtleDkDfPO0XbisQfa7SBwyTL4Sx19k2sZDWu3S4,24552
104
+ ultralytics/data/converter.py,sha256=IcLdwPJyX5V-hYMAgh9S2FTAWt-EjQd9OAFRpePjjQA,24698
105
105
  ultralytics/data/dataset.py,sha256=lxtH3JytNu6nsiPAIhe0uGuGGpkZ4ZRqvXM6eJw9rXU,23244
106
106
  ultralytics/data/loaders.py,sha256=YDaljB8u4bIwcU3eXRggsDlE78Jjpq_PeqZzOKQ_9qQ,28555
107
107
  ultralytics/data/split_dota.py,sha256=c9fQWCVSKjlxCcktwSsCT6Ql-Md2qxnsEn4jAm02Yd0,10769
108
- ultralytics/data/utils.py,sha256=AwFfSYAyjMmZ3mscwGTC99Sb4tzqSFxX23Fp1_lRHpc,33911
108
+ ultralytics/data/utils.py,sha256=I50hadLmvqMD_IpC5hBrYZzv5WWv_pgfh_hca0_rt3o,33882
109
109
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
110
110
  ultralytics/engine/exporter.py,sha256=JzczKGKr77IWet-DOCOhuduvTIErE75kqoJ66DMn_28,77471
111
- ultralytics/engine/model.py,sha256=s8HsSBvdRgSbnKGULr7YW-ZWJKJsQpOoHd9Aih_nMt0,53427
111
+ ultralytics/engine/model.py,sha256=NF_EszZfi_qmCW8OIoO3tJuy7n4BHQg-3t2nvjhq2Yk,53429
112
112
  ultralytics/engine/predictor.py,sha256=jiYDAjupOlRUpPvw9tu7or9PjXtLm-YCRiawANtWxj0,17881
113
113
  ultralytics/engine/results.py,sha256=NdnBvWCNDyfOPe7XwSWqhBppV2GmXEMH9LBbkeJ4Vjc,79620
114
114
  ultralytics/engine/trainer.py,sha256=9T5Oo4H0nQCN62mxQClxScv_jlhb02Kre5tDMW7ZtTo,38005
115
- ultralytics/engine/tuner.py,sha256=irydonYsAsW_hzK3JwSkiGOH51Uwcc9z-MqRhQrUTas,12092
115
+ ultralytics/engine/tuner.py,sha256=5vDCKCLLdZ680Hgx3GmA3EMW7dhwM6qkUz68-eecPvA,11994
116
116
  ultralytics/engine/validator.py,sha256=_rND1qfLC9u3CNS2211i6vZJ7WNv0HYRITALPY-3KCc,15052
117
- ultralytics/hub/__init__.py,sha256=1ifzSYV0PIT4ZWOm2V7HnpGyY3G3hCz0malw3AXHFlY,5660
117
+ ultralytics/hub/__init__.py,sha256=MoHOYbQnJPRiSsobk-qasnRyKZ8de3FXVZPGM1uu80E,5639
118
118
  ultralytics/hub/auth.py,sha256=akS7QMg93L_cBjDGOc0Jns5-m3ao_VzBCcyKLb4f0sI,5569
119
119
  ultralytics/hub/session.py,sha256=us_8fZkBa2XyTGNyIjWiSSesJwMRXQv9P0sf12gh30U,16439
120
120
  ultralytics/hub/utils.py,sha256=gtjYPNfBp7Sx7MPgc8gEKQ3Z5QyhljOiLlF5vJt6rCw,9733
121
121
  ultralytics/hub/google/__init__.py,sha256=jnWMostygAHmZCKjPwalymkNDXQC4bj9-4K6-ay7csA,7532
122
122
  ultralytics/models/__init__.py,sha256=Dtj85wDqat2lgdtCYzGrC1Q5kPQrqk0RPcAhMmWKCXs,293
123
123
  ultralytics/models/fastsam/__init__.py,sha256=HGJ8EKlBAsdF-e2aIwQLjSDAFI_r0yHR0A1gzrp4vqE,231
124
- ultralytics/models/fastsam/model.py,sha256=8QGYWPUFDww8IG6S6dkGHl6STELap0gAsxu4H2xefnc,2036
124
+ ultralytics/models/fastsam/model.py,sha256=XiXU_bDi57PGnbLenWalP76cFmnnmgpdnhqTfVfAqD0,2018
125
125
  ultralytics/models/fastsam/predict.py,sha256=IqdetKBwkrrLnUWRf37vjiNFkudqVd_OPEwZu8vpLt8,7512
126
126
  ultralytics/models/fastsam/utils.py,sha256=Sl6vXHzK3G6SD-NdxmsiiHM4chlyaHl0pjSkU3Wb3UU,742
127
127
  ultralytics/models/fastsam/val.py,sha256=76paG_tnhX0TgVPd-uDmNfTIupJNW2VI6U_tIW5a8VA,1973
