ultralytics 8.3.86__py3-none-any.whl → 8.3.88__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_solutions.py +47 -39
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +58 -55
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +1 -1
- ultralytics/cfg/models/11/yolo11-cls.yaml +6 -6
- ultralytics/data/augment.py +2 -2
- ultralytics/data/loaders.py +1 -1
- ultralytics/engine/exporter.py +1 -1
- ultralytics/engine/results.py +76 -41
- ultralytics/engine/trainer.py +11 -5
- ultralytics/engine/tuner.py +3 -2
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/nn/tasks.py +1 -1
- ultralytics/solutions/__init__.py +14 -6
- ultralytics/solutions/ai_gym.py +39 -28
- ultralytics/solutions/analytics.py +22 -18
- ultralytics/solutions/distance_calculation.py +25 -25
- ultralytics/solutions/heatmap.py +40 -38
- ultralytics/solutions/instance_segmentation.py +69 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +35 -33
- ultralytics/solutions/object_cropper.py +84 -0
- ultralytics/solutions/parking_management.py +40 -13
- ultralytics/solutions/queue_management.py +20 -39
- ultralytics/solutions/region_counter.py +54 -51
- ultralytics/solutions/security_alarm.py +40 -30
- ultralytics/solutions/solutions.py +594 -16
- ultralytics/solutions/speed_estimation.py +34 -31
- ultralytics/solutions/streamlit_inference.py +34 -28
- ultralytics/solutions/trackzone.py +29 -18
- ultralytics/solutions/vision_eye.py +69 -0
- ultralytics/trackers/utils/kalman_filter.py +23 -23
- ultralytics/utils/__init__.py +2 -3
- ultralytics/utils/callbacks/comet.py +37 -5
- ultralytics/utils/instance.py +3 -3
- ultralytics/utils/plotting.py +0 -414
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/METADATA +8 -8
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/RECORD +42 -38
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/WHEEL +1 -1
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.86.dist-info → ultralytics-8.3.88.dist-info}/top_level.txt +0 -0
tests/test_solutions.py
CHANGED
@@ -1,15 +1,20 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
|
+
# This is file for Ultralytics Solutions tests: https://docs.ultralytics.com/solutions/,
|
3
|
+
# It includes every solution excluding DistanceCalculation and Security Alarm System.
|
2
4
|
|
3
5
|
import cv2
|
4
6
|
import pytest
|
5
7
|
|
6
8
|
from tests import TMP
|
7
|
-
from ultralytics import
|
8
|
-
from ultralytics.utils import ASSETS_URL
|
9
|
+
from ultralytics import solutions
|
10
|
+
from ultralytics.utils import ASSETS_URL
|
9
11
|
from ultralytics.utils.downloads import safe_download
|
10
12
|
|
11
|
-
DEMO_VIDEO = "solutions_ci_demo.mp4"
|
12
|
-
POSE_VIDEO = "solution_ci_pose_demo.mp4"
|
13
|
+
DEMO_VIDEO = "solutions_ci_demo.mp4" # for all the solutions, except workout and parking
|
14
|
+
POSE_VIDEO = "solution_ci_pose_demo.mp4" # only for workouts monitoring solution
|
15
|
+
PARKING_VIDEO = "solution_ci_parking_demo.mp4" # only for parking management solution
|
16
|
+
PARKING_AREAS_JSON = "solution_ci_parking_areas.json" # only for parking management solution
|
17
|
+
PARKING_MODEL = "solutions_ci_parking_model.pt" # only for parking management solution
|
13
18
|
|
14
19
|
|
15
20
|
@pytest.mark.slow
|
@@ -21,16 +26,23 @@ def test_major_solutions():
|
|
21
26
|
region_points = [(20, 400), (1080, 400), (1080, 360), (20, 360)]
|
22
27
|
counter = solutions.ObjectCounter(region=region_points, model="yolo11n.pt", show=False) # Test object counter
|
23
28
|
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False) # Test heatmaps
|
24
|
-
|
29
|
+
heatmapcounter = solutions.Heatmap(
