ultralytics 8.3.64__py3-none-any.whl → 8.3.66__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. tests/test_exports.py +3 -2
  2. ultralytics/__init__.py +1 -1
  3. ultralytics/cfg/__init__.py +97 -94
  4. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +1 -8
  5. ultralytics/data/augment.py +1 -1
  6. ultralytics/data/build.py +5 -1
  7. ultralytics/data/split_dota.py +3 -3
  8. ultralytics/data/utils.py +1 -1
  9. ultralytics/engine/exporter.py +51 -18
  10. ultralytics/engine/model.py +5 -5
  11. ultralytics/engine/predictor.py +16 -14
  12. ultralytics/engine/results.py +1 -1
  13. ultralytics/engine/trainer.py +3 -4
  14. ultralytics/engine/tuner.py +2 -2
  15. ultralytics/engine/validator.py +16 -14
  16. ultralytics/models/yolo/classify/predict.py +1 -1
  17. ultralytics/models/yolo/classify/train.py +1 -1
  18. ultralytics/models/yolo/classify/val.py +1 -1
  19. ultralytics/models/yolo/obb/predict.py +1 -1
  20. ultralytics/models/yolo/obb/train.py +1 -1
  21. ultralytics/models/yolo/obb/val.py +1 -1
  22. ultralytics/models/yolo/pose/predict.py +1 -1
  23. ultralytics/models/yolo/pose/train.py +1 -1
  24. ultralytics/models/yolo/pose/val.py +1 -1
  25. ultralytics/models/yolo/segment/predict.py +1 -1
  26. ultralytics/models/yolo/segment/train.py +1 -1
  27. ultralytics/models/yolo/segment/val.py +1 -1
  28. ultralytics/nn/autobackend.py +34 -4
  29. ultralytics/nn/modules/block.py +1 -3
  30. ultralytics/nn/modules/conv.py +1 -1
  31. ultralytics/nn/tasks.py +61 -53
  32. ultralytics/solutions/ai_gym.py +1 -1
  33. ultralytics/solutions/heatmap.py +1 -1
  34. ultralytics/solutions/parking_management.py +1 -1
  35. ultralytics/solutions/solutions.py +1 -1
  36. ultralytics/trackers/track.py +3 -0
  37. ultralytics/trackers/utils/matching.py +2 -2
  38. ultralytics/utils/__init__.py +17 -3
  39. ultralytics/utils/benchmarks.py +29 -23
  40. ultralytics/utils/checks.py +21 -2
  41. ultralytics/utils/downloads.py +1 -1
  42. ultralytics/utils/instance.py +1 -1
  43. ultralytics/utils/loss.py +2 -2
  44. ultralytics/utils/tuner.py +2 -2
  45. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/METADATA +1 -2
  46. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/RECORD +50 -50
  47. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/LICENSE +0 -0
  48. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/WHEEL +0 -0
  49. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/entry_points.txt +0 -0
  50. {ultralytics-8.3.64.dist-info → ultralytics-8.3.66.dist-info}/top_level.txt +0 -0
@@ -4,25 +4,26 @@ Benchmark a YOLO model formats for speed and accuracy.
4
4
 
5
5
  Usage:
6
6
  from ultralytics.utils.benchmarks import ProfileModels, benchmark
7
- ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
8
- benchmark(model='yolov8n.pt', imgsz=160)
7
+ ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).profile()
8
+ benchmark(model='yolo11n.pt', imgsz=160)
9
9
 
10
10
  Format | `format=argument` | Model
11
11
  --- | --- | ---
12
- PyTorch | - | yolov8n.pt
13
- TorchScript | `torchscript` | yolov8n.torchscript
14
- ONNX | `onnx` | yolov8n.onnx
15
- OpenVINO | `openvino` | yolov8n_openvino_model/
16
- TensorRT | `engine` | yolov8n.engine
17
- CoreML | `coreml` | yolov8n.mlpackage
18
- TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
19
- TensorFlow GraphDef | `pb` | yolov8n.pb
20
- TensorFlow Lite | `tflite` | yolov8n.tflite
21
- TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
22
- TensorFlow.js | `tfjs` | yolov8n_web_model/
23
- PaddlePaddle | `paddle` | yolov8n_paddle_model/
24
- MNN | `mnn` | yolov8n.mnn
25
- NCNN | `ncnn` | yolov8n_ncnn_model/
12
+ PyTorch | - | yolo11n.pt
13
+ TorchScript | `torchscript` | yolo11n.torchscript
14
+ ONNX | `onnx` | yolo11n.onnx
15
+ OpenVINO | `openvino` | yolo11n_openvino_model/
16
+ TensorRT | `engine` | yolo11n.engine
17
+ CoreML | `coreml` | yolo11n.mlpackage
18
+ TensorFlow SavedModel | `saved_model` | yolo11n_saved_model/
19
+ TensorFlow GraphDef | `pb` | yolo11n.pb
20
+ TensorFlow Lite | `tflite` | yolo11n.tflite
21
+ TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
22
+ TensorFlow.js | `tfjs` | yolo11n_web_model/
23
+ PaddlePaddle | `paddle` | yolo11n_paddle_model/
24
+ MNN | `mnn` | yolo11n.mnn
25
+ NCNN | `ncnn` | yolo11n_ncnn_model/
26
+ RKNN | `rknn` | yolo11n_rknn_model/
26
27
  """
27
28
 
28
29
  import glob
@@ -40,8 +41,8 @@ import yaml
40
41
  from ultralytics import YOLO, YOLOWorld
41
42
  from ultralytics.cfg import TASK2DATA, TASK2METRIC