128
128
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
129
- ultralytics/models/nas/model.py,sha256=slVlIe-44BS6L1AJkfyin4E2V5aBQEkBBd6nRAXcAoQ,3390
130
- ultralytics/models/nas/predict.py,sha256=nzVGTdUb0E_IjmWksX_T61q80hbrjEovihTzTJ1rfmA,2124
131
- ultralytics/models/nas/val.py,sha256=CSqmcuAcuJ5SQ7mo364RdXLGeu2XATyRY8Z84VGGX5o,1497
129
+ ultralytics/models/nas/model.py,sha256=E8QbjWy1qa0TpTqYA385f7fo-PgY40MSJFiOZKzVzl4,3362
130
+ ultralytics/models/nas/predict.py,sha256=_pEqpe6Kqo8B-WOby8CQ0ICtF3b5i04egqpYGPMf6HY,2109
131
+ ultralytics/models/nas/val.py,sha256=JJr6c6Nr2-olvLn19-Qs-U-p7f95IUWzqUHe-Ew5Mf0,1482
132
132
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
133
133
  ultralytics/models/rtdetr/model.py,sha256=KFUlxMo2NTxVvK9D5x9p0WhXogK_QL5Wao8KxcZcT7s,2016
134
- ultralytics/models/rtdetr/predict.py,sha256=zT4rc2M0drf1ge1FhWc6RG7tg6xgRdCroXlnl2tJJCI,3598
135
- ultralytics/models/rtdetr/train.py,sha256=TGawTiBD0SkNaCS8mWc3KbhfiviPuA7GWkvpZ8xVpGM,3875
136
- ultralytics/models/rtdetr/val.py,sha256=cve1HdfLI-hGM2dkTCDT_cOFfDuzAe2ROkmlJOZC4qw,5595
134
+ ultralytics/models/rtdetr/predict.py,sha256=czBqQdvBkuK4ntTEZPfeIFAVmhu4UHc48SvMGAcaCnU,3588
135
+ ultralytics/models/rtdetr/train.py,sha256=t1UCtLDq7-LcdqsTZg4ccOa6L37LXKftuRg8JizYXJY,3861
136
+ ultralytics/models/rtdetr/val.py,sha256=Xw2aVvMI80c5Aov0ONNRgVZVX6ErM2t2BQ2MIgCsjXc,5581
137
137
  ultralytics/models/sam/__init__.py,sha256=qZwyxJf34UuE5Lu9qfblVXUAvK1fVd66Xyut_ZcTdyc,246
138
138
  ultralytics/models/sam/amg.py,sha256=MsTflp_oyTjQkfgYZCyn_HVpGOw4f-XH7vDSbM9mRRI,8736
139
139
  ultralytics/models/sam/build.py,sha256=Vhml3zBGDcRO-efauNdM0ZlKTV10ADAj_aT823lPJv8,12515
@@ -154,32 +154,32 @@ ultralytics/models/utils/ops.py,sha256=4SShalce_6ZgGjJc9VokDIGzU0QdWlEFLFbt4GBZa
154
154
  ultralytics/models/yolo/__init__.py,sha256=ol-bnRJEHdhdrNRAgyP_5SlhnJtZquCKQXEf_0kFs-o,275
155
155
  ultralytics/models/yolo/model.py,sha256=EZ-e4auePxXs0747Bo45hnM8Rz0cRalslBrkA9FKxas,4261
156
156
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
157
- ultralytics/models/yolo/classify/predict.py,sha256=21ULUMvCdZnTqTcx3hPZW8J36CvD3xFZP0CaLhPOns8,2544
158
- ultralytics/models/yolo/classify/train.py,sha256=xxUbTEKj2nUeu_E7hJHgHtCz0LN8AwWgcJ43k2k5ELg,6301
159
- ultralytics/models/yolo/classify/val.py,sha256=VUYkqGtKnZPig1XE5Qrtqoqm-Y9dDgr5YCzcPC6y1sE,5102
157
+ ultralytics/models/yolo/classify/predict.py,sha256=wwh0CqR74FxsmpWJ_mHGWpPxVzX_Qd3PgXHKohOnzAg,2534
158
+ ultralytics/models/yolo/classify/train.py,sha256=vIVvc0Lm3KSebHRFleJ522waWIfRm7iY8tDKzowNmD8,6287
159
+ ultralytics/models/yolo/classify/val.py,sha256=9kE19haljj1q_jgiVfijczsdK_O2BtcMG3qUIXSasu4,5088
160
160
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
161
- ultralytics/models/yolo/detect/predict.py,sha256=_RrKS3h-tRR4uJyTOPSIp4HapxXC-c8Ao9yDeAM835I,2852
162
- ultralytics/models/yolo/detect/train.py,sha256=Y2SYjywenBLg8j-r4bC_sWqle1DJGQtDL5O6koeqm9U,6738
163
- ultralytics/models/yolo/detect/val.py,sha256=jGfdp5cLibuE1-WJAHL1Gjw7BeLfDBDShkJcvZt2COU,15293
161
+ ultralytics/models/yolo/detect/predict.py,sha256=KmK-NsZ9O3H2nkzGS3nO68jg2GgDixXiwNU63loofm4,2842
162
+ ultralytics/models/yolo/detect/train.py,sha256=FylhAF9lFiLPBYISgUBCkPsA9FO6YbQwfYH3RK_7s00,6724
163
+ ultralytics/models/yolo/detect/val.py,sha256=jK5gmWaZYRudvZJf0FJkLhCcRKGF1FXXeKnxOCPU5IA,15279
164
164
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
165
- ultralytics/models/yolo/obb/predict.py,sha256=SUgLzsxg1O77KxIeCj9IlSiqB9SfIwcoRtNZViqPS2E,1880
166
- ultralytics/models/yolo/obb/train.py,sha256=7LJ04dYENfjdt1Jet0Cxh0nyIpmgIUtmz425ZEuZSn8,1550
167
- ultralytics/models/yolo/obb/val.py,sha256=Tq5OCFHAsDWkUJP1DXMOfYJgwP0uGpalg-1JLk-OwNM,8937
165
+ ultralytics/models/yolo/obb/predict.py,sha256=7xJj8VJVhz_hpWm_BTnh22MUavfRt6Tlv7qTSAc3S-M,1870
166
+ ultralytics/models/yolo/obb/train.py,sha256=xrNYxdO2nEgxQNHm4sAoaRGxVthW__5Z1mg_yqfkDyw,1536
167
+ ultralytics/models/yolo/obb/val.py,sha256=qrm8E-1dkNcSuUJBpTe8SAJGg619afFC1FuD-aqnuwY,8902
168
168
  ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
169
- ultralytics/models/yolo/pose/predict.py,sha256=O-LI_acPh_xoXd7ZcxpxAUbIzfj5FkrwEXLuN16Rl7c,2120
170
- ultralytics/models/yolo/pose/train.py,sha256=472BgOjvDdNXe9GN68zO1ddRh5Cbmfg5m9_JZyHrTxY,2954
171
- ultralytics/models/yolo/pose/val.py,sha256=3-A--EwOOC1ZzXBQPViUPVyItXsDs1NaIrNJe73N9i0,11946
169
+ ultralytics/models/yolo/pose/predict.py,sha256=3Y4l5fAK60Nutp7CZiclk2By38rdz0Z0cx48sl1EfNw,2110
170
+ ultralytics/models/yolo/pose/train.py,sha256=7A6aPuksz0DPqSvyDxjOZe-_kj3oTe5taGku8m-ntts,2940
171
+ ultralytics/models/yolo/pose/val.py,sha256=8-1swGNp0AQM49kPiJ1VPzwz2Wf5ROUJ_L3nuvR44ng,11919
172
172
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
173
- ultralytics/models/yolo/segment/predict.py,sha256=FgRY5Iuf9VVRGP_bK7e-OKAdULaM06sAcjWntp1qKkQ,3570
174
- ultralytics/models/yolo/segment/train.py,sha256=2PGirZ7cvAsK2LxrEKC0HisOqPw6hyUCAPMkYmqQkIY,2326
175
- ultralytics/models/yolo/segment/val.py,sha256=PBhlLW4XoCypGwrA3nO_U7BedqLlW4bNHO7ekP4y_kk,13786
173
+ ultralytics/models/yolo/segment/predict.py,sha256=Ztb8BtPRZJuu9FcUIfyyI0WzmjCbdIgQXwVhTf-Cm5g,3560
174
+ ultralytics/models/yolo/segment/train.py,sha256=AYoZQE_PBifGKBgFWs9R4i4eqJSDcBUcdwafj9Ng6qM,2312
175
+ ultralytics/models/yolo/segment/val.py,sha256=E9fUnBG2HOgnOV-88ARm9TJ-Ugji9PKzhqjqukrZnT4,13751
176
176
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
177
- ultralytics/models/yolo/world/train.py,sha256=6PVmQ0G-22OOPPwP_rqSobe2LM6e2b_lC7lJCdW3UIk,3714
178
- ultralytics/models/yolo/world/train_world.py,sha256=sCtg4Hnq9Y7amYjlQsdvTHXH8cKSooipvcXu_1Iyb2k,4885
177
+ ultralytics/models/yolo/world/train.py,sha256=TOkJcXCzDlesh9sAV_wL-WyDtQ88YFtQ_os2jaGUa-o,3700
178
+ ultralytics/models/yolo/world/train_world.py,sha256=M5UVGeKvxcH72gzu8fo6OMzKEi4iNFzkD8NnV3zrrWU,4934
179
179
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
180
180
  ultralytics/nn/autobackend.py,sha256=aoM2n7FtWDqVqE-13kUlqJK7E4KRkD4eXh-hMGSs4i0,37448
181
- ultralytics/nn/tasks.py,sha256=501y_Cmb3qkHJqMCq9THxTrulgtbkkLKX-_-UbCKzsg,49024
182
- ultralytics/nn/modules/__init__.py,sha256=pVV5SSu6ktOusdVFr1kHK_WOkVLjCLO2W5XaLH-NF8w,2737
181
+ ultralytics/nn/tasks.py,sha256=tWInKREHgnFnSdBHXGAPn6u9TnfC2Deq3L6KzbatAzM,48993
182
+ ultralytics/nn/modules/__init__.py,sha256=uPBlzscX8zEJig7NQvfU5Ntwv_4Y6VJcoSAqC95da9o,2747
183
183
  ultralytics/nn/modules/activation.py,sha256=oRkhMdqlNpIxQb35pTSUeHV-h0VyLl96GOqvIZ4OvT8,923
184
184
  ultralytics/nn/modules/block.py,sha256=z0F0YD07C31VyMdYCeT5KoTgTpazIYW34xH7xgy02J4,52166
185
185
  ultralytics/nn/modules/conv.py,sha256=Wx_tZ56M7iMiNqz3v03oi86C2fatdmdBBDpkrUyzEIU,13132
@@ -213,24 +213,24 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
213
213
  ultralytics/trackers/utils/gmc.py,sha256=kU54RozuGJcAVlyb5_HjXiNIUIX5VuH613AMc6Gdnwg,14597
214
214
  ultralytics/trackers/utils/kalman_filter.py,sha256=zjpdKs4AZ8UQxmouQEaibFk9y5LX_f7199AFSXbr96k,21446
215
215
  ultralytics/trackers/utils/matching.py,sha256=64PKHGoETwXhuZ9udE217hbjJHygLOPaYA66J2qMSno,7130
216
- ultralytics/utils/__init__.py,sha256=p3-iu1q2mzeKGjb4S2aSx3QmSgv6cDT3rEf1RvHEwZM,49941
216
+ ultralytics/utils/__init__.py,sha256=up0n6dFAG7RqH1DmrYCA9iUH-IYHSP2ZH6h5-qGkh64,49926
217
217
  ultralytics/utils/autobatch.py,sha256=zc81HlAMArPASEbExty0E_zpITF8PVwin7w-xBFFZ5w,5048
218
218
  ultralytics/utils/benchmarks.py,sha256=1ezgIDAyCZ4o3p963BEhc7zs23Hql_KwoEndI0OTr3Q,26841
219
- ultralytics/utils/checks.py,sha256=WIQPdWtD2NhdKgrHTnqun6FDr73l4ejp0nsLtya_iOs,31038
219
+ ultralytics/utils/checks.py,sha256=4qg3tdbqJpz7R9EDSs9PPJPYtUVX32IPSCu0dE07oCs,30962
220
220
  ultralytics/utils/dist.py,sha256=fuiJQEnyyL-SighlI3hUlZPaaSreUl4Q39snF6OhQtI,2386
221
- ultralytics/utils/downloads.py,sha256=5B1uwRr6Urb5ShZAAni5_tq9a-3o0fSAH3xNCULktFY,22100
221
+ ultralytics/utils/downloads.py,sha256=9nR5JdO9SfU3Bx3Zroa3K5IxRX0oo1NczV9RkRbJ1WA,21904
222
222
  ultralytics/utils/errors.py,sha256=sXKDEd8ws3L-yIfG_-P_h86axbm37sJNha7kFBJbQMQ,844
223
223
  ultralytics/utils/files.py,sha256=c85NRofjGPMcpkV-yUo1Cwk8ZVquBGCEKlzbSVtXkQA,8252
224
- ultralytics/utils/instance.py,sha256=OFXZAxqBU-LC3aufVolmjEKB1UxZQb8KDAaMWyXbeh8,16896
224
+ ultralytics/utils/instance.py,sha256=79aHhxDA9qZSX_k0VLP6UXtspp7f9uiBJhy6Q-sLxYs,16884
225
225
  ultralytics/utils/loss.py,sha256=rL_jUOxcxL7kPTJKVLQsgwsJybnPbtDAE8FzftcOAHs,34188
226
226
  ultralytics/utils/metrics.py,sha256=6VfTtPzPppuX2RfXr84GoI_ABPfHPhXbbMKkH2HvUVc,53672
227
- ultralytics/utils/ops.py,sha256=e7HNeufSrOnaHaie8w-QHNnyaClcHuiGZvr3CXRABsU,34621
227
+ ultralytics/utils/ops.py,sha256=-lefVDnRApF-KaQYe00D9TAysNOtJa3fvbZTKG9tdEI,34606
228
228
  ultralytics/utils/patches.py,sha256=ARR89dP4YKq7Dd3g2eU-ukbnc2lo3BELukL_1c_d854,3298
229
- ultralytics/utils/plotting.py,sha256=Vbv_AZGw0rPydcZG9VDfzrqJW9NGb2k1nOJA7SnxNUM,46200
229
+ ultralytics/utils/plotting.py,sha256=zrfNLpWzq4HnJtyuYbhmKvMqYdQNfSETtiWPoQUbow0,46164
230
230
  ultralytics/utils/tal.py,sha256=DO-c006HEI62pcrNRpmt4lpqJPC5yu3veRDOvUuExno,18498
231
- ultralytics/utils/torch_utils.py,sha256=h1aWTJ71NX5Q_L5ZAj-4Yljht5S_6YEhE2XUm2Apt2M,34039
231
+ ultralytics/utils/torch_utils.py,sha256=sQ2y0Ee9VQRTZo3qSiMlnOc2aZdqzLoYPiqjhQocvDQ,33990
232
232
  ultralytics/utils/triton.py,sha256=2L1_rZ8xCJEjexRVj75g9YU-u4tQln_DJ5N1Yr_0bSs,4071
233
- ultralytics/utils/tuner.py,sha256=gySDBzTlq_klTOq6CGEyUN58HXzPCulObaMBHacXzHo,6294
233
+ ultralytics/utils/tuner.py,sha256=3CgtGt0Tqyh4wW9-M7W_z2430j5Dz6LSildxKtIz0JM,6267
234
234
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
235
235
  ultralytics/utils/callbacks/base.py,sha256=nbeSPjPCOb0M6FsFQ5-uFxXVzUYwmFyE4wFoA66Jpug,5803
236
236
  ultralytics/utils/callbacks/clearml.py,sha256=JH70T1OLPd9GSvC6HnaKkZHTr8fyE9RRcz3ukL62QPw,5961
@@ -242,9 +242,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=waZ_bRu0-qBKujTLuqonC2gx2DkgBuVnfq
242
242
  ultralytics/utils/callbacks/raytune.py,sha256=A_NVWjyPNf2m6iB-mbW7SMpyqM9QBvpbPa-MCMFMtdk,727
243
243
  ultralytics/utils/callbacks/tensorboard.py,sha256=JHOEVlNQ5dYJPd4Z-EvqbXowuK5uA0p8wPgyyaIUQs0,4194
244
244
  ultralytics/utils/callbacks/wb.py,sha256=ayhT2y62AcSOacnawshATU0rWrlSFQ77mrGgBdRl3W4,7086
245
- ultralytics-8.3.88.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
246
- ultralytics-8.3.88.dist-info/METADATA,sha256=JLPZ0f4cdD_k5KoIXZCTuF7m2XCOr9YR4yRpp-IxZOI,35169
247
- ultralytics-8.3.88.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
248
- ultralytics-8.3.88.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
249
- ultralytics-8.3.88.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
250
- ultralytics-8.3.88.dist-info/RECORD,,
245
+ ultralytics-8.3.89.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
246
+ ultralytics-8.3.89.dist-info/METADATA,sha256=rfau6P8w-Byzkm9a45vqA8-B8l_4RNuGoVYnCAz_gBI,35169
247
+ ultralytics-8.3.89.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
248
+ ultralytics-8.3.89.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
249
+ ultralytics-8.3.89.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
250
+ ultralytics-8.3.89.dist-info/RECORD,,