ultralytics 8.3.65__py3-none-any.whl → 8.3.67__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_exports.py +25 -39
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +1 -6
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +1 -8
- ultralytics/data/augment.py +1 -1
- ultralytics/data/split_dota.py +3 -3
- ultralytics/data/utils.py +1 -1
- ultralytics/engine/exporter.py +126 -28
- ultralytics/engine/results.py +4 -1
- ultralytics/engine/trainer.py +1 -2
- ultralytics/models/nas/val.py +1 -7
- ultralytics/models/yolo/detect/predict.py +40 -8
- ultralytics/models/yolo/detect/val.py +4 -0
- ultralytics/models/yolo/obb/predict.py +17 -24
- ultralytics/models/yolo/obb/val.py +0 -14
- ultralytics/models/yolo/pose/predict.py +18 -25
- ultralytics/models/yolo/pose/val.py +0 -13
- ultralytics/models/yolo/segment/predict.py +45 -26
- ultralytics/models/yolo/segment/val.py +1 -10
- ultralytics/nn/autobackend.py +12 -5
- ultralytics/nn/modules/block.py +1 -3
- ultralytics/nn/modules/conv.py +1 -1
- ultralytics/nn/tasks.py +5 -1
- ultralytics/trackers/track.py +3 -0
- ultralytics/utils/__init__.py +8 -3
- ultralytics/utils/benchmarks.py +4 -4
- ultralytics/utils/ops.py +22 -6
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/METADATA +1 -1
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/RECORD +33 -33
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.65.dist-info → ultralytics-8.3.67.dist-info}/top_level.txt +0 -0
tests/test_exports.py
CHANGED
@@ -11,6 +11,7 @@ from tests import MODEL, SOURCE
|
|
11
11
|
from ultralytics import YOLO
|
12
12
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
13
13
|
from ultralytics.utils import (
|
14
|
+
ARM64,
|
14
15
|
IS_RASPBERRYPI,
|
15
16
|
LINUX,
|
16
17
|
MACOS,
|
@@ -42,23 +43,19 @@ def test_export_openvino():
|
|
42
43
|
@pytest.mark.slow
|
43
44
|
@pytest.mark.skipif(not TORCH_1_13, reason="OpenVINO requires torch>=1.13")
|
44
45
|
@pytest.mark.parametrize(
|
45
|
-
"task, dynamic, int8, half, batch",
|
46
|
+
"task, dynamic, int8, half, batch, nms",
|
46
47
|
[ # generate all combinations but exclude those where both int8 and half are True
|
47
|
-
(task, dynamic, int8, half, batch)
|
48
|
-
for task, dynamic, int8, half, batch in product(
|
48
|
+
(task, dynamic, int8, half, batch, nms)
|
49
|
+
for task, dynamic, int8, half, batch, nms in product(
|
50
|
+
TASKS, [True, False], [True, False], [True, False], [1, 2], [True, False]
|
51
|
+
)
|
49
52
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
50
53
|
],
|
51
54
|
)
|
52
|
-
def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
55
|
+
def test_export_openvino_matrix(task, dynamic, int8, half, batch, nms):
|
53
56
|
"""Test YOLO model exports to OpenVINO under various configuration matrix conditions."""
|
54
57
|
file = YOLO(TASK2MODEL[task]).export(
|
55
|
-
format="openvino",
|
56
|
-
imgsz=32,
|
57
|
-
dynamic=dynamic,
|
58
|
-
int8=int8,
|
59
|
-
half=half,
|
60
|
-
batch=batch,
|
61
|
-
data=TASK2DATA[task],
|
58
|
+
format="openvino", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, data=TASK2DATA[task], nms=nms
|
62
59
|
)
|
63
60
|
if WINDOWS:
|
64
61
|
# Use unique filenames due to Windows file permissions bug possibly due to latent threaded use
|
@@ -71,34 +68,26 @@ def test_export_openvino_matrix(task, dynamic, int8, half, batch):
|
|
71
68
|
|
72
69
|
@pytest.mark.slow
|
73
70
|
@pytest.mark.parametrize(
|
74
|
-
"task, dynamic, int8, half, batch, simplify
|
71
|
+
"task, dynamic, int8, half, batch, simplify, nms",
|
72
|
+
product(TASKS, [True, False], [False], [False], [1, 2], [True, False], [True, False]),
|
75
73
|
)
|
76
|
-
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify):
|
74
|
+
def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
|
77
75
|
"""Test YOLO exports to ONNX format with various configurations and parameters."""