42
43
  from ultralytics.engine.exporter import export_formats
43
- from ultralytics.utils import ARM64, ASSETS, IS_JETSON, IS_RASPBERRYPI, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR
44
- from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo
44
+ from ultralytics.utils import ARM64, ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR
45
+ from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo, is_rockchip
45
46
  from ultralytics.utils.downloads import safe_download
46
47
  from ultralytics.utils.files import file_size
47
48
  from ultralytics.utils.torch_utils import get_cpu_info, select_device
@@ -99,9 +100,9 @@ def benchmark(
99
100
  elif i == 9: # Edge TPU
100
101
  assert LINUX and not ARM64, "Edge TPU export only supported on non-aarch64 Linux"
101
102
  elif i in {5, 10}: # CoreML and TF.js
102
- assert MACOS or LINUX, "CoreML and TF.js export only supported on macOS and Linux"
103
- assert not IS_RASPBERRYPI, "CoreML and TF.js export not supported on Raspberry Pi"
104
- assert not IS_JETSON, "CoreML and TF.js export not supported on NVIDIA Jetson"
103
+ assert MACOS or (LINUX and not ARM64), (
104
+ "CoreML and TF.js export only supported on macOS and non-aarch64 Linux"
105
+ )
105
106
  if i in {5}: # CoreML
106
107
  assert not IS_PYTHON_3_12, "CoreML not supported on Python 3.12"
107
108
  if i in {6, 7, 8}: # TF SavedModel, TF GraphDef, and TFLite
@@ -121,6 +122,11 @@ def benchmark(
121
122
  assert not isinstance(model, YOLOWorld), "YOLOWorldv2 IMX exports not supported"
122
123
  assert model.task == "detect", "IMX only supported for detection task"
123
124
  assert "C2f" in model.__str__(), "IMX only supported for YOLOv8"
125
+ if i == 15: # RKNN
126
+ assert not isinstance(model, YOLOWorld), "YOLOWorldv2 RKNN exports not supported yet"
127
+ assert not is_end2end, "End-to-end models not supported by RKNN yet"
128
+ assert LINUX, "RKNN only supported on Linux"
129
+ assert not is_rockchip(), "RKNN Inference only supported on Rockchip devices"
124
130
  if "cpu" in device.type:
125
131
  assert cpu, "inference not supported on CPU"
126
132
  if "cuda" in device.type:
@@ -334,7 +340,7 @@ class ProfileModels:
334
340
  Examples:
335
341
  Profile models and print results
336
342
  >>> from ultralytics.utils.benchmarks import ProfileModels
337
- >>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
343
+ >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
338
344
  >>> profiler.profile()
339
345
  """
340
346
 
@@ -368,7 +374,7 @@ class ProfileModels:
368
374
  Examples:
369
375
  Initialize and profile models
370
376
  >>> from ultralytics.utils.benchmarks import ProfileModels
371
- >>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
377
+ >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
372
378
  >>> profiler.profile()
373
379
  """
374
380
  self.paths = paths
@@ -19,6 +19,7 @@ import requests
19
19
  import torch
20
20
 
21
21
  from ultralytics.utils import (
22
+ ARM64,
22
23
  ASSETS,
23
24
  AUTOINSTALL,
24
25
  IS_COLAB,
@@ -30,6 +31,7 @@ from ultralytics.utils import (
30
31
  MACOS,
31
32
  ONLINE,
32
33
  PYTHON_VERSION,
34
+ RKNN_CHIPS,
33
35
  ROOT,
34
36
  TORCHVISION_VERSION,
35
37
  USER_CONFIG_DIR,
@@ -487,10 +489,10 @@ def check_yolov5u_filename(file: str, verbose: bool = True):
487
489
  return file
488
490
 
489
491
 
490
- def check_model_file_from_stem(model="yolov8n"):
492
+ def check_model_file_from_stem(model="yolo11n"):
491
493
  """Return a model filename from a valid model stem."""
492
494
  if model and not Path(model).suffix and Path(model).stem in downloads.GITHUB_ASSETS_STEMS:
493
- return Path(model).with_suffix(".pt") # add suffix, i.e. yolov8n -> yolov8n.pt
495
+ return Path(model).with_suffix(".pt") # add suffix, i.e. yolo11n -> yolo11n.pt
494
496
  else:
495
497
  return model
496
498
 
@@ -782,6 +784,21 @@ def cuda_is_available() -> bool:
782
784
  return cuda_device_count() > 0
783
785
 
784
786
 
787
+ def is_rockchip():
788
+ """Check if the current environment is running on a Rockchip SoC."""
789
+ if LINUX and ARM64:
790
+ try:
791
+ with open("/proc/device-tree/compatible") as f:
792
+ dev_str = f.read()
793
+ *_, soc = dev_str.split(",")
794
+ if soc.replace("\x00", "") in RKNN_CHIPS:
795
+ return True
796
+ except OSError:
797
+ return False
798
+ else:
799
+ return False
800
+
801
+
785
802
  def is_sudo_available() -> bool:
786
803
  """
787
804
  Check if the sudo command is available in the environment.
