ultralytics 8.3.67__py3-none-any.whl → 8.3.68__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_exports.py +28 -10
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +23 -8
- ultralytics/utils/benchmarks.py +2 -2
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/METADATA +1 -1
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/RECORD +10 -10
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.67.dist-info → ultralytics-8.3.68.dist-info}/top_level.txt +0 -0
tests/test_exports.py
CHANGED
@@ -44,18 +44,25 @@ def test_export_openvino():
|
|
44
44
|
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
45
45
|
@pytest.mark.parametrize(
|
46
46
|
"task, dynamic, int8, half, batch, nms",
|
47
|
-
[ # generate all combinations
|
47
|
+
[ # generate all combinations except for exclusion cases
|
48
48
|
(task, dynamic, int8, half, batch, nms)
|
49
49
|
for task, dynamic, int8, half, batch, nms in product(
|
50
50
|
TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False]
|
51
51
|
)
|
52
|
-
if not (int8 and half)
|
52
|
+
if not ((int8 and half) or (task == "classify" and nms))
|
53
53
|
],
|
54
54
|
)
|
55
55
|
def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
56
56
|
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
|
57
57
|
file = YOLO(TASK2MODEL[task]).export(
|
58
|
-
format="openvino",
|
58
|
+
format="openvino",
|
59
|
+
imgsz=32,
|
60
|
+
dynamic=dynamic,
|
61
|
+
int8=int8,
|
62
|
+
half=half,
|
63
|
+
batch=batch,
|
64
|
+
data=TASK2DATA[task],
|
65
|
+
nms=nms,
|
59
66
|
)
|
60
67
|
if WINDOWS:
|
61
68
|
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
@@ -69,7 +76,13 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
|
69
76
|
@pytest.mark.slow
|
70
77
|
@pytest.mark.parametrize(
|
71
78
|
"task, dynamic, int8, half, batch, simplify, nms",
|
72
|
-
|
79
|
+
[ # generate all combinations except for exclusion cases
|
80
|
+
(task, dynamic, int8, half, batch, simplify, nms)
|
81
|
+
for task, dynamic, int8, half, batch, simplify, nms in product(
|
82
|
+
TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]
|
83
|
+
)
|
84
|
+
if not ((int8 and half) or (task == "classify" and nms) or (task == "obb" and nms and not TORCH_1_13))
|
85
|
+
],
|
73
86
|
)
|
74
87
|
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
75
88
|
"""Test YOLO exports to ONNX format with various configurations and parameters."""
|
@@ -82,14 +95,19 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
|
82
95
|
|
83
96
|
@pytest.mark.slow
|
84
97
|
@pytest.mark.parametrize(
|
85
|
-
"task, dynamic, int8, half, batch, nms",
|
98
|
+
"task, dynamic, int8, half, batch, nms",
|
99
|
+
[ # generate all combinations except for exclusion cases
|
100
|
+
(task, dynamic, int8, half, batch, nms)
|
101
|
+
for task, dynamic, int8, half, batch, nms in product(TASKS, [False], [False], [False], [1, 2], [True, False])
|
102
|
+
if not (task == "classify" and nms)
|
103
|
+
],
|
86
104
|
)
|
87
105
|
def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
88
106
|
"""Tests YOLO model exports to TorchScript format under varied configurations."""