|
78
76
|
file = YOLO(TASK2MODEL[task]).export(
|
79
|
-
format="onnx",
|
80
|
-
imgsz=32,
|
81
|
-
dynamic=dynamic,
|
82
|
-
int8=int8,
|
83
|
-
half=half,
|
84
|
-
batch=batch,
|
85
|
-
simplify=simplify,
|
77
|
+
format="onnx", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, simplify=simplify, nms=nms
|
86
78
|
)
|
87
79
|
YOLO(file)([SOURCE] * batch, imgsz=64 if dynamic else 32) # exported model inference
|
88
80
|
Path(file).unlink() # cleanup
|
89
81
|
|
90
82
|
|
91
83
|
@pytest.mark.slow
|
92
|
-
@pytest.mark.parametrize(
|
93
|
-
|
84
|
+
@pytest.mark.parametrize(
|
85
|
+
"task, dynamic, int8, half, batch, nms", product(TASKS, [False], [False], [False], [1, 2], [True, False])
|
86
|
+
)
|
87
|
+
def test_export_torchscript_matrix(task, dynamic, int8, half, batch, nms):
|
94
88
|
"""Tests YOLO model exports to TorchScript format under varied configurations."""
|
95
89
|
file = YOLO(TASK2MODEL[task]).export(
|
96
|
-
format="torchscript",
|
97
|
-
imgsz=32,
|
98
|
-
dynamic=dynamic,
|
99
|
-
int8=int8,
|
100
|
-
half=half,
|
101
|
-
batch=batch,
|
90
|
+
format="torchscript", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
|
102
91
|
)
|
103
92
|
YOLO(file)([SOURCE] * 3, imgsz=64 if dynamic else 32) # exported model inference at batch=3
|
104
93
|
Path(file).unlink() # cleanup
|
@@ -134,22 +123,19 @@ def test_export_coreml_matrix(task, dynamic, int8, half, batch):
|
|
134
123
|
@pytest.mark.skipif(not checks.IS_PYTHON_MINIMUM_3_10, reason="TFLite export requires Python>=3.10")
|
135
124
|
@pytest.mark.skipif(not LINUX, reason="Test disabled as TF suffers from install conflicts on Windows and macOS")
|
136
125
|
@pytest.mark.parametrize(
|
137
|
-
"task, dynamic, int8, half, batch",
|
126
|
+
"task, dynamic, int8, half, batch, nms",
|
138
127
|
[ # generate all combinations but exclude those where both int8 and half are True
|
139
|
-
(task, dynamic, int8, half, batch)
|
140
|
-
for task, dynamic, int8, half, batch in product(
|
128
|
+
(task, dynamic, int8, half, batch, nms)
|
129
|
+
for task, dynamic, int8, half, batch, nms in product(
|
130
|
+
TASKS, [False], [True, False], [True, False], [1], [True, False]
|
131
|
+
)
|
141
132
|
if not (int8 and half) # exclude cases where both int8 and half are True
|
142
133
|
],
|
143
134
|
)
|
144
|
-
def test_export_tflite_matrix(task, dynamic, int8, half, batch):
|
135
|
+
def test_export_tflite_matrix(task, dynamic, int8, half, batch, nms):
|
145
136
|
"""Test YOLO exports to TFLite format considering various export configurations."""
|
146
137
|
file = YOLO(TASK2MODEL[task]).export(
|
147
|
-
format="tflite",
|
148
|
-
imgsz=32,
|
149
|
-
dynamic=dynamic,
|
150
|
-
int8=int8,
|
151
|
-
half=half,
|
152
|
-
batch=batch,
|
138
|
+
format="tflite", imgsz=32, dynamic=dynamic, int8=int8, half=half, batch=batch, nms=nms
|
153
139
|
)
|
154
140
|
YOLO(file)([SOURCE] * batch, imgsz=32) # exported model inference at batch=3
|
155
141
|
Path(file).unlink() # cleanup
|
@@ -157,7 +143,7 @@ def test_export_tflite_matrix(task, dynamic, int8, half, batch):
|
|
157
143
|
|
158
144
|
@pytest.mark.skipif(not TORCH_1_9, reason="CoreML>=7.2 not supported with PyTorch<=1.8")
|
159
145
|
@pytest.mark.skipif(WINDOWS, reason="CoreML not supported on Windows") # RuntimeError: BlobWriter not loaded
|
160
|
-
@pytest.mark.skipif(
|
146
|
+
@pytest.mark.skipif(LINUX and ARM64, reason="CoreML not supported on aarch64 Linux")
|
161
147
|
@pytest.mark.skipif(checks.IS_PYTHON_3_12, reason="CoreML not supported in Python 3.12")
|
162
148
|
def test_export_coreml():
|
163
149
|
"""Test YOLO exports to CoreML format, optimized for macOS only."""