@@ -798,5 +815,7 @@ def is_sudo_available() -> bool:
798
815
  # Run checks and define constants
799
816
  check_python("3.8", hard=False, verbose=True) # check python version
800
817
  check_torchvision() # check torch-torchvision compatibility
818
+
819
+ # Define constants
801
820
  IS_PYTHON_MINIMUM_3_10 = check_python("3.10", hard=False)
802
821
  IS_PYTHON_3_12 = PYTHON_VERSION.startswith("3.12")
@@ -405,7 +405,7 @@ def get_github_assets(repo="ultralytics/assets", version="latest", retry=False):
405
405
  LOGGER.warning(f"⚠️ GitHub assets check failure for {url}: {r.status_code} {r.reason}")
406
406
  return "", []
407
407
  data = r.json()
408
- return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolov8n.pt', 'yolov8s.pt', ...]
408
+ return data["tag_name"], [x["name"] for x in data["assets"]] # tag, assets i.e. ['yolo11n.pt', 'yolov8s.pt', ...]
409
409
 
410
410
 
411
411
  def attempt_download_asset(file, repo="ultralytics/assets", release="v8.3.0", **kwargs):
@@ -407,7 +407,7 @@ class Instances:
407
407
 
408
408
  cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
409
409
  seg_len = [b.segments.shape[1] for b in instances_list]
410
- if len(set(seg_len)) > 1: # resample segments if there's different length
410
+ if len(frozenset(seg_len)) > 1: # resample segments if there's different length
411
411
  max_len = max(seg_len)
412
412
  cat_segments = np.concatenate(
413
413
  [
ultralytics/utils/loss.py CHANGED
@@ -297,7 +297,7 @@ class v8SegmentationLoss(v8DetectionLoss):
297
297
  raise TypeError(
298
298
  "ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
299
299
  "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
300
- "i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
300
+ "i.e. 'yolo train model=yolo11n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
301
301
  "correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
302
302
  "as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
303
303
  ) from e
@@ -666,7 +666,7 @@ class v8OBBLoss(v8DetectionLoss):
666
666
  raise TypeError(
667
667
  "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
668
668
  "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
669
- "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
669
+ "i.e. 'yolo train model=yolo11n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
670
670
  "correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
671
671
  "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
672
672
  ) from e
@@ -30,10 +30,10 @@ def run_ray_tune(
30
30
  ```python
31
31
  from ultralytics import YOLO
32
32
 
33
- # Load a YOLOv8n model
33
+ # Load a YOLO11n model
34
34
  model = YOLO("yolo11n.pt")
35
35
 
36
- # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
36
+ # Start tuning hyperparameters for YOLO11n training on the COCO8 dataset
37
37
  result_grid = model.tune(data="coco8.yaml", use_ray=True)
38
38
  ```
39
39
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: ultralytics
3
- Version: 8.3.64
3
+ Version: 8.3.66
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -70,7 +70,6 @@ Requires-Dist: tensorflowjs>=3.9.0; extra == "export"
70
70
  Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
71
71
  Requires-Dist: keras; extra == "export"
72
72
  Requires-Dist: flatbuffers<100,>=23.5.26; platform_machine == "aarch64" and extra == "export"
73
- Requires-Dist: numpy==1.23.5; platform_machine == "aarch64" and extra == "export"
74
73
  Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
75
74
  Provides-Extra: solutions
76
75
  Requires-Dist: shapely>=2.0.0; extra == "solutions"
@@ -3,14 +3,14 @@ tests/conftest.py,sha256=DE4-5JqWhsQPyDhU5hHqRevz971yPBQORs3LitLc6Fo,3010
3
3
  tests/test_cli.py,sha256=b9pPCu6x_MejPw-G7TI3wxSZnaMmutcXW7aCzMzz4ig,5076
4
4
  tests/test_cuda.py,sha256=inPe0f_L0GutDxYLbe49BPEmjMevaS9XXCWX1Lfjo2g,5971
5
5
  tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
6
- tests/test_exports.py,sha256=bvi2GgwxiAIpnAEQQ4iImffA7zke65_CDwoXOF7anuE,8797
6
+ tests/test_exports.py,sha256=dEWZpDaHrBjGOeQB9DjkSL1T1xFVJm-T3jQpKZ0tdtc,8807
7
7
  tests/test_integrations.py,sha256=p3DMnnPMKsV0Qm82JVJUIY1UZ67xRgF9E8AaL76TEHE,6154
8
8
  tests/test_python.py,sha256=tW-EFJC2rjl_DvAa8khXGWYdypseQjrLjGHhe2p9r9A,23238
9
9
  tests/test_solutions.py,sha256=aY0G3vNzXGCENG9FD76MfUp7jgzeESPsUvbvQYBUvH0,4205
10
- ultralytics/__init__.py,sha256=re8M3cQOdKVR3CsCTM1XB6E6QzFTFkBBZKw8_a9ZLao,709
10
+ ultralytics/__init__.py,sha256=sh3HIVlUYFfloK-ybLmXhVKJtGCbgPOESjbR3oBXmdY,709
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
- ultralytics/cfg/__init__.py,sha256=9xBYqfr4VxaDx3MkyK0ePIOr8iZ7BfCC2H1VNqfFInQ,39601
13
+ ultralytics/cfg/__init__.py,sha256=qP44HnFP4QcC5FQz29A-EGTuwdtxXAzPvw_IvCVmiqA,39771
14
14
  ultralytics/cfg/default.yaml,sha256=tHE_VB_tzq5K1BntCCukmFIViwiRv0R-H6ZNucCnYsY,8469
15
15
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=W225bp0LpIKbn8qrApX4W0jGUJc5tPKQNJjVdkInzJo,3163
16
16
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=SHND_CFkojxw5iQD5Mcgju2kCZIl0gW2ajuzv1cqoL0,1224
@@ -42,7 +42,7 @@ ultralytics/cfg/datasets/package-seg.yaml,sha256=uechtCYfX8OrJrO5zV1-uGwbr69lUSu
42
42
  ultralytics/cfg/datasets/signature.yaml,sha256=eABYny9n4w3RleR3RQmb505DiBll8R5cvcjWj8wkuf0,789
43
43
  ultralytics/cfg/datasets/tiger-pose.yaml,sha256=gCQc1AX04Xfhnms4czm7R_XnT2XFL2u-t3M8Yya20ds,925
44
44
  ultralytics/cfg/datasets/xView.yaml,sha256=q33mdKXN7B0tt2zeCvoy0BB9B0RVSIM5K94b2-tIkLo,5246
45
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=8bk9ggBlJ75mPSc5Ycp-EwTU0CNeVrObMIAOsK0lV8U,794
45
+ ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=rMwOjwrHuYmZUN9ct_rHAV8bExHDK2U6VeD-U23XdWg,522
46
46
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=jWDUCRPe5UGTphXpi9kQSnJ_wg_Ga_9Gq20KuD_NMaU,1416
47
47
  ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=x8XDI2WvbBDre79eslYafBDvu6AmdGbOzTfnq5UhmVM,2034
48
48
  ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=RUe-8rIrrYWItv0GMo_VaO9JfrK2NJSXfbhv0NOq9dk,2128
@@ -93,22 +93,22 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=D9doE5GQUe6HrAFzr7OfQFIGPFk0M_vJ0B_
93
93
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
94
94
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
95
95
  ultralytics/data/annotator.py,sha256=jbKHB5l5IYOG1YOgCxA6czU_ivb3NPAACrtPe6-bVn4,3145
96
- ultralytics/data/augment.py,sha256=A9yBpNU0JkHMNTYdsN1gYPwmXFjb2S23i7HU99Bsqlk,120719
96
+ ultralytics/data/augment.py,sha256=sQDtIPD0P2pm_t-dI87hZt9KTB2PDN0JT_7AekHctRw,120726
97
97
  ultralytics/data/base.py,sha256=NTNdn-Emgx3Z2vats8i8oEe-9yosPmHd53v1A0xz0EU,15196
98
- ultralytics/data/build.py,sha256=TsDx_rNzREtSPs07_qtQALNdZ5w7OV9SJ4I1JXY9wcY,7598
98
+ ultralytics/data/build.py,sha256=gOU5SNABBNxwo5012N--WhjEnLK2ewycXIryMpbHg6U,7685
99
99
  ultralytics/data/converter.py,sha256=89E44LBCpbn5hMF03Kdts6DaTP8Oei5iCra5enFCt5I,24467
100
100
  ultralytics/data/dataset.py,sha256=lxtH3JytNu6nsiPAIhe0uGuGGpkZ4ZRqvXM6eJw9rXU,23244