|
89
107
|
file = YOLO(TASK2MODEL[task]).export(
|
90
108
|
format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
|
91
109
|
)
|
92
|
-
YOLO(file)([SOURCE] *
|
110
|
+
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
93
111
|
Path(file).unlink() # cleanup
|
94
112
|
|
95
113
|
|
@@ -99,10 +117,10 @@ def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
|
99
117
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
100
118
|
@pytest.mark.parametrize(
|
101
119
|
"task, dynamic, int8, half, batch",
|
102
|
-
[ # generate all combinations
|
120
|
+
[ # generate all combinations except for exclusion cases
|
103
121
|
(task, dynamic, int8, half, batch)
|
104
122
|
for task, dynamic, int8, half, batch in product(TASKS, [False], [True, False], [True, False], [1])
|
105
|
-
if not (int8 and half)
|
123
|
+
if not (int8 and half)
|
106
124
|
],
|
107
125
|
)
|
108
126
|
def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
@@ -124,12 +142,12 @@ def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
|
124
142
|
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
125
143
|
@pytest.mark.parametrize(
|
126
144
|
"task, dynamic, int8, half, batch, nms",
|
127
|
-
[ # generate all combinations
|
145
|
+
[ # generate all combinations except for exclusion cases
|
128
146
|
(task, dynamic, int8, half, batch, nms)
|
129
147
|
for task, dynamic, int8, half, batch, nms in product(
|
130
148
|
TASKS, [False], [True, False], [True, False], [1], [True, False]
|
131
149
|
)
|
132
|
-
if not (int8 and half)
|
150
|
+
if not ((int8 and half) or (task == "classify" and nms))
|
133
151
|
],
|
134
152
|
)
|
135
153
|
def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms):
|
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
@@ -75,7 +75,7 @@ from ultralytics.data.dataset import YOLODataset
|
|
75
75
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
76
76
|
from ultralytics.nn.autobackend import check_class_names, default_class_names
|
77
77
|
from ultralytics.nn.modules import C2f, Classify, Detect, RTDETRDecoder
|
78
|
-
from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
|
78
|
+
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, WorldModel
|
79
79
|
from ultralytics.utils import (
|
80
80
|
ARM64,
|
81
81
|
DEFAULT_CFG,
|
@@ -282,6 +282,7 @@ class Exporter:
|
|
282
282
|
if self.args.int8 and tflite:
|
283
283
|
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
|
284
284
|
if self.args.nms:
|
285
|
+
assert not isinstance(model, ClassificationModel), "'nms=True' is not valid for classification models."
|
285
286
|
if getattr(model, "end2end", False):
|
286
287
|
LOGGER.warning("WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
287
288
|
self.args.nms = False
|
@@ -507,6 +508,7 @@ class Exporter:
|
|
507
508
|
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
|
508
509
|
dynamic = self.args.dynamic
|
509
510
|
if dynamic:
|
511
|
+
self.model.cpu() # dynamic=True only compatible with cpu
|
510
512
|
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
511
513
|
if isinstance(self.model, SegmentationModel):
|
512
514
|
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
|
@@ -518,13 +520,14 @@ class Exporter:
|
|
518
520
|
if self.args.nms and self.model.task == "obb":
|
519
521
|
self.args.opset = opset_version # for NMSModel
|
520
522
|
# OBB error https://github.com/pytorch/pytorch/issues/110859#issuecomment-1757841865
|
521
|
-
|
523
|
+
try:
|
524
|
+
torch.onnx.register_custom_op_symbolic("aten::lift_fresh", lambda g, x: x, opset_version)
|
525
|
+
except RuntimeError: # it will fail if it's already registered
|
526
|
+
pass
|
522
527
|
check_requirements("onnxslim>=0.1.46") # Older versions has bug with OBB
|
523
528
|
|
524
529
|
torch.onnx.export(
|
525
|
-
NMSModel(self.model.
|
526
|
-
if self.args.nms
|
527
|
-
else self.model, # dynamic=True only compatible with cpu
|
530
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
528
531
|
self.im.cpu() if dynamic else self.im,
|
529
532
|
f,
|
530
533
|
verbose=False,
|
@@ -1556,6 +1559,7 @@ class NMSModel(torch.nn.Module):
|
|
1556
1559
|
extra_shape = pred.shape[-1] - (4 + self.model.nc) # extras from Segment, OBB, Pose
|
1557
1560
|
boxes, scores, extras = pred.split([4, self.model.nc, extra_shape], dim=2)
|
1558
1561
|
scores, classes = scores.max(dim=-1)
|
1562
|
+
self.args.max_det = min(pred.shape[1], self.args.max_det) # in case num_anchors < max_det