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
@@ -921,12 +921,7 @@ def entrypoint(debug=""):
|
|
921
921
|
# Task
|
922
922
|
task = overrides.pop("task", None)
|
923
923
|
if task:
|
924
|
-
if task
|
925
|
-
raise ValueError(
|
926
|
-
f"❌ Classification doesn't support 'mode=track'. Valid modes for classification are"
|
927
|
-
f" {MODES - {'track'}}.\n{CLI_HELP_MSG}"
|
928
|
-
)
|
929
|
-
elif task not in TASKS:
|
924
|
+
if task not in TASKS:
|
930
925
|
if task == "track":
|
931
926
|
LOGGER.warning(
|
932
927
|
"WARNING ⚠️ invalid 'task=track', setting 'task=detect' and 'mode=track'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}."
|
@@ -6,18 +6,11 @@
|
|
6
6
|
|
7
7
|
# Parameters
|
8
8
|
nc: 10 # number of classes
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
|
10
|
-
# [depth, width, max_channels]
|
11
|
-
n: [0.33, 0.25, 1024]
|
12
|
-
s: [0.33, 0.50, 1024]
|
13
|
-
m: [0.67, 0.75, 1024]
|
14
|
-
l: [1.00, 1.00, 1024]
|
15
|
-
x: [1.00, 1.25, 1024]
|
16
9
|
|
17
10
|
# ResNet18 backbone
|
18
11
|
backbone:
|
19
12
|
# [from, repeats, module, args]
|
20
|
-
- [-1, 1, TorchVision, [512,
|
13
|
+
- [-1, 1, TorchVision, [512, resnet18, DEFAULT, True, 2]] # truncate two layers from the end
|
21
14
|
|
22
15
|
# YOLO11n head
|
23
16
|
head:
|
ultralytics/data/augment.py
CHANGED
@@ -1850,7 +1850,7 @@ class Albumentations:
|
|
1850
1850
|
A.CLAHE(p=0.01),
|
1851
1851
|
A.RandomBrightnessContrast(p=0.0),
|
1852
1852
|
A.RandomGamma(p=0.0),
|
1853
|
-
A.ImageCompression(
|
1853
|
+
A.ImageCompression(quality_range=(75, 100), p=0.0),
|
1854
1854
|
]
|
1855
1855
|
|
1856
1856
|
# Compose transforms
|
ultralytics/data/split_dota.py
CHANGED
@@ -8,9 +8,9 @@ from pathlib import Path
|
|
8
8
|
import cv2
|
9
9
|
import numpy as np
|
10
10
|
from PIL import Image
|
11
|
-
from tqdm import tqdm
|
12
11
|
|
13
12
|
from ultralytics.data.utils import exif_size, img2label_paths
|
13
|
+
from ultralytics.utils import TQDM
|
14
14
|
from ultralytics.utils.checks import check_requirements
|
15
15
|
|
16
16
|
|
@@ -221,7 +221,7 @@ def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=(1024
|
|
221
221
|
lb_dir.mkdir(parents=True, exist_ok=True)
|
222
222
|
|
223
223
|
annos = load_yolo_dota(data_root, split=split)
|
224
|
-
for anno in
|
224
|
+
for anno in TQDM(annos, total=len(annos), desc=split):
|
225
225
|
windows = get_windows(anno["ori_size"], crop_sizes, gaps)
|
226
226
|
window_objs = get_window_obj(anno, windows)
|
227
227
|
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
|
@@ -281,7 +281,7 @@ def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=(1.0,)):
|
|
281
281
|
im_dir = Path(data_root) / "images" / "test"
|
282
282
|
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root."