101
101
  ultralytics/data/loaders.py,sha256=JOwXbz-dxgG2bx0_cQHp-olz5FleoCX8EzrUvZ77vvg,28534
102
- ultralytics/data/split_dota.py,sha256=NgnGcEJE2iVfGCoJUIeKUxhu_kGg6dln6UTajUqT-_k,10720
103
- ultralytics/data/utils.py,sha256=EoSlxcz5orjChBZbtzgIyddKuO3DFcuKVRBUWvpEk_4,33842
102
+ ultralytics/data/split_dota.py,sha256=YI-i2MqdiBt06W67TJnBXQHJrqTnkJDJ3zzoL0UZVro,10733
103
+ ultralytics/data/utils.py,sha256=K8xyA1xHLpaeluUbqOl5fy6AWZ6nDciCBZJofjxzOuw,33841
104
104
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
105
- ultralytics/engine/exporter.py,sha256=tijlUOzhJHs6IUExYLGMLPDdxVpruPb9BmPmTRZ8s24,69155
106
- ultralytics/engine/model.py,sha256=tgzwnspighsesavuOEpirHS_5VPukQinj9sBAUnXpUE,53110
107
- ultralytics/engine/predictor.py,sha256=I66hWs-SV6Yu8QTsrr9ZEWqfDblKdQkJaIqyHoFHgeQ,17740
108
- ultralytics/engine/results.py,sha256=sf_JPDTp9lCrcjdloTsZOBbSfzX5oVW9CL6PYf-uW8U,75114
109
- ultralytics/engine/trainer.py,sha256=1zT-C9YeByROTO8nEq38fzGYMt15sizkAuDHcRYEcu8,37434
110
- ultralytics/engine/tuner.py,sha256=fY-zuAGN8r2bkRVoxxLAz73DfA5CLojbiDP7TEUsAR0,11976
111
- ultralytics/engine/validator.py,sha256=snmE1O0wJIX610bvSOk6pV_jf2pXEQ8IdvKVkX8_agI,14901
105
+ ultralytics/engine/exporter.py,sha256=9xs7d1TGZecLmNg9ECra0oRclAOac0bjX9nXOf9tqPQ,70916
106
+ ultralytics/engine/model.py,sha256=IHeaCwXlbxs6f2gVF5hEQVUiY-3F9Oz1wJNSTPZ-tZ0,53110
107
+ ultralytics/engine/predictor.py,sha256=jiYDAjupOlRUpPvw9tu7or9PjXtLm-YCRiawANtWxj0,17881
108
+ ultralytics/engine/results.py,sha256=ZIvu8Qb_ylmu92Jfy6m0IcRnenFpdVKaq-DZrfubKoo,75114
109
+ ultralytics/engine/trainer.py,sha256=ZGAc6C1_LUBHDdZlr6wT6sbMtDzWa5rr7M8QVlXpBLs,37362
110
+ ultralytics/engine/tuner.py,sha256=EUlTs7KJQ2RVABm8pihr_14M_Z2kGSzJaWH-Y9TJYDw,11976
111
+ ultralytics/engine/validator.py,sha256=r27X8HGeDEwq7V5sFjEQH_3EnP1CyG-HcOLpFABUisU,15034
112
112
  ultralytics/hub/__init__.py,sha256=1ifzSYV0PIT4ZWOm2V7HnpGyY3G3hCz0malw3AXHFlY,5660
113
113
  ultralytics/hub/auth.py,sha256=akS7QMg93L_cBjDGOc0Jns5-m3ao_VzBCcyKLb4f0sI,5569
114
114
  ultralytics/hub/session.py,sha256=us_8fZkBa2XyTGNyIjWiSSesJwMRXQv9P0sf12gh30U,16439
@@ -149,49 +149,49 @@ ultralytics/models/utils/ops.py,sha256=bZDfr9_2BUTDKiFJvMZmDdhffi5shoW0zJMiSjOoL
149
149
  ultralytics/models/yolo/__init__.py,sha256=ol-bnRJEHdhdrNRAgyP_5SlhnJtZquCKQXEf_0kFs-o,275
150
150
  ultralytics/models/yolo/model.py,sha256=EZ-e4auePxXs0747Bo45hnM8Rz0cRalslBrkA9FKxas,4261
151
151
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
152
- ultralytics/models/yolo/classify/predict.py,sha256=6mFXTUYaDJiRKGSP8QKXQ6QlSxH-qLf9tw3cqq6M-lE,2544
153
- ultralytics/models/yolo/classify/train.py,sha256=nWhOqFyZTQeuR3_CURwW5Wl0WXkplikCLkfDNeqjVVQ,6301
154
- ultralytics/models/yolo/classify/val.py,sha256=qCoEbvHK0B9OHndKzq7jBsb9p_brgfkCUXU1na5UPF0,5102
152
+ ultralytics/models/yolo/classify/predict.py,sha256=21ULUMvCdZnTqTcx3hPZW8J36CvD3xFZP0CaLhPOns8,2544
153
+ ultralytics/models/yolo/classify/train.py,sha256=xxUbTEKj2nUeu_E7hJHgHtCz0LN8AwWgcJ43k2k5ELg,6301
154
+ ultralytics/models/yolo/classify/val.py,sha256=VUYkqGtKnZPig1XE5Qrtqoqm-Y9dDgr5YCzcPC6y1sE,5102
155
155
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
156
156
  ultralytics/models/yolo/detect/predict.py,sha256=dHtNxh4-9deFj6QMwh1jE8Dd5zkTNw4DwcinoFNgB24,1499
157
157
  ultralytics/models/yolo/detect/train.py,sha256=Y2SYjywenBLg8j-r4bC_sWqle1DJGQtDL5O6koeqm9U,6738
158
158
  ultralytics/models/yolo/detect/val.py,sha256=rEvoR99ybrOkSmQ55tCgbkCXpe7yyC-BoSAbmm4hD1Q,15094