|
1559
1563
|
# (N, max_det, 4 coords + 1 class score + 1 class label + extra_shape).
|
1560
1564
|
out = torch.zeros(
|
1561
1565
|
boxes.shape[0],
|
@@ -1570,7 +1574,7 @@ class NMSModel(torch.nn.Module):
|
|
1570
1574
|
# TFLite GatherND error if mask is empty
|
1571
1575
|
score *= mask
|
1572
1576
|
# Explicit length otherwise reshape error, hardcoded to `self.args.max_det * 5`
|
1573
|
-
mask = score.topk(self.args.max_det * 5).indices
|
1577
|
+
mask = score.topk(min(self.args.max_det * 5, score.shape[0])).indices
|
1574
1578
|
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
|
1575
1579
|
if not self.obb:
|
1576
1580
|
box = xywh2xyxy(box)
|
@@ -1593,14 +1597,25 @@ class NMSModel(torch.nn.Module):
|
|
1593
1597
|
offbox = nmsbox[:, :end] + cls_offset * multiplier
|
1594
1598
|
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
|
1595
1599
|
nms_fn = (
|
1596
|
-
partial(
|
1600
|
+
partial(
|
1601
|
+
nms_rotated,
|
1602
|
+
use_triu=not (
|
1603
|
+
self.is_tf
|
1604
|
+
or (self.args.opset or 14) < 14
|
1605
|
+
or (self.args.format == "openvino" and self.args.int8) # OpenVINO int8 error with triu
|
1606
|
+
),
|
1607
|
+
)
|
1608
|
+
if self.obb
|
1609
|
+
else nms
|
1597
1610
|
)
|
1598
1611
|
keep = nms_fn(
|
1599
1612
|
torch.cat([nmsbox, extra], dim=-1) if self.obb else nmsbox,
|
1600
1613
|
score,
|
1601
1614
|
self.args.iou,
|
1602
1615
|
)[: self.args.max_det]
|
1603
|
-
dets = torch.cat(
|
1616
|
+
dets = torch.cat(
|
1617
|
+
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
|
1618
|
+
)
|
1604
1619
|
# Zero-pad to max_det size to avoid reshape error
|
1605
1620
|
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
|
1606
1621
|
out[i] = torch.nn.functional.pad(dets, pad)
|
ultralytics/utils/benchmarks.py
CHANGED
@@ -134,7 +134,7 @@ def benchmark(
|
|
134
134
|
|
135
135
|
# Export
|
136
136
|
if format == "-":
|
137
|
-
filename = model.ckpt_path or model.
|
137
|
+
filename = model.pt_path or model.ckpt_path or model.model_name
|
138
138
|
exported_model = model # PyTorch format
|
139
139
|
else:
|
140
140
|
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False)
|
@@ -169,7 +169,7 @@ def benchmark(
|
|
169
169
|
check_yolo(device=device) # print system info
|
170
170
|
df = pd.DataFrame(y, columns=["Format", "Status❔", "Size (MB)", key, "Inference time (ms/im)", "FPS"])
|
171
171
|
|
172
|
-
name =
|
172
|
+
name = model.model_name
|
173
173
|
s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n"
|
174
174
|
LOGGER.info(s)
|
175
175
|
with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.68
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -3,11 +3,11 @@ tests/conftest.py,sha256=DE4-5JqWhsQPyDhU5hHqRevz971yPBQORs3LitLc6Fo,3010
|
|
3
3
|
tests/test_cli.py,sha256=b9pPCu6x_MejPw-G7TI3wxSZnaMmutcXW7aCzMzz4ig,5076
|
4
4
|
tests/test_cuda.py,sha256=inPe0f_L0GutDxYLbe49BPEmjMevaS9XXCWX1Lfjo2g,5971
|
5
5
|
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
6
|
-
tests/test_exports.py,sha256=
|
6
|
+
tests/test_exports.py,sha256=T_z_NUS9URQXv83k5XNLHTuksJ8srtzbZnWuiiQWM98,9260
|
7
7
|
tests/test_integrations.py,sha256=p3DMnnPMKsV0Qm82JVJUIY1UZ67xRgF9E8AaL76TEHE,6154
|
8
8
|