|
283
283
|
im_files = glob(str(im_dir / "*"))
|
284
|
-
for im_file in
|
284
|
+
for im_file in TQDM(im_files, total=len(im_files), desc="test"):
|
285
285
|
w, h = exif_size(Image.open(im_file))
|
286
286
|
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps)
|
287
287
|
im = cv2.imread(im_file)
|
ultralytics/data/utils.py
CHANGED
@@ -136,7 +136,7 @@ def verify_image_label(args):
|
|
136
136
|
|
137
137
|
# All labels
|
138
138
|
max_cls = lb[:, 0].max() # max label count
|
139
|
-
assert max_cls
|
139
|
+
assert max_cls < num_cls, (
|
140
140
|
f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. "
|
141
141
|
f"Possible class labels are 0-{num_cls - 1}"
|
142
142
|
)
|
ultralytics/engine/exporter.py
CHANGED
@@ -103,7 +103,7 @@ from ultralytics.utils.checks import (
|
|
103
103
|
)
|
104
104
|
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
|
105
105
|
from ultralytics.utils.files import file_size, spaces_in_path
|
106
|
-
from ultralytics.utils.ops import Profile
|
106
|
+
from ultralytics.utils.ops import Profile, nms_rotated, xywh2xyxy
|
107
107
|
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
|
108
108
|
|
109
109
|
|
@@ -111,16 +111,16 @@ def export_formats():
|
|
111
111
|
"""Ultralytics YOLO export formats."""
|
112
112
|
x = [
|
113
113
|
["PyTorch", "-", ".pt", True, True, []],
|
114
|
-
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize"]],
|
115
|
-
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify"]],
|
116
|
-
["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8"]],
|
117
|
-
["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify"]],
|
114
|
+
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize", "nms"]],
|
115
|
+
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify", "nms"]],
|
116
|
+
["OpenVINO", "openvino", "_openvino_model", True, False, ["batch", "dynamic", "half", "int8", "nms"]],
|
117
|
+
["TensorRT", "engine", ".engine", False, True, ["batch", "dynamic", "half", "int8", "simplify", "nms"]],
|
118
118
|
["CoreML", "coreml", ".mlpackage", True, False, ["batch", "half", "int8", "nms"]],
|
119
|
-
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras"]],
|
119
|
+
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras", "nms"]],
|
120
120
|
["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
|
121
|
-
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8"]],
|
121
|
+
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms"]],
|
122
122
|
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
|
123
|
-
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8"]],
|
123
|
+
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8", "nms"]],
|
124
124
|
["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
|
125
125
|
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
|
126
126
|
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
|
@@ -281,6 +281,11 @@ class Exporter:
|
|
281
281
|
)
|
282
282
|
if self.args.int8 and tflite:
|
283
283
|
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
|
284
|
+
if self.args.nms:
|
285
|
+
if getattr(model, "end2end", False):
|
286
|
+
LOGGER.warning("WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
287
|
+
self.args.nms = False
|
288
|
+
self.args.conf = self.args.conf or 0.25 # set conf default value for nms export
|
284
289
|
if edgetpu:
|
285
290
|
if not LINUX:
|
286
291
|
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler")
|
@@ -344,8 +349,8 @@ class Exporter:
|
|
344
349
|
)
|
345
350
|
|
346
351
|
y = None
|
347
|
-
for _ in range(2):
|
348
|
-
y = model(im)
|
352
|
+
for _ in range(2): # dry runs
|
353
|
+
y = NMSModel(model, self.args)(im) if self.args.nms and not coreml else model(im)
|
349
354
|
if self.args.half and onnx and self.device.type != "cpu":
|
350
355
|
im, model = im.half(), model.half() # to FP16
|
351
356
|
|
@@ -476,7 +481,7 @@ class Exporter:
|
|
476
481
|
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
|
477
482
|
f = self.file.with_suffix(".torchscript")
|
478
483
|
|
479
|
-
ts = torch.jit.trace(self.model, self.im, strict=False)
|
484
|
+
ts = torch.jit.trace(NMSModel(self.model, self.args) if self.args.nms else self.model, self.im, strict=False)
|
480
485
|
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
|
481
486
|
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
482
487
|
LOGGER.info(f"{prefix} optimizing for mobile...")
|
@@ -499,7 +504,6 @@ class Exporter:
|
|
499
504
|
opset_version = self.args.opset or get_latest_opset()
|
500
505
|
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset_version}...")