159
159
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
160
- ultralytics/models/yolo/obb/predict.py,sha256=HD955MwTP-3LOCIhMXIcLrz_wU8ov8I97I1RJFC-0LA,2065
161
- ultralytics/models/yolo/obb/train.py,sha256=yRTVDCK1no5JvKkM7QEAwLSPnJPVSO-8esudi5dgNL0,1550
162
- ultralytics/models/yolo/obb/val.py,sha256=AJ9vzZD_WsH180dAvLX3pprKNyhMRnE6VEY9Gb16Y4I,9365
160
+ ultralytics/models/yolo/obb/predict.py,sha256=Kb3bG6bh6nq7uputPTvz9nTLx-5cE62QcdousBOWkjQ,2065
161
+ ultralytics/models/yolo/obb/train.py,sha256=7LJ04dYENfjdt1Jet0Cxh0nyIpmgIUtmz425ZEuZSn8,1550
162
+ ultralytics/models/yolo/obb/val.py,sha256=Ezg9N6BFsxfGyd_17H8KuKR9N5qDNQAKxC2ila5otTI,9365
163
163
  ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
164
- ultralytics/models/yolo/pose/predict.py,sha256=XOTXFQf0vulJV8gfy3jKxoGkamCagjwtx6GImcDu-Ig,2393
165
- ultralytics/models/yolo/pose/train.py,sha256=Kdlz2H6XhsgbxjzYkGXiOmzUUuEgMYglc_pfqC8RuW4,2954
166
- ultralytics/models/yolo/pose/val.py,sha256=y_-JG0MkSoYRiuJlpkU-4p4gw60D1fvFykZB6YhAIgI,12410
164
+ ultralytics/models/yolo/pose/predict.py,sha256=7iHS0xHuJzjaihZ4qO5FWFTtMy44zAt9jp1Uc1jlSug,2393
165
+ ultralytics/models/yolo/pose/train.py,sha256=472BgOjvDdNXe9GN68zO1ddRh5Cbmfg5m9_JZyHrTxY,2954
166
+ ultralytics/models/yolo/pose/val.py,sha256=J3Vy2I7MDtsmUA3nr3QDRnO3yI4SHcL0eLb7ek8MM3s,12410
167
167
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
168
- ultralytics/models/yolo/segment/predict.py,sha256=7ma9rIG4jiogRON0NZ_Ln5ugFEgJUQTv-sz4ecqpEyw,2496
169
- ultralytics/models/yolo/segment/train.py,sha256=XfuxOmHbeaeUh1l2_pS1Q2yDuRbRcAQkkpfEaJeu3v8,2326
170
- ultralytics/models/yolo/segment/val.py,sha256=kkZmbdkDNQXebUmb3bSlxA7MLygzIiqEQngr3PuCmaQ,14080
168
+ ultralytics/models/yolo/segment/predict.py,sha256=XJA616J7e4qj2pUbVl4Rc1Nobfq7XxSvdS-8Jj8hflM,2496
169
+ ultralytics/models/yolo/segment/train.py,sha256=2PGirZ7cvAsK2LxrEKC0HisOqPw6hyUCAPMkYmqQkIY,2326
170
+ ultralytics/models/yolo/segment/val.py,sha256=-SXIaFi2vGg_m9o9cFBPYqw_nN_L77zcO2xGj78BeXE,14080
171
171
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
172
172
  ultralytics/models/yolo/world/train.py,sha256=6PVmQ0G-22OOPPwP_rqSobe2LM6e2b_lC7lJCdW3UIk,3714
173
173
  ultralytics/models/yolo/world/train_world.py,sha256=sCtg4Hnq9Y7amYjlQsdvTHXH8cKSooipvcXu_1Iyb2k,4885
174
174
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
175
- ultralytics/nn/autobackend.py,sha256=ONLwYlT8tu6_U0ghXfcNmG6eH9UWH-HDwnBQH2mbYWs,35540
176
- ultralytics/nn/tasks.py,sha256=bmxRb1_MZQGWNdHcuN6QeXPRoYnqPNZURT1O9vYkMh4,48710
175
+ ultralytics/nn/autobackend.py,sha256=6h8yg7X7U7mqJjflxFP9Vv2SFsAgoQ-UKBrIZ3v4ihg,36797
176
+ ultralytics/nn/tasks.py,sha256=Qe9EZ7NBDT5zOFAqJSl5XhYWnMDByuQL80r6pP0TuDM,48892
177
177
  ultralytics/nn/modules/__init__.py,sha256=02dPoAMtpPNQdHXHmvJeWZvJ_WG6eqwH8atLdFWgcuY,2713
178
178
  ultralytics/nn/modules/activation.py,sha256=oRkhMdqlNpIxQb35pTSUeHV-h0VyLl96GOqvIZ4OvT8,923
179
- ultralytics/nn/modules/block.py,sha256=JiT7flwBw7P8DbHf-UUHqz4uGC6WYlMrXx2f9Vlsvx0,44014
180
- ultralytics/nn/modules/conv.py,sha256=P3R8xTuE7GMJ2DJ_ye7D54Gh56tfh4ykNnIXBG2QcNQ,13140
179
+ ultralytics/nn/modules/block.py,sha256=vQqfKIXPmEnxupdzcLDGC5FkjCNIqURfqt4CEEseuXE,43940
180
+ ultralytics/nn/modules/conv.py,sha256=Wx_tZ56M7iMiNqz3v03oi86C2fatdmdBBDpkrUyzEIU,13132
181
181
  ultralytics/nn/modules/head.py,sha256=RYT31wplr64yDSHLpEZy3fyqg9W8HWlXWKrltwpqGiQ,27962
182
182
  ultralytics/nn/modules/transformer.py,sha256=fdc4xam82Dk8etahkhlc5RHW6dfY00klKj2od4QpdQo,18097