tests/test_python.py,sha256=tW-EFJC2rjl_DvAa8khXGWYdypseQjrLjGHhe2p9r9A,23238
|
9
9
|
tests/test_solutions.py,sha256=aY0G3vNzXGCENG9FD76MfUp7jgzeESPsUvbvQYBUvH0,4205
|
10
|
-
ultralytics/__init__.py,sha256
|
10
|
+
ultralytics/__init__.py,sha256=n5q3ToHB7gVfXmfVkZ0WhUK4hNEtU2DDIumDdhLV43E,709
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
13
|
ultralytics/cfg/__init__.py,sha256=qP44HnFP4QcC5FQz29A-EGTuwdtxXAzPvw_IvCVmiqA,39771
|
@@ -102,7 +102,7 @@ ultralytics/data/loaders.py,sha256=JOwXbz-dxgG2bx0_cQHp-olz5FleoCX8EzrUvZ77vvg,2
|
|
102
102
|
ultralytics/data/split_dota.py,sha256=YI-i2MqdiBt06W67TJnBXQHJrqTnkJDJ3zzoL0UZVro,10733
|
103
103
|
ultralytics/data/utils.py,sha256=K8xyA1xHLpaeluUbqOl5fy6AWZ6nDciCBZJofjxzOuw,33841
|
104
104
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
105
|
-
ultralytics/engine/exporter.py,sha256=
|
105
|
+
ultralytics/engine/exporter.py,sha256=aXUX8GZUw1CBaXYSI7OFwx1tsnl6VkgQQXb_iKi-cs8,76632
|
106
106
|
ultralytics/engine/model.py,sha256=IHeaCwXlbxs6f2gVF5hEQVUiY-3F9Oz1wJNSTPZ-tZ0,53110
|
107
107
|
ultralytics/engine/predictor.py,sha256=jiYDAjupOlRUpPvw9tu7or9PjXtLm-YCRiawANtWxj0,17881
|
108
108
|
ultralytics/engine/results.py,sha256=0u-8GbhLoWBidfoWJ__CIV-_OKxoIRXk2j2OlaWMfd4,75327
|
@@ -206,7 +206,7 @@ ultralytics/trackers/utils/kalman_filter.py,sha256=OBvemZXptgn9v1sgBLvFomCqOWwjI
|
|
206
206
|
ultralytics/trackers/utils/matching.py,sha256=64PKHGoETwXhuZ9udE217hbjJHygLOPaYA66J2qMSno,7130
|
207
207
|
ultralytics/utils/__init__.py,sha256=Ahn7Vn60HIquaBZwLWfWH4bKnm0JcpJXYxnOnY-RH-s,50010
|
208
208
|
ultralytics/utils/autobatch.py,sha256=zc81HlAMArPASEbExty0E_zpITF8PVwin7w-xBFFZ5w,5048
|
209
|
-
ultralytics/utils/benchmarks.py,sha256=
|
209
|
+
ultralytics/utils/benchmarks.py,sha256=48NaNwlHy_ZZOm3QwUxAM1qdVtff2xjw18tpx07H7uQ,25993
|
210
210
|
ultralytics/utils/checks.py,sha256=P543iMxEbXi0WWGrY67GaA7jIsas63K4uCSZpqmVx8M,31017
|
211
211
|
ultralytics/utils/dist.py,sha256=fuiJQEnyyL-SighlI3hUlZPaaSreUl4Q39snF6OhQtI,2386
|
212
212
|
ultralytics/utils/downloads.py,sha256=aUESyJOE2d7mJwbGECHWLR3RF8HVQPSwNH0cfmLGgdI,21999
|
@@ -233,9 +233,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=waZ_bRu0-qBKujTLuqonC2gx2DkgBuVnfq
|
|
233
233
|
ultralytics/utils/callbacks/raytune.py,sha256=TbuZlDb721aIkh-nMozZcP2g_ttUh2cG5LUaXmept6g,728
|
234
234
|
ultralytics/utils/callbacks/tensorboard.py,sha256=JHOEVlNQ5dYJPd4Z-EvqbXowuK5uA0p8wPgyyaIUQs0,4194
|
235
235
|
ultralytics/utils/callbacks/wb.py,sha256=ayhT2y62AcSOacnawshATU0rWrlSFQ77mrGgBdRl3W4,7086
|
236
|
-
ultralytics-8.3.
|
237
|
-
ultralytics-8.3.
|
238
|
-
ultralytics-8.3.
|
239
|
-
ultralytics-8.3.
|
240
|
-
ultralytics-8.3.
|
241
|
-
ultralytics-8.3.
|
236
|
+
ultralytics-8.3.68.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
237
|
+
ultralytics-8.3.68.dist-info/METADATA,sha256=WO4rbpms65Um7GOdhwAt7w7z6fUBBtiikVAvvH0q5lU,35202
|
238
|
+
ultralytics-8.3.68.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
239
|
+
ultralytics-8.3.68.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
240
|
+
ultralytics-8.3.68.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
241
|
+
ultralytics-8.3.68.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|