|
501
506
|
f = str(self.file.with_suffix(".onnx"))
|
502
|
-
|
503
507
|
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
|
504
508
|
dynamic = self.args.dynamic
|
505
509
|
if dynamic:
|
@@ -509,9 +513,18 @@ class Exporter:
|
|
509
513
|
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
|
510
514
|
elif isinstance(self.model, DetectionModel):
|
511
515
|
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
|
516
|
+
if self.args.nms: # only batch size is dynamic with NMS
|
517
|
+
dynamic["output0"].pop(2)
|
518
|
+
if self.args.nms and self.model.task == "obb":
|
519
|
+
self.args.opset = opset_version # for NMSModel
|
520
|
+
# OBB error https://github.com/pytorch/pytorch/issues/110859#issuecomment-1757841865
|
521
|
+
torch.onnx.register_custom_op_symbolic("aten::lift_fresh", lambda g, x: x, opset_version)
|
522
|
+
check_requirements("onnxslim>=0.1.46") # Older versions has bug with OBB
|
512
523
|
|
513
524
|
torch.onnx.export(
|
514
|
-
self.model.cpu() if dynamic else self.model,
|
525
|
+
NMSModel(self.model.cpu() if dynamic else self.model, self.args)
|
526
|
+
if self.args.nms
|
527
|
+
else self.model, # dynamic=True only compatible with cpu
|
515
528
|
self.im.cpu() if dynamic else self.im,
|
516
529
|
f,
|
517
530
|
verbose=False,
|
@@ -553,7 +566,7 @@ class Exporter:
|
|
553
566
|
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
|
554
567
|
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
|
555
568
|
ov_model = ov.convert_model(
|
556
|
-
self.model,
|
569
|
+
NMSModel(self.model, self.args) if self.args.nms else self.model,
|
557
570
|
input=None if self.args.dynamic else [self.im.shape],
|
558
571
|
example_input=self.im,
|
559
572
|
)
|
@@ -736,9 +749,6 @@ class Exporter:
|
|
736
749
|
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
|
737
750
|
if f.is_dir():
|
738
751
|
shutil.rmtree(f)
|
739
|
-
if self.args.nms and getattr(self.model, "end2end", False):
|
740
|
-
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is not available for end2end models. Forcing 'nms=False'.")
|
741
|
-
self.args.nms = False
|
742
752
|
|
743
753
|
bias = [0.0, 0.0, 0.0]
|
744
754
|
scale = 1 / 255
|
@@ -1159,21 +1169,19 @@ class Exporter:
|
|
1159
1169
|
from rknn.api import RKNN
|
1160
1170
|
|
1161
1171
|
f, _ = self.export_onnx()
|
1162
|
-
|
1163
|
-
platform = self.args.name
|
1164
|
-
|
1165
1172
|
export_path = Path(f"{Path(f).stem}_rknn_model")
|
1166
1173
|
export_path.mkdir(exist_ok=True)
|
1167
1174
|
|
1168
1175
|
rknn = RKNN(verbose=False)
|
1169
|
-
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=
|
1170
|
-
|
1171
|
-
|
1172
|
-
f = f.replace(".onnx", f"-{
|
1173
|
-
|
1176
|
+
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=self.args.name)
|
1177
|
+
rknn.load_onnx(model=f)
|
1178
|
+
rknn.build(do_quantization=False) # TODO: Add quantization support
|
1179
|
+
f = f.replace(".onnx", f"-{self.args.name}.rknn")
|
1180
|
+
rknn.export_rknn(f"{export_path / f}")
|
1174
1181
|
yaml_save(export_path / "metadata.yaml", self.metadata)
|
1175
1182
|
return export_path, None
|
1176
1183
|
|
1184
|
+
@try_export
|
1177
1185
|
def export_imx(self, prefix=colorstr("IMX:")):
|
1178
1186
|
"""YOLO IMX export."""
|
1179
1187
|
gptq = False
|
@@ -1191,6 +1199,8 @@ class Exporter:
|
|
1191
1199
|
import onnx
|
1192
1200
|
from sony_custom_layers.pytorch.object_detection.nms import multiclass_nms
|
1193
1201
|
|
1202
|
+
LOGGER.info(f"\n{prefix} starting export with model_compression_toolkit {mct.__version__}...")
|
1203
|
+
|
1194
1204
|
try:
|
1195
1205
|
out = subprocess.run(
|
1196
1206
|
["java", "--version"], check=True, capture_output=True
|
@@ -1286,7 +1296,7 @@ class Exporter:
|
|
1286
1296
|
|
1287
1297
|
f = Path(str(self.file).replace(self.file.suffix, "_imx_model"))
|
1288
1298
|
f.mkdir(exist_ok=True)
|
1289
|
-
onnx_model = f / Path(str(self.file).replace(self.file.suffix, "_imx.onnx")) # js dir
|
1299
|
+
onnx_model = f / Path(str(self.file.name).replace(self.file.suffix, "_imx.onnx")) # js dir
|
1290
1300
|
mct.exporter.pytorch_export_model(
|
1291
1301
|
model=quant_model, save_model_path=onnx_model, repr_dataset=representative_dataset_gen
|
1292
1302
|
)
|
@@ -1438,8 +1448,8 @@ class Exporter:
|
|
1438
1448
|
nms.coordinatesOutputFeatureName = "coordinates"
|
1439
1449
|
nms.iouThresholdInputFeatureName = "iouThreshold"
|
1440
1450
|
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
|
1441
|
-
nms.iouThreshold =
|
1442
|
-
nms.confidenceThreshold =
|
1451
|
+
nms.iouThreshold = self.args.iou
|
1452
|
+
nms.confidenceThreshold = self.args.conf
|
1443
1453
|
nms.pickTop.perClass = True
|
1444
1454
|
nms.stringClassLabels.vector.extend(names.values())
|
1445
1455
|
nms_model = ct.models.MLModel(nms_spec)
|
@@ -1507,3 +1517,91 @@ class IOSDetectModel(torch.nn.Module):
|
|
1507
1517
|
"""Normalize predictions of object detection model with input size-dependent factors."""
|
1508
1518
|
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
1509
1519
|
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
1520
|
+
|
1521
|
+
|
1522
|
+
class NMSModel(torch.nn.Module):
|
1523
|
+
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
|
1524
|
+
|
1525
|
+
def __init__(self, model, args):
|
1526
|
+
"""
|
1527
|
+
Initialize the NMSModel.
|
1528
|
+
|
1529
|
+
Args:
|
1530
|
+
model (torch.nn.module): The model to wrap with NMS postprocessing.
|
1531
|
+
args (Namespace): The export arguments.
|
1532
|
+
"""
|
1533
|
+
super().__init__()
|
1534
|
+
self.model = model
|
1535
|
+
self.args = args
|
1536
|
+
self.obb = model.task == "obb"
|
1537
|
+
self.is_tf = self.args.format in frozenset({"saved_model", "tflite", "tfjs"})
|
1538
|
+
|
1539
|
+
def forward(self, x):
|
1540
|
+
"""
|
1541
|
+
Performs inference with NMS post-processing. Supports Detect, Segment, OBB and Pose.
|
1542
|
+
|
1543
|
+
Args:
|
1544
|
+
x (torch.tensor): The preprocessed tensor with shape (N, 3, H, W).
|
1545
|
+
|
1546
|
+
Returns:
|
1547
|
+
out (torch.tensor): The post-processed results with shape (N, max_det, 4 + 2 + extra_shape).
|
1548
|
+
"""
|
1549
|
+
from functools import partial
|
1550
|
+
|
1551
|
+
from torchvision.ops import nms
|
1552
|
+
|
1553
|
+
preds = self.model(x)
|
1554
|
+
pred = preds[0] if isinstance(preds, tuple) else preds
|
1555
|
+
pred = pred.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
|
1556
|
+
extra_shape = pred.shape[-1] - (4 + self.model.nc) # extras from Segment, OBB, Pose
|
1557
|
+
boxes, scores, extras = pred.split([4, self.model.nc, extra_shape], dim=2)
|
1558
|
+
scores, classes = scores.max(dim=-1)
|
1559
|
+
# (N, max_det, 4 coords + 1 class score + 1 class label + extra_shape).
|
1560
|
+
out = torch.zeros(
|
1561
|
+
boxes.shape[0],
|
1562
|
+
self.args.max_det,
|
1563
|
+
boxes.shape[-1] + 2 + extra_shape,
|
1564
|
+
device=boxes.device,
|
1565
|
+
dtype=boxes.dtype,
|
1566
|
+
)
|
1567
|
+
for i, (box, cls, score, extra) in enumerate(zip(boxes, classes, scores, extras)):
|
1568
|
+
mask = score > self.args.conf
|
1569
|
+
if self.is_tf:
|
1570
|
+
# TFLite GatherND error if mask is empty
|
1571
|
+
score *= mask
|
1572
|
+
# Explicit length otherwise reshape error, hardcoded to `self.args.max_det * 5`
|
1573
|
+
mask = score.topk(self.args.max_det * 5).indices
|
1574
|
+
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
|
1575
|
+
if not self.obb:
|
1576
|
+
box = xywh2xyxy(box)
|
1577
|
+
if self.is_tf:
|
1578
|
+
# TFlite bug returns less boxes
|
1579
|
+
box = torch.nn.functional.pad(box, (0, 0, 0, mask.shape[0] - box.shape[0]))
|
1580
|
+
nmsbox = box.clone()
|
1581
|
+
# `8` is the minimum value experimented to get correct NMS results for obb
|
1582
|
+
multiplier = 8 if self.obb else 1
|
1583
|
+
# Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
|
1584
|
+
if self.args.format == "tflite": # TFLite is already normalized
|
1585
|
+
nmsbox *= multiplier
|
1586
|
+
else:
|
1587
|
+
nmsbox = multiplier * nmsbox / torch.tensor(x.shape[2:], device=box.device, dtype=box.dtype).max()
|
1588
|
+
if not self.args.agnostic_nms: # class-specific NMS
|
1589
|
+
end = 2 if self.obb else 4
|
1590
|
+
# fully explicit expansion otherwise reshape error
|
1591
|
+
# large max_wh causes issues when quantizing
|
1592
|
+
cls_offset = cls.reshape(-1, 1).expand(nmsbox.shape[0], end)
|
1593
|
+
offbox = nmsbox[:, :end] + cls_offset * multiplier
|
1594
|
+
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
|
1595
|
+
nms_fn = (
|
1596
|
+
partial(nms_rotated, use_triu=not (self.is_tf or (self.args.opset or 14) < 14)) if self.obb else nms
|
1597
|
+
)
|
1598
|
+
keep = nms_fn(
|
1599
|
+
torch.cat([nmsbox, extra], dim=-1) if self.obb else nmsbox,
|
1600
|
+
score,
|
1601
|
+
self.args.iou,
|
1602
|
+
)[: self.args.max_det]
|
1603
|
+
dets = torch.cat([box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1), extra[keep]], dim=-1)
|
1604
|
+
# Zero-pad to max_det size to avoid reshape error
|
1605
|
+
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
|
1606
|
+
out[i] = torch.nn.functional.pad(dets, pad)
|
1607
|
+
return (out, preds[1]) if self.model.task == "segment" else out
|
ultralytics/engine/results.py
CHANGED
@@ -305,7 +305,7 @@ class Results(SimpleClass):
|
|
305
305
|
if v is not None:
|
306
306
|
return len(v)
|
307
307
|
|
308
|
-
def update(self, boxes=None, masks=None, probs=None, obb=None):
|
308
|
+
def update(self, boxes=None, masks=None, probs=None, obb=None, keypoints=None):
|
309
309
|
"""
|
310
310
|
Updates the Results object with new detection data.
|
311
311
|
|
@@ -318,6 +318,7 @@ class Results(SimpleClass):
|
|
318
318
|
masks (torch.Tensor | None): A tensor of shape (N, H, W) containing segmentation masks.
|
319
319
|
probs (torch.Tensor | None): A tensor of shape (num_classes,) containing class probabilities.
|
320
320
|
obb (torch.Tensor | None): A tensor of shape (N, 5) containing oriented bounding box coordinates.
|
321
|
+
keypoints (torch.Tensor | None): A tensor of shape (N, 17, 3) containing keypoints.
|
321
322
|
|
322
323
|
Examples:
|
323
324
|
>>> results = model("image.jpg")
|
@@ -332,6 +333,8 @@ class Results(SimpleClass):
|
|
332
333
|
self.probs = probs
|
333
334
|
if obb is not None:
|
334
335
|
self.obb = OBB(obb, self.orig_shape)
|
336
|
+
if keypoints is not None:
|
337
|
+
self.keypoints = Keypoints(keypoints, self.orig_shape)
|
335
338
|
|
336
339
|
def _apply(self, fn, *args, **kwargs):
|
337
340
|
"""
|
ultralytics/engine/trainer.py
CHANGED
@@ -271,7 +271,6 @@ class BaseTrainer:
|
|
271
271
|
)
|
272
272
|
if world_size > 1:
|
273
273
|
self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK], find_unused_parameters=True)
|
274
|
-
self.set_model_attributes() # set again after DDP wrapper
|
275
274
|
|
276
275
|
# Check imgsz
|
277
276
|
gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride)
|
@@ -782,7 +781,7 @@ class BaseTrainer:
|
|
782
781
|
f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and "
|
783
782
|
f"determining best 'optimizer', 'lr0' and 'momentum' automatically... "
|
784
783
|
)
|
785
|
-
nc =
|
784
|
+
nc = self.data.get("nc", 10) # number of classes
|
786
785
|
lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places
|
787
786
|
name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
|
788
787
|
self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam
|
ultralytics/models/nas/val.py
CHANGED
@@ -38,13 +38,7 @@ class NASValidator(DetectionValidator):
|
|
38
38
|
"""Apply Non-maximum suppression to prediction outputs."""
|
39
39
|
boxes = ops.xyxy2xywh(preds_in[0][0])
|
40
40
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
41
|
-
return
|
41
|
+
return super().postprocess(
|
42
42
|
preds,
|
43
|
-
self.args.conf,
|
44
|
-
self.args.iou,
|
45
|
-
labels=self.lb,
|
46
|
-
multi_label=False,
|
47
|
-
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
48
|
-
max_det=self.args.max_det,
|
49
43
|
max_time_img=0.5,
|
50
44
|
)
|
@@ -20,22 +20,54 @@ class DetectionPredictor(BasePredictor):
|
|
20
20
|
```
|
21
21
|
"""
|
22
22
|
|
23
|
-
def postprocess(self, preds, img, orig_imgs):
|
23
|
+
def postprocess(self, preds, img, orig_imgs, **kwargs):
|
24
24
|
"""Post-processes predictions and returns a list of Results objects."""
|
25
25
|
preds = ops.non_max_suppression(
|
26
26
|
preds,
|
27
27
|
self.args.conf,
|
28
28
|
self.args.iou,
|
29
|
-
|
29
|
+
self.args.classes,
|
30
|
+
self.args.agnostic_nms,
|
30
31
|
max_det=self.args.max_det,
|
31
|
-
|
32
|
+
nc=len(self.model.names),
|
33
|
+
end2end=getattr(self.model, "end2end", False),
|
34
|
+
rotated=self.args.task == "obb",
|
32
35
|
)
|
33
36
|
|
34
37
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
35
38
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
36
39
|
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
40
|
+
return self.construct_results(preds, img, orig_imgs, **kwargs)
|
41
|
+
|
42
|
+
def construct_results(self, preds, img, orig_imgs):
|
43
|
+
"""
|
44
|
+
Constructs a list of result objects from the predictions.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
preds (List[torch.Tensor]): List of predicted bounding boxes and scores.
|
48
|
+
img (torch.Tensor): The image after preprocessing.
|
49
|
+
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
(list): List of result objects containing the original images, image paths, class names, and bounding boxes.
|
53
|
+
"""
|
54
|
+
return [
|
55
|
+
self.construct_result(pred, img, orig_img, img_path)
|
56
|
+
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0])
|
57
|
+
]
|
58
|
+
|
59
|
+
def construct_result(self, pred, img, orig_img, img_path):
|
60
|
+
"""
|
61
|
+
Constructs the result object from the prediction.
|
62
|
+
|
63
|
+
Args:
|
64
|
+
pred (torch.Tensor): The predicted bounding boxes and scores.
|
65
|
+
img (torch.Tensor): The image after preprocessing.
|
66
|
+
orig_img (np.ndarray): The original image before preprocessing.
|
67
|
+
img_path (str): The path to the original image.
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
(Results): The result object containing the original image, image path, class names, and bounding boxes.
|
71
|
+
"""
|
72
|
+
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
73
|
+
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])
|
@@ -78,6 +78,7 @@ class DetectionValidator(BaseValidator):
|
|
78
78
|
self.args.save_json |= self.args.val and (self.is_coco or self.is_lvis) and not self.training # run final val
|
79
79
|
self.names = model.names
|
80
80
|
self.nc = len(model.names)
|
81
|
+
self.end2end = getattr(model, "end2end", False)
|
81
82
|
self.metrics.names = self.names
|
82
83
|
self.metrics.plot = self.args.plots
|
83
84
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
@@ -96,9 +97,12 @@ class DetectionValidator(BaseValidator):
|
|
96
97
|
self.args.conf,
|
97
98
|
self.args.iou,
|
98
99
|
labels=self.lb,
|
100
|
+
nc=self.nc,
|
99
101
|
multi_label=True,
|
100
102
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
101
103
|
max_det=self.args.max_det,
|
104
|
+
end2end=self.end2end,
|
105
|
+
rotated=self.args.task == "obb",
|
102
106
|
)
|
103
107
|
|
104
108
|
def _prepare_batch(self, si, batch):
|