183
183
  ultralytics/nn/modules/utils.py,sha256=AA2M6ZyBgmnMXUuiqJ5aSpQv2h1BmmcWuBVA1343nZg,3223
184
184
  ultralytics/solutions/__init__.py,sha256=_BykA7W5ZIRVGF7A-5-6vkYYPBhlpeBWpD4ArVvL71c,852
185
- ultralytics/solutions/ai_gym.py,sha256=gvAY1AEjWDn4EvzRvTqFEpFfFbtwjzTgrK4N-nsSDIY,5283
185
+ ultralytics/solutions/ai_gym.py,sha256=tIztwTUJDWjv35t4LAEc28qwxohdVyhQBx_MQoKPIa4,5283
186
186
  ultralytics/solutions/analytics.py,sha256=gIte8AnesGQ4YRGfQ05q0DF7q0wlFvFT7JC06Dxkczc,11551
187
187
  ultralytics/solutions/distance_calculation.py,sha256=o20C78DNV5PbIKwM_TR5jMx8FyEUioBDcQ_1VnxJFzc,5562
188
- ultralytics/solutions/heatmap.py,sha256=9bAWbAEwydSUuD0xHtls3tv7mut1vN25o9O4Kbz3d8M,5331
188
+ ultralytics/solutions/heatmap.py,sha256=euiM7VbkblyFYFLM2oygamI-lIZvKQ-iQURhSE2MJl0,5331
189
189
  ultralytics/solutions/object_counter.py,sha256=OL8gx5cQvEfCWwTPM0Nbk0YS42v7ySBWVU5WTFTLq1g,9641
190
- ultralytics/solutions/parking_management.py,sha256=TVj0AU3nhp0RzIOxBPGPzpx0syikOdj71E_VOE-omrA,11961
190
+ ultralytics/solutions/parking_management.py,sha256=EqUKjL5xZAALOH3QYqHZJbauOnDxnkB34P37Og1dV_E,11961
191
191
  ultralytics/solutions/queue_management.py,sha256=Jl9cq9aTmUPGxn-uT6DNRSsVGB8y4yU3C2VDynAPlMU,4959
192
192
  ultralytics/solutions/region_counter.py,sha256=oc3iVn-oWfVvpqUD8zCZexibTjgwMSyutduk8JMaWpI,5245
193
193
  ultralytics/solutions/security_alarm.py,sha256=OqFgoYZZImBBvUXInYNijiCpPaKbvZr8lAljwM7KsuU,5695
194
- ultralytics/solutions/solutions.py,sha256=hDaQQW8EURYV2ExCAxF7y2sPz72uqLd1Pv1-oYqZ4sc,7772
194
+ ultralytics/solutions/solutions.py,sha256=qfJQd8GTOnWU8cLtlId3k0RPrI4fXlFgYIMOlq-_8gw,7772
195
195
  ultralytics/solutions/speed_estimation.py,sha256=y8_CsEk_SYnYj3pZ4f_USCzGJixMp0DT6CUPhjqoBZs,4964
196
196
  ultralytics/solutions/streamlit_inference.py,sha256=yqkKVoDyyacY9zTTsEYikXg-Ov7EfAmXsZmOmUx6yMk,9438
197
197
  ultralytics/solutions/trackzone.py,sha256=u_jLB_OJk_WeYn2fea5tjbX8YdrmQPJ0s7JwRH-anzI,2980
@@ -199,21 +199,21 @@ ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0p
199
199
  ultralytics/trackers/basetrack.py,sha256=h0fcxzCdZf_56H1NG_mCIATaz_cWj0e9aJKE1xgmtFQ,4451
200
200
  ultralytics/trackers/bot_sort.py,sha256=xUmlj0agS0PGjy97N3C0jLMV07yvsurE5QcnuoV_Ecw,10522
201
201
  ultralytics/trackers/byte_tracker.py,sha256=CT_Yjw2ahHoprEfNcTM0hBMoGss5qcqt6Paxk956lYU,20846
202
- ultralytics/trackers/track.py,sha256=L51gFZ6-X3gtcHf1ooCofP3lcwMg2tOXJpa3ipfAnx8,3902
202
+ ultralytics/trackers/track.py,sha256=RWG2sc2HkGaajwLMZp7A_5HusxYKNR8gky4igvZpzug,4021
203
203
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
204
204
  ultralytics/trackers/utils/gmc.py,sha256=kU54RozuGJcAVlyb5_HjXiNIUIX5VuH613AMc6Gdnwg,14597
205
205
  ultralytics/trackers/utils/kalman_filter.py,sha256=OBvemZXptgn9v1sgBLvFomCqOWwjIB3-8wBbc8nakHo,21377
206
- ultralytics/trackers/utils/matching.py,sha256=jOGfDMaWUOGHy3e_SF-vn7m0t8nUgLNsiBwhusdkF2g,7106
207
- ultralytics/utils/__init__.py,sha256=n-cHhNxlVBmRl0uWjJtxnCcU1D4esvOyJZu6mYn5obU,49554
206
+ ultralytics/trackers/utils/matching.py,sha256=64PKHGoETwXhuZ9udE217hbjJHygLOPaYA66J2qMSno,7130
207
+ ultralytics/utils/__init__.py,sha256=BG71Eb5UwMtVi7ccUhV9n2mZzshAJzl7_X0YMpoNFzc,49799
208
208
  ultralytics/utils/autobatch.py,sha256=zc81HlAMArPASEbExty0E_zpITF8PVwin7w-xBFFZ5w,5048
209
- ultralytics/utils/benchmarks.py,sha256=Njv__APyz_q39wpwVBPC7qTbFBLEWNx_72arkPxo_6U,25671
210
- ultralytics/utils/checks.py,sha256=nCCYwMZRHsLq-At6dVNlQrrDAFN2oj--uPjLKXMtkk4,30529
209
+ ultralytics/utils/benchmarks.py,sha256=o9T7xfwhMsrOP0ce3F654L1an3fIoBKxUKz1CHNXerw,25979
210
+ ultralytics/utils/checks.py,sha256=P543iMxEbXi0WWGrY67GaA7jIsas63K4uCSZpqmVx8M,31017
211
211
  ultralytics/utils/dist.py,sha256=fuiJQEnyyL-SighlI3hUlZPaaSreUl4Q39snF6OhQtI,2386
212
- ultralytics/utils/downloads.py,sha256=n5htu7rIp6izCeObZLjwaIz8t4RqoivmC2pYEa63KJo,21999
212
+ ultralytics/utils/downloads.py,sha256=aUESyJOE2d7mJwbGECHWLR3RF8HVQPSwNH0cfmLGgdI,21999
213
213
  ultralytics/utils/errors.py,sha256=sXKDEd8ws3L-yIfG_-P_h86axbm37sJNha7kFBJbQMQ,844
214
214
  ultralytics/utils/files.py,sha256=c85NRofjGPMcpkV-yUo1Cwk8ZVquBGCEKlzbSVtXkQA,8252
215
- ultralytics/utils/instance.py,sha256=c0KKTpTHaSKw7_eRqoUHnQmSpBUGt8LehRZTRfk-bN4,16881
216
- ultralytics/utils/loss.py,sha256=Hw0lgTlYTjIgllRr9mOWysJVqev3DtF9488wTiHEU5c,34179
215
+ ultralytics/utils/instance.py,sha256=z1oyyvz7wnCSUW_bvi0TbgAL0VxJtAWWXV9KWCoyJ_k,16887
216
+ ultralytics/utils/loss.py,sha256=paRY8K7R4pcUGJfApVzZx-m_iFzzMbHm5GgiaixfDuU,34179
217
217
  ultralytics/utils/metrics.py,sha256=onGJkd4DW8DUofFFtHm9xoUCt8gcNlcCxxU-Q39IN7k,54175
218
218
  ultralytics/utils/ops.py,sha256=6nERPkmssU1I2RykKF5jKdadiHgCeD7qHXOld6bOfXI,33574
219
219
  ultralytics/utils/patches.py,sha256=ARR89dP4YKq7Dd3g2eU-ukbnc2lo3BELukL_1c_d854,3298
@@ -221,7 +221,7 @@ ultralytics/utils/plotting.py,sha256=cl8mctrkBMMTE976yrqDn1I8dH6IPO3ROZl99t5fo9w
221
221
  ultralytics/utils/tal.py,sha256=DO-c006HEI62pcrNRpmt4lpqJPC5yu3veRDOvUuExno,18498
222
222
  ultralytics/utils/torch_utils.py,sha256=JQ8HvqIVD-iL640vPBD4e9uOihhVhMuFL2G-BR-AxSM,33155
223
223
  ultralytics/utils/triton.py,sha256=2L1_rZ8xCJEjexRVj75g9YU-u4tQln_DJ5N1Yr_0bSs,4071
224
- ultralytics/utils/tuner.py,sha256=V_FCt0NNLhRRIgAW35oAXAkc5tbjgX1cBcFeLyJnEJs,6294
224
+ ultralytics/utils/tuner.py,sha256=gySDBzTlq_klTOq6CGEyUN58HXzPCulObaMBHacXzHo,6294
225
225
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
226
226
  ultralytics/utils/callbacks/base.py,sha256=nbeSPjPCOb0M6FsFQ5-uFxXVzUYwmFyE4wFoA66Jpug,5803
227
227
  ultralytics/utils/callbacks/clearml.py,sha256=JH70T1OLPd9GSvC6HnaKkZHTr8fyE9RRcz3ukL62QPw,5961
@@ -233,9 +233,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=waZ_bRu0-qBKujTLuqonC2gx2DkgBuVnfq
233
233
  ultralytics/utils/callbacks/raytune.py,sha256=TbuZlDb721aIkh-nMozZcP2g_ttUh2cG5LUaXmept6g,728
234
234
  ultralytics/utils/callbacks/tensorboard.py,sha256=JHOEVlNQ5dYJPd4Z-EvqbXowuK5uA0p8wPgyyaIUQs0,4194
235
235
  ultralytics/utils/callbacks/wb.py,sha256=ayhT2y62AcSOacnawshATU0rWrlSFQ77mrGgBdRl3W4,7086
236
- ultralytics-8.3.64.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
237
- ultralytics-8.3.64.dist-info/METADATA,sha256=ymu6RmD6CMHaTLGep7T3NZZeLeZazQzXknqYSt50wXA,35284
238
- ultralytics-8.3.64.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
239
- ultralytics-8.3.64.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
240
- ultralytics-8.3.64.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
241
- ultralytics-8.3.64.dist-info/RECORD,,
236
+ ultralytics-8.3.66.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
237
+ ultralytics-8.3.66.dist-info/METADATA,sha256=cCTTDdai2Jw3CYmdmlBFzJRbsw-KLJRoIk-dAhG_dNU,35202
238
+ ultralytics-8.3.66.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
239
+ ultralytics-8.3.66.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
240
+ ultralytics-8.3.66.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
241
+ ultralytics-8.3.66.dist-info/RECORD,,