|
25
30
|
colormap=cv2.COLORMAP_PARULA, model="yolo11n.pt", show=False, region=region_points
|
26
31
|
) # Test heatmaps with object counting
|
27
32
|
speed = solutions.SpeedEstimator(region=region_points, model="yolo11n.pt", show=False) # Test queue manager
|
28
33
|
queue = solutions.QueueManager(region=region_points, model="yolo11n.pt", show=False) # Test speed estimation
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
trackzone = solutions.TrackZone(region=region_points, model="yolo11n.pt", show=False) #
|
34
|
+
lineanalytics = solutions.Analytics(analytics_type="line", model="yolo11n.pt", show=False) # line analytics
|
35
|
+
pieanalytics = solutions.Analytics(analytics_type="pie", model="yolo11n.pt", show=False) # line analytics
|
36
|
+
baranalytics = solutions.Analytics(analytics_type="bar", model="yolo11n.pt", show=False) # line analytics
|
37
|
+
areaanalytics = solutions.Analytics(analytics_type="area", model="yolo11n.pt", show=False) # line analytics
|
38
|
+
trackzone = solutions.TrackZone(region=region_points, model="yolo11n.pt", show=False) # trackzone
|
39
|
+
objectcropper = solutions.ObjectCropper(
|
40
|
+
model="yolo11n.pt", show=False, crop_dir=str(TMP / "cropped-detections")
|
41
|
+
) # object cropping
|
42
|
+
objectblurrer = solutions.ObjectBlurrer(blur_ratio=0.5, model="yolo11n.pt", show=False) # Object blurring
|
43
|
+
isegment = solutions.InstanceSegmentation(model="yolo11n-seg.pt", show=False) # Instance segmentation
|
44
|
+
visioneye = solutions.VisionEye(model="yolo11n.pt", show=False) # Visioneye
|
45
|
+
regioncounter = solutions.RegionCounter(region=region_points, model="yolo11n.pt", show=False) # Region counter
|
34
46
|
frame_count = 0 # Required for analytics
|
35
47
|
while cap.isOpened():
|
36
48
|
success, im0 = cap.read()
|
@@ -38,16 +50,21 @@ def test_major_solutions():
|
|
38
50
|
break
|
39
51
|
frame_count += 1
|
40
52
|
original_im0 = im0.copy()
|
41
|
-
_ = counter
|
42
|
-
_ = heatmap
|
43
|
-
_ =
|
44
|
-
_ = speed
|
45
|
-
_ = queue
|
46
|
-
_ =
|
47
|
-
_ =
|
48
|
-
_ =
|
49
|
-
_ =
|
50
|
-
_ = trackzone
|
53
|
+
_ = counter(original_im0.copy())
|
54
|
+
_ = heatmap(original_im0.copy())
|
55
|
+
_ = heatmapcounter(original_im0.copy())
|
56
|
+
_ = speed(original_im0.copy())
|
57
|
+
_ = queue(original_im0.copy())
|
58
|
+
_ = lineanalytics(original_im0.copy(), frame_count)
|
59
|
+
_ = pieanalytics(original_im0.copy(), frame_count)
|
60
|
+
_ = baranalytics(original_im0.copy(), frame_count)
|
61
|
+
_ = areaanalytics(original_im0.copy(), frame_count)
|
62
|
+
_ = trackzone(original_im0.copy())
|
63
|
+
_ = objectcropper(original_im0.copy())
|
64
|
+
_ = isegment(original_im0.copy())
|
65
|
+
_ = objectblurrer(original_im0.copy())
|
66
|
+
_ = visioneye(original_im0.copy())
|
67
|
+
_ = regioncounter(original_im0.copy())
|
51
68
|
cap.release()
|
52
69
|
|
53
70
|
# Test workouts monitoring
|
@@ -59,33 +76,24 @@ def test_major_solutions():
|
|
59
76
|
success, im0 = cap.read()
|
60
77
|
if not success:
|
61
78
|
break
|
62
|
-
_ = gym
|
79
|
+
_ = gym(im0)
|
63
80
|
cap.release()
|
64
81
|
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
""
|
69
|
-
|
70
|
-
|
71
|
-
model = YOLO(WEIGHTS_DIR / "yolo11n-seg.pt")
|
72
|
-
names = model.names
|
73
|
-
cap = cv2.VideoCapture(TMP / DEMO_VIDEO)
|
82
|
+
# Test parking management
|
83
|
+
safe_download(url=f"{ASSETS_URL}/{PARKING_VIDEO}", dir=TMP)
|
84
|
+
safe_download(url=f"{ASSETS_URL}/{PARKING_AREAS_JSON}", dir=TMP)
|
85
|
+
safe_download(url=f"{ASSETS_URL}/{PARKING_MODEL}", dir=TMP)
|
86
|
+
cap = cv2.VideoCapture(str(TMP / PARKING_VIDEO))
|
74
87
|
assert cap.isOpened(), "Error reading video file"
|
88
|
+
parkingmanager = solutions.ParkingManagement(
|
89
|
+
json_file=str(TMP / PARKING_AREAS_JSON), model=str(TMP / PARKING_MODEL), show=False
|
90
|
+
)
|
75
91
|
while cap.isOpened():
|
76
92
|
success, im0 = cap.read()
|
77
93
|
if not success:
|
78
94
|
break
|
79
|
-
|
80
|
-
annotator = Annotator(im0, line_width=2)
|
81
|
-
if results[0].masks is not None:
|
82
|
-
clss = results[0].boxes.cls.cpu().tolist()
|
83
|
-
masks = results[0].masks.xy
|
84
|
-
for mask, cls in zip(masks, clss):
|
85
|
-
color = colors(int(cls), True)
|
86
|
-
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)])
|
95
|
+
_ = parkingmanager(im0)
|
87
96
|
cap.release()
|
88
|
-
cv2.destroyAllWindows()
|
89
97
|
|
90
98
|
|
91
99
|
@pytest.mark.slow
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -5,7 +5,7 @@ import subprocess
|
|
5
5
|
import sys
|
6
6
|
from pathlib import Path
|
7
7
|
from types import SimpleNamespace
|
8
|
-
from typing import Dict, List, Union
|
8
|
+
from typing import Any, Dict, List, Union
|
9
9
|
|
10
10
|
import cv2
|
11
11
|
|
@@ -35,14 +35,18 @@ from ultralytics.utils import (
|
|
35
35
|
|
36
36
|
# Define valid solutions
|
37
37
|
SOLUTION_MAP = {
|
38
|
-
"count":
|
39
|
-
"
|
40
|
-
"
|
41
|
-
"
|
42
|
-
"
|
43
|
-
"
|
44
|
-
"
|
45
|
-
"
|
38
|
+
"count": "ObjectCounter",
|
39
|
+
"crop": "ObjectCropper",
|
40
|
+
"blur": "ObjectBlurrer",
|
41
|
+
"workout": "AIGym",
|
42
|
+
"heatmap": "Heatmap",
|
43
|
+
"isegment": "InstanceSegmentation",
|
44
|
+
"visioneye": "VisionEye",
|
45
|
+
"speed": "SpeedEstimator",
|
46
|
+
"queue": "QueueManager",
|
47
|
+
"analytics": "Analytics",
|
48
|
+
"inference": "Inference",
|
49
|
+
"trackzone": "TrackZone",
|
46
50
|
"help": None,
|
47
51
|
}
|
48
52
|
|
@@ -238,7 +242,7 @@ CFG_BOOL_KEYS = frozenset(
|
|
238
242
|
)
|
239
243
|
|
240
244
|
|
241
|
-
def cfg2dict(cfg):
|
245
|
+
def cfg2dict(cfg: Union[str, Path, Dict, SimpleNamespace]) -> Dict:
|
242
246
|
"""
|
243
247
|
Converts a configuration object to a dictionary.
|
244
248
|
|
@@ -273,7 +277,7 @@ def cfg2dict(cfg):
|
|
273
277
|
return cfg
|
274
278
|
|
275
279
|
|
276
|
-
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
|
280
|
+
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None) -> SimpleNamespace:
|
277
281
|
"""
|
278
282
|
Load and merge configuration data from a file or dictionary, with optional overrides.
|
279
283
|
|
@@ -321,7 +325,7 @@ def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, ove
|
|
321
325
|
return IterableSimpleNamespace(**cfg)
|
322
326
|
|
323
327
|
|
324
|
-
def check_cfg(cfg, hard=True):
|
328
|
+
def check_cfg(cfg: Dict, hard: bool = True) -> None:
|
325
329
|
"""
|
326
330
|
Checks configuration argument types and values for the Ultralytics library.
|
327
331
|
|
@@ -383,7 +387,7 @@ def check_cfg(cfg, hard=True):
|
|
383
387
|
cfg[k] = bool(v)
|
384
388
|
|
385
389
|
|
386
|
-
def get_save_dir(args, name=None):
|
390
|
+
def get_save_dir(args: SimpleNamespace, name: str = None) -> Path:
|
387
391
|
"""
|
388
392
|
Returns the directory path for saving outputs, derived from arguments or default settings.
|
389
393
|
|
@@ -415,7 +419,7 @@ def get_save_dir(args, name=None):
|
|
415
419
|
return Path(save_dir)
|
416
420
|
|
417
421
|
|
418
|
-
def _handle_deprecation(custom):
|
422
|
+
def _handle_deprecation(custom: Dict) -> Dict:
|
419
423
|
"""
|
420
424
|
Handles deprecated configuration keys by mapping them to current equivalents with deprecation warnings.
|
421
425
|
|
@@ -453,7 +457,7 @@ def _handle_deprecation(custom):
|
|
453
457
|
return custom
|
454
458
|
|
455
459
|
|
456
|
-
def check_dict_alignment(base: Dict, custom: Dict, e=None):
|
460
|
+
def check_dict_alignment(base: Dict, custom: Dict, e: Exception = None) -> None:
|
457
461
|
"""
|
458
462
|
Checks alignment between custom and base configuration dictionaries, handling deprecated keys and providing error
|
459
463
|
messages for mismatched keys.
|
@@ -507,7 +511,7 @@ def merge_equals_args(args: List[str]) -> List[str]:
|
|
507
511
|
args (List[str]): A list of strings where each element represents an argument or fragment.
|
508
512
|
|
509
513
|
Returns:
|
510
|
-
List[str]: A list of strings where the arguments around isolated '=' are merged and fragments with brackets are joined.
|
514
|
+
(List[str]): A list of strings where the arguments around isolated '=' are merged and fragments with brackets are joined.
|
511
515
|
|
512
516
|
Examples:
|
513
517
|
>>> args = ["arg1", "=", "value", "arg2=", "value2", "arg3", "=value3", "imgsz=[3,", "640,", "640]"]
|
@@ -634,9 +638,6 @@ def handle_yolo_solutions(args: List[str]) -> None:
|
|
634
638
|
solutions: https://docs.ultralytics.com/solutions/, It can include solution name, source,
|
635
639
|
and other configuration parameters.
|
636
640
|
|
637
|
-
Returns:
|
638
|
-
None: The function processes video frames and saves the output but doesn't return any value.
|
639
|
-
|
640
641
|
Examples:
|
641
642
|
Run people counting solution with default settings:
|
642
643
|
>>> handle_yolo_solutions(["count"])
|
@@ -656,14 +657,17 @@ def handle_yolo_solutions(args: List[str]) -> None:
|
|
656
657
|
- For 'analytics' solution, frame numbers are tracked for generating analytical graphs
|
657
658
|
- Video processing can be interrupted by pressing 'q'
|
658
659
|
- Processes video frames sequentially and saves output in .avi format
|
659
|
-
- If no source is specified, downloads and uses a default sample video
|
660
|
+
- If no source is specified, downloads and uses a default sample video
|
660
661
|
- The inference solution will be launched using the 'streamlit run' command.
|
661
662
|
- The Streamlit app file is located in the Ultralytics package directory.
|
662
663
|
"""
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
664
|
+
full_args_dict = {
|
665
|
+
**DEFAULT_SOL_DICT,
|
666
|
+
**DEFAULT_CFG_DICT,
|
667
|
+
"blur_ratio": 0.5,
|
668
|
+
"vision_point": (20, 20),
|
669
|
+
"crop_dir": "cropped-detections",
|
670
|
+
} # arguments dictionary
|
667
671
|
overrides = {}
|
668
672
|
|
669
673
|
# check dictionary alignment
|
@@ -680,21 +684,19 @@ def handle_yolo_solutions(args: List[str]) -> None:
|
|
680
684
|
check_dict_alignment(full_args_dict, overrides) # dict alignment
|
681
685
|
|
682
686
|
# Get solution name
|
683
|
-
if args
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
687
|
+
if args[0] == "help":
|
688
|
+
LOGGER.info(SOLUTIONS_HELP_MSG)
|
689
|
+
return # Early return for 'help' case
|
690
|
+
elif args[0] in SOLUTION_MAP:
|
691
|
+
solution_name = args.pop(0) # Extract the solution name directly
|
688
692
|
else:
|
689
693
|
LOGGER.warning(
|
690
|
-
f"
|
694
|
+
f"❌ '{args[0]}' is not a valid solution. 💡 Defaulting to 'count'.\n"
|
695
|
+
f"🚀 Available solutions: {', '.join(list(SOLUTION_MAP.keys())[:-1])}\n"
|
691
696
|
)
|
692
|
-
|
693
|
-
|
694
|
-
if args and args[0] == "help": # Add check for return if user call `yolo solutions help`
|
695
|
-
return
|
697
|
+
solution_name = "count" # Default for invalid solution
|
696
698
|
|
697
|
-
if
|
699
|
+
if solution_name == "inference":
|
698
700
|
checks.check_requirements("streamlit>=1.29.0")
|
699
701
|
LOGGER.info("💡 Loading Ultralytics live inference app...")
|
700
702
|
subprocess.run(
|
@@ -708,22 +710,21 @@ def handle_yolo_solutions(args: List[str]) -> None:
|
|
708
710
|
]
|
709
711
|
)
|
710
712
|
else:
|
711
|
-
|
712
|
-
solution = getattr(solutions, cls)(IS_CLI=True, **overrides) # get solution class i.e ObjectCounter
|
713
|
-
process = getattr(
|
714
|
-
solution, method
|
715
|
-
) # get specific function of class for processing i.e, count from ObjectCounter
|
716
|
-
|
717
|
-
cap = cv2.VideoCapture(solution.CFG["source"]) # read the video file
|
713
|
+
from ultralytics import solutions
|
718
714
|
|
719
|
-
|
715
|
+
solution = getattr(solutions, SOLUTION_MAP[solution_name])(is_cli=True, **overrides) # class i.e ObjectCounter
|
720
716
|
|
721
|
-
|
722
|
-
if
|
723
|
-
|
724
|
-
|
725
|
-
|
726
|
-
|
717
|
+
cap = cv2.VideoCapture(solution.CFG["source"]) # read the video file
|
718
|
+
if solution_name != "crop":
|
719
|
+
# extract width, height and fps of the video file, create save directory and initialize video writer
|
720
|
+
w, h, fps = (
|
721
|
+
int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)
|
722
|
+
)
|
723
|
+
if solution_name == "analytics": # analytical graphs follow fixed shape for output i.e w=1920, h=1080
|
724
|
+
w, h = 1280, 720
|
725
|
+
save_dir = get_save_dir(SimpleNamespace(project="runs/solutions", name="exp", exist_ok=False))
|
726
|
+
save_dir.mkdir(parents=True) # create the output directory i.e. runs/solutions/exp
|
727
|
+
vw = cv2.VideoWriter(str(save_dir / f"{solution_name}.avi"), cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
727
728
|
|
728
729
|
try: # Process video frames
|
729
730
|
f_n = 0 # frame number, required for analytical graphs
|
@@ -731,15 +732,17 @@ def handle_yolo_solutions(args: List[str]) -> None:
|
|
731
732
|
success, frame = cap.read()
|
732
733
|
if not success:
|
733
734
|
break
|
734
|
-
|
735
|
-
|
735
|
+
results = solution(frame, f_n := f_n + 1) if solution_name == "analytics" else solution(frame)
|
736
|
+
LOGGER.info(f"🚀 Results: {results}")
|
737
|
+
if solution_name != "crop":
|
738
|
+
vw.write(results.plot_im)
|
736
739
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
737
740
|
break
|
738
741
|
finally:
|
739
742
|
cap.release()
|
740
743
|
|
741
744
|
|
742
|
-
def parse_key_value_pair(pair: str = "key=value"):
|
745
|
+
def parse_key_value_pair(pair: str = "key=value") -> tuple:
|
743
746
|
"""
|
744
747
|
Parses a key-value pair string into separate key and value components.
|
745
748
|
|
@@ -773,7 +776,7 @@ def parse_key_value_pair(pair: str = "key=value"):
|
|
773
776
|
return k, smart_value(v)
|
774
777
|
|
775
778
|
|
776
|
-
def smart_value(v):
|
779
|
+
def smart_value(v: str) -> Any:
|
777
780
|
"""
|
778
781
|
Converts a string representation of a value to its appropriate Python type.
|
779
782
|
|
@@ -818,7 +821,7 @@ def smart_value(v):
|
|
818
821
|
return v
|
819
822
|
|
820
823
|
|
821
|
-
def entrypoint(debug=""):
|
824
|
+
def entrypoint(debug: str = "") -> None:
|
822
825
|
"""
|
823
826
|
Ultralytics entrypoint function for parsing and executing command-line arguments.
|
824
827
|
|
@@ -990,7 +993,7 @@ def entrypoint(debug=""):
|
|
990
993
|
|
991
994
|
|
992
995
|
# Special modes --------------------------------------------------------------------------------------------------------
|
993
|
-
def copy_default_cfg():
|
996
|
+
def copy_default_cfg() -> None:
|
994
997
|
"""
|
995
998
|
Copies the default configuration file and creates a new one with '_copy' appended to its name.
|
996
999
|
|
@@ -5,14 +5,14 @@
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/classify
|
6
6
|
|
7
7
|
# Parameters
|
8
|
-
nc:
|
8
|
+
nc: 1000 # number of classes
|
9
9
|
scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
|
10
10
|
# [depth, width, max_channels]
|
11
|
-
n: [0.50, 0.25, 1024] # summary: 151 layers, 1633584 parameters, 1633584 gradients,
|
12
|
-
s: [0.50, 0.50, 1024] # summary: 151 layers, 5545488 parameters, 5545488 gradients,
|
13
|
-
m: [0.50, 1.00, 512] # summary: 187 layers, 10455696 parameters, 10455696 gradients,
|
14
|
-
l: [1.00, 1.00, 512] # summary: 309 layers, 12937104 parameters, 12937104 gradients,
|
15
|
-
x: [1.00, 1.50, 512] # summary: 309 layers, 28458544 parameters, 28458544 gradients,
|
11
|
+
n: [0.50, 0.25, 1024] # summary: 151 layers, 1633584 parameters, 1633584 gradients, 0.5 GFLOPs
|
12
|
+
s: [0.50, 0.50, 1024] # summary: 151 layers, 5545488 parameters, 5545488 gradients, 1.6 GFLOPs
|
13
|
+
m: [0.50, 1.00, 512] # summary: 187 layers, 10455696 parameters, 10455696 gradients, 5.0 GFLOPs
|
14
|
+
l: [1.00, 1.00, 512] # summary: 309 layers, 12937104 parameters, 12937104 gradients, 6.2 GFLOPs
|
15
|
+
x: [1.00, 1.50, 512] # summary: 309 layers, 28458544 parameters, 28458544 gradients, 13.7 GFLOPs
|
16
16
|
|
17
17
|
# YOLO11n backbone
|
18
18
|
backbone:
|
ultralytics/data/augment.py
CHANGED
@@ -1193,8 +1193,8 @@ class RandomPerspective:
|
|
1193
1193
|
Args:
|
1194
1194
|
labels (Dict): A dictionary containing image data and annotations.
|
1195
1195
|
Must include:
|
1196
|
-
'img' (ndarray): The input image.
|
1197
|
-
'cls' (ndarray): Class labels.
|
1196
|
+
'img' (np.ndarray): The input image.
|
1197
|
+
'cls' (np.ndarray): Class labels.
|
1198
1198
|
'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
|
1199
1199
|
May include:
|
1200
1200
|
'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.
|
ultralytics/data/loaders.py
CHANGED
@@ -106,7 +106,7 @@ class LoadStreams:
|
|
106
106
|
self.caps = [None] * n # video capture objects
|
107
107
|
self.imgs = [[] for _ in range(n)] # images
|
108
108
|
self.shape = [[] for _ in range(n)] # image shapes
|
109
|
-
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
|
109
|
+
self.sources = [ops.clean_str(x).replace(os.sep, "_") for x in sources] # clean source names for later
|
110
110
|
for i, s in enumerate(sources): # index, source
|
111
111
|
# Start thread to read frames from video stream
|
112
112
|
st = f"{i + 1}/{n}: {s}... "
|
ultralytics/engine/exporter.py
CHANGED
@@ -590,7 +590,7 @@ class Exporter:
|
|
590
590
|
@try_export
|
591
591
|
def export_openvino(self, prefix=colorstr("OpenVINO:")):
|
592
592
|
"""YOLO OpenVINO export."""
|
593
|
-
check_requirements("openvino>=2024.0.0
|
593
|
+
check_requirements("openvino>=2024.0.0,!=2025.0.0")
|
594
594
|
import openvino as ov
|
595
595
|
|
596
596
|
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
ultralytics/engine/results.py
CHANGED
@@ -188,43 +188,50 @@ class Results(SimpleClass):
|
|
188
188
|
"""
|
189
189
|
A class for storing and manipulating inference results.
|
190
190
|
|
191
|
-
This class
|
192
|
-
|
191
|
+
This class provides methods for accessing, manipulating, and visualizing inference results from various
|
192
|
+
Ultralytics models, including detection, segmentation, classification, and pose estimation.
|
193
193
|
|
194
194
|
Attributes:
|
195
|
-
orig_img (numpy.ndarray):
|
195
|
+
orig_img (numpy.ndarray): The original image as a numpy array.
|
196
196
|
orig_shape (Tuple[int, int]): Original image shape in (height, width) format.
|
197
|
-
boxes (Boxes | None):
|
198
|
-
masks (Masks | None):
|
199
|
-
probs (Probs | None):
|
200
|
-
keypoints (Keypoints | None):
|
201
|
-
obb (OBB | None):
|
202
|
-
speed (Dict
|
203
|
-
names (Dict
|
204
|
-
path (str): Path to the image file.
|
205
|
-
|
197
|
+
boxes (Boxes | None): Detected bounding boxes.
|
198
|
+
masks (Masks | None): Segmentation masks.
|
199
|
+
probs (Probs | None): Classification probabilities.
|
200
|
+
keypoints (Keypoints | None): Detected keypoints.
|
201
|
+
obb (OBB | None): Oriented bounding boxes.
|
202
|
+
speed (Dict): Dictionary containing inference speed information.
|
203
|
+
names (Dict): Dictionary mapping class indices to class names.
|
204
|
+
path (str): Path to the input image file.
|
205
|
+
save_dir (str | None): Directory to save results.
|
206
206
|
|
207
207
|
Methods:
|
208
|
-
update: Updates object
|
209
|
-
cpu: Returns a copy of the Results object with all tensors
|
210
|
-
numpy:
|
211
|
-
cuda:
|
212
|
-
to:
|
213
|
-
new:
|
214
|
-
plot: Plots detection results on an input
|
215
|
-
show:
|
216
|
-
save: Saves annotated results to file.
|
217
|
-
verbose: Returns a log string for each task
|
208
|
+
update: Updates the Results object with new detection data.
|
209
|
+
cpu: Returns a copy of the Results object with all tensors moved to CPU memory.
|
210
|
+
numpy: Converts all tensors in the Results object to numpy arrays.
|
211
|
+
cuda: Moves all tensors in the Results object to GPU memory.
|
212
|
+
to: Moves all tensors to the specified device and dtype.
|
213
|
+
new: Creates a new Results object with the same image, path, names, and speed attributes.
|
214
|
+
plot: Plots detection results on an input RGB image.
|
215
|
+
show: Displays the image with annotated inference results.
|
216
|
+
save: Saves annotated inference results image to file.
|
217
|
+
verbose: Returns a log string for each task in the results.
|
218
218
|
save_txt: Saves detection results to a text file.
|
219
|
-
save_crop: Saves cropped detection images.
|
220
|
-
|
219
|
+
save_crop: Saves cropped detection images to specified directory.
|
220
|
+
summary: Converts inference results to a summarized dictionary.
|
221
|
+
to_df: Converts detection results to a Pandas Dataframe.
|
222
|
+
to_json: Converts detection results to JSON format.
|
223
|
+
to_csv: Converts detection results to a CSV format.
|
224
|
+
to_xml: Converts detection results to XML format.
|
225
|
+
to_html: Converts detection results to HTML format.
|
226
|
+
to_sql: Converts detection results to an SQL-compatible format.
|
221
227
|
|
222
228
|
Examples:
|
223
229
|
>>> results = model("path/to/image.jpg")
|
230
|
+
>>> result = results[0] # Get the first result
|
231
|
+
>>> boxes = result.boxes # Get the boxes for the first result
|
232
|
+
>>> masks = result.masks # Get the masks for the first result
|
224
233
|
>>> for result in results:
|
225
|
-
|
226
|
-
... result.show() # Display the annotated image
|
227
|
-
... result.save(filename="result.jpg") # Save annotated image
|
234
|
+
>>> result.plot() # Plot detection results
|
228
235
|
"""
|
229
236
|
|
230
237
|
def __init__(
|
@@ -766,8 +773,8 @@ class Results(SimpleClass):
|
|
766
773
|
optionally mask segments and keypoints.
|
767
774
|
|
768
775
|
Args:
|
769
|
-
normalize (bool): Whether to normalize bounding box coordinates by image dimensions.
|
770
|
-
decimals (int): Number of decimal places to round the output values to.
|
776
|
+
normalize (bool): Whether to normalize bounding box coordinates by image dimensions.
|
777
|
+
decimals (int): Number of decimal places to round the output values to.
|
771
778
|
|
772
779
|
Returns:
|
773
780
|
(List[Dict]): A list of dictionaries, each containing summarized information for a single
|
@@ -832,8 +839,8 @@ class Results(SimpleClass):
|
|
832
839
|
|
833
840
|
Args:
|
834
841
|
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
835
|
-
If True, coordinates will be returned as float values between 0 and 1.
|
836
|
-
decimals (int): Number of decimal places to round the output values to.
|
842
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
843
|
+
decimals (int): Number of decimal places to round the output values to.
|
837
844
|
|
838
845
|
Returns:
|
839
846
|
(DataFrame): A Pandas Dataframe containing all the information in results in an organized way.
|
@@ -858,8 +865,8 @@ class Results(SimpleClass):
|
|
858
865
|
|
859
866
|
Args:
|
860
867
|
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
861
|
-
If True, coordinates will be returned as float values between 0 and 1.
|
862
|
-
decimals (int): Number of decimal places to round the output values to.
|
868
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
869
|
+
decimals (int): Number of decimal places to round the output values to.
|
863
870
|
*args (Any): Variable length argument list to be passed to pandas.DataFrame.to_csv().
|
864
871
|
**kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_csv().
|
865
872
|
|
@@ -885,8 +892,8 @@ class Results(SimpleClass):
|
|
885
892
|
|
886
893
|
Args:
|
887
894
|
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
888
|
-
If True, coordinates will be returned as float values between 0 and 1.
|
889
|
-
decimals (int): Number of decimal places to round the output values to.
|
895
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
896
|
+
decimals (int): Number of decimal places to round the output values to.
|
890
897
|
*args (Any): Variable length argument list to be passed to pandas.DataFrame.to_xml().
|
891
898
|
**kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_xml().
|
892
899
|
|
@@ -903,6 +910,34 @@ class Results(SimpleClass):
|
|
903
910
|
df = self.to_df(normalize=normalize, decimals=decimals)
|
904
911
|
return '<?xml version="1.0" encoding="utf-8"?>\n<root></root>' if df.empty else df.to_xml(*args, **kwargs)
|
905
912
|
|
913
|
+
def to_html(self, normalize=False, decimals=5, index=False, *args, **kwargs):
|
914
|
+
"""
|
915
|
+
Converts detection results to HTML format.
|
916
|
+
|
917
|
+
This method serializes the detection results into an HTML format. It includes information
|
918
|
+
about detected objects such as bounding boxes, class names, confidence scores, and optionally
|
919
|
+
segmentation masks and keypoints.
|
920
|
+
|
921
|
+
Args:
|
922
|
+
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
923
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
924
|
+
decimals (int): Number of decimal places to round the output values to.
|
925
|
+
index (bool): Whether to include the DataFrame index in the HTML output.
|
926
|
+
*args (Any): Variable length argument list to be passed to pandas.DataFrame.to_html().
|
927
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_html().
|
928
|
+
|
929
|
+
Returns:
|
930
|
+
(str): An HTML string containing all the information in results in an organized way.
|
931
|
+
|
932
|
+
Examples:
|
933
|
+
>>> results = model("path/to/image.jpg")
|
934
|
+
>>> for result in results:
|
935
|
+
>>> html_result = result.to_html()
|
936
|
+
>>> print(html_result)
|
937
|
+
"""
|
938
|
+
df = self.to_df(normalize=normalize, decimals=decimals)
|
939
|
+
return "<table></table>" if df.empty else df.to_html(index=index, *args, **kwargs)
|
940
|
+
|
906
941
|
def tojson(self, normalize=False, decimals=5):
|
907
942
|
"""Deprecated version of to_json()."""
|
908
943
|
LOGGER.warning("WARNING ⚠️ 'result.tojson()' is deprecated, replace with 'result.to_json()'.")
|
@@ -918,8 +953,8 @@ class Results(SimpleClass):
|
|
918
953
|
|
919
954
|
Args:
|
920
955
|
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
921
|
-
If True, coordinates will be returned as float values between 0 and 1.
|
922
|
-
decimals (int): Number of decimal places to round the output values to.
|
956
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
957
|
+
decimals (int): Number of decimal places to round the output values to.
|
923
958
|
|
924
959
|
Returns:
|
925
960
|
(str): A JSON string containing the serialized detection results.
|
@@ -951,11 +986,11 @@ class Results(SimpleClass):
|
|
951
986
|
and optionally segmentation masks, keypoints or oriented bounding boxes.
|
952
987
|
|
953
988
|
Args:
|
954
|
-
table_name (str): Name of the SQL table where the data will be inserted.
|
989
|
+
table_name (str): Name of the SQL table where the data will be inserted.
|
955
990
|
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
956
|
-
If True, coordinates will be returned as float values between 0 and 1.
|
957
|
-
decimals (int): Number of decimal places to round the bounding boxes values to.
|
958
|
-
db_path (str): Path to the SQLite database file.
|
991
|
+
If True, coordinates will be returned as float values between 0 and 1.
|
992
|
+
decimals (int): Number of decimal places to round the bounding boxes values to.
|
993
|
+
db_path (str): Path to the SQLite database file.
|
959
994
|
|
960
995
|
Examples:
|
961
996
|
>>> results = model("path/to/image.jpg